Accretion Flow onto Ellis–Bronnikov Wormhole
Abstract
:1. Introduction
2. Ellis–Bronnikov Wormhole
3. Accretion on Massive Ellis–Bronnikov Wormhole Spacetime
4. Accretion Process on Massless Ellis–Bronnikov Wormhole
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | We thank an anonymous reviewer for pointing out this issue. We take this opportunity to point out that Ohgami and Sakai [52] have proposed a method of imaging massless EBWHs surrounded by optically thin dust. We comment that they do not consider accretion, since their equations yield constant, or even 0 (see their Equation [3.17]). |
References
- Hochberg, D.; Visser, M. Null Energy Condition in Dynamic Wormholes. Phys. Rev. Lett. 1998, 81, 746–749. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Kar, S.; Dadhich, N. Traversable Wormholes with Arbitrarily Small Energy Condition Violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N.; Parsaei, F.; Riazi, N. New asymptotically flat phantom wormhole solutions. Phys. Rev. D 2013, 87, 084030. [Google Scholar] [CrossRef] [Green Version]
- Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104, Erratum in 1974, 15, 520E. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Polon. B 1973, 4, 251–266. [Google Scholar]
- Einstein, A.; Rosen, N. Two-Body Problem in General Relativity Theory. Phys. Rev. 1936, 49, 404. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Karimov, R.K.; Izmailov, R.N.; Potapov, A.A.; Nandi, K.K. Can accretion properties distinguish between a naked singularity, wormhole and black hole? Eur. Phys. J. C 2020, 80, 1138. [Google Scholar] [CrossRef]
- Izmailov, R.N.; Karimov, R.K.; Potapov, A.A.; Nandi, K.K. Vacuum Brans–Dicke theory in the Jordan and Einstein frames: Can they be distinguished by lensing? Mod. Phys. Lett. A 2020, 35, 2050308. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Chew, X.Y.; Kunz, J. Scalar and axial quasinormal modes of massive static phantom wormholes. Phys. Rev. D 2018, 98, 044035. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V.; Hammad, F.; Belknap-Keet, S.D. Revisiting the Brans solutions of scalar-tensor gravity. Phys. Rev. D 2016, 94, 104019. [Google Scholar] [CrossRef] [Green Version]
- Nandi, K.K.; Zhang, Y.-Z.; Zakharov, A.V. Gravitational lensing by wormholes. Phys. Rev. D 2006, 74, 024020. [Google Scholar] [CrossRef] [Green Version]
- Nandi, K.K.; Zhang, Y.-Z. Traversable Lorentzian wormholes in the vacuum low energy effective string theory in Einstein and Jordan frames. Phys. Rev. D 2004, 70, 044040. [Google Scholar] [CrossRef] [Green Version]
- Nandi, K.K.; Islam, A.; Evans, J. Brans wormholes. Phys. Rev. D 1997, 55, 2497. [Google Scholar] [CrossRef]
- Shinkai, H.; Hayward, S.A. Fate of the first traversible wormhole: Black-hole collapse or inflationary expansion. Phys. Rev. D 2002, 66, 044005. [Google Scholar] [CrossRef] [Green Version]
- González, J.A.; Guzmán, F.S.; Sarbach, O. Instability of wormholes supported by a ghost scalar field: I. Linear stability analysis. Class. Quant. Grav. 2009, 26, 015010. [Google Scholar] [CrossRef] [Green Version]
- Nandi, K.K.; Potapov, A.A.; Izmailov, R.N.; Tamang, A.; Evans, J.C. Stability and instability of Ellis and phantom wormholes: Are there ghosts? Phys. Rev. D 2016, 93, 104044. [Google Scholar] [CrossRef] [Green Version]
- Bondi, H. On Spherically Symmetrical Accretion. Mon. Not. R. Astron. Soc. 1952, 112, 195–204. [Google Scholar] [CrossRef]
- Michel, F.C. Accretion of matter by condensed objects. Astrophys. Space Sci. 1972, 15, 153–160. [Google Scholar] [CrossRef]
- Bahamonde, S.; Jamil, M. Accretion processes for general spherically symmetric compact objects. Eur. Phys. J. C 2015, 75, 508. [Google Scholar] [CrossRef] [Green Version]
- Debnath, U. Accretion and evaporation of modified Hayward black hole. Eur. Phys. J. C 2015, 75, 129. [Google Scholar] [CrossRef] [Green Version]
- Debnath, U. Accretion of dark energy onto higher dimensional charged BTZ black hole. Eur. Phys. J. C 2015, 75, 449. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Raymond, J.; Fabian, A.; Steeghs, D.; Homan, J.; Reynolds, C.; Van der Klis, M.; Wijnands, R. The magnetic nature of disk accretion onto black holes. Nature 2006, 441, 953. [Google Scholar] [CrossRef]
- Martnez-Pas, I.G.; Shahbaz, T.; Velzquez, J.C. Accretion Processes in Astrophysics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mach, P.; Malec, E.; Karkowski, J. Spherical steady accretion flows: Dependence on the cosmological constant, exact isothermal solutions, and applications to cosmology. Phys. Rev. D 2013, 88, 084056. [Google Scholar] [CrossRef] [Green Version]
- Karkowski, J.; Kinasiewicz, B.; Mach, P.; Malec, E.; Świerczyński, Z. Universality and backreaction in a general-relativistic accretion of steady fluids. Phys. Rev. D 2006, 73, 021503. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.O.; Dokuchaev, V.N.; Eroshenko, Y.N. Black Hole Mass Decreasing due to Phantom Energy Accretion. Phys. Rev. Lett. 2004, 93, 021102. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.O.; Dokuchaev, V.N.; Eroshenko, Y.N. Black holes in the presence of dark energy. Phys. Usp. 2013, 56, 1155. [Google Scholar] [CrossRef] [Green Version]
- Pepe, C.; Pellizza, L.J.; Romero, G.E. Dark matter and dark energy accretion on to intermediate-mass black holes. Mon. Not. R. Astron. Soc. 2012, 420, 3298–3302. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Abbas, G. Phantom Energy Accretion by a Stringy Charged Black Hole. Chin. Phys. Lett. 2012, 29, 010401. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Ditta, A.; Jawad, A.; Umair Shahzad, M. Matter accretion onto a brane-world black hole via Hamiltonian approach. Gen. Relativ. Gravit. 2019, 51, 136. [Google Scholar] [CrossRef]
- Abbas, G.; Ditta, A. Astrophysical accretion near Hayward regular black hole. New Astronomy 2020, 81, 101437. [Google Scholar]
- Abbas, G.; Ditta, A. Michel accretion onto a non-commutative black hole. New Astronomy 2021, 84, 101508. [Google Scholar] [CrossRef]
- González-Díaz, P.F. On the accretion of phantom energy onto wormholes. Phys. Lett. B 2006, 632, 159. [Google Scholar] [CrossRef]
- González-Díaz, P.F. Some notes on the big trip. Phys. Lett. B 2006, 635, 1. [Google Scholar] [CrossRef] [Green Version]
- Debnath, U. Accretions of various types of dark energies onto Morris–Thorne wormhole. Eur. Phys. J. C 2014, 74, 2869. [Google Scholar] [CrossRef] [Green Version]
- Debnath, U. Accretions of dark matter and dark energy onto (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. Astrophys. Space Sci. 2015, 360, 40. [Google Scholar] [CrossRef]
- Debnath, U.; Basak, S. Nature of Higher-Dimensional Wormhole Mass Due to Accretion of Entropy Corrected Holographic and New Agegraphic Dark Energies. Gravit. Cosmol. 2020, 26, 285–295. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Momeni, D.; Altaibayeva, A.; Myrzakulov, R. Can holographic dark energy increase the mass of the wormhole? Astrophys. Space Sci. 2015, 356, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, T.; Debnath, U. Accretions of Tsallis, Rényi and Sharma–Mittal dark energies onto higher-dimensional Schwarzschild black hole and Morris–Thorne wormhole. Mod. Phys. Lett. A 2021, 36, 2150081. [Google Scholar] [CrossRef]
- Khaybullina, A.; Izmailov, R.; Nandi, K.K.; Cattani, C. Regular Solutions in Vacuum Brans-Dicke Theory Compared to Vacuum Einstein Theory. Adv. High Energy Phys. 2013, 2013, 367029. [Google Scholar] [CrossRef] [Green Version]
- Lukmanova, R.F.; Tuleganova, G.Y.; Izmailov, R.N.; Nandi, K.K. Lensing observables: Massless dyonic vis-à-vis Ellis wormholes. Phys. Rev. D 2018, 97, 124027. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, N. Strong deflection limit analysis and gravitational lensing of an Ellis wormhole. Phys. Rev. D 2016, 94, 124001. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.-M.; Harada, T.; Tsukamoto, N. Wave effect in gravitational lensing by the Ellis wormhole. Phys. Rev. D 2013, 87, 084045. [Google Scholar] [CrossRef] [Green Version]
- Abe, F. Gravitational microlensing by the ellis wormhole. Astrophys. J. 2010, 725, 787. [Google Scholar] [CrossRef]
- Lukmanova, R.; Kulbakova, A.; Izmailov, R.; Potapov, A.A. Gravitational Microlensing by Ellis Wormhole: Second Order Effects. Int. J. Theor. Phys. 2016, 55, 4723. [Google Scholar] [CrossRef]
- Bhadra, A.; Nandi, K.K. On the equivalence of the Buchdahl and the Janis-Newman-Winnicour solutions. Int. J. Mod. Phys. A 2001, 16, 4543. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Izmailov, R.; Laserra, E.; Nandi, K.K. A nonsingular Brans wormhole: An analogue to naked black holes. Class. Quantum Grav. 2011, 28, 155009. [Google Scholar] [CrossRef]
- Nandi, K.K.; Nigmatzyanov, I.; Izmailov, R.N.; Migranov, N.G. New features of extended wormhole solutions in the scalar field gravity theories. Class. Quantum Grav. 2008, 25, 165020. [Google Scholar] [CrossRef]
- Jamil, M. Evolution of a Schwarzschild black hole in phantom-like Chaplygin gas cosmologies. Eur. Phys. J. C 2009, 62, 609. [Google Scholar] [CrossRef] [Green Version]
- Neves, J.C.S.; Saa, A. Accretion of perfect fluids onto a class of regular black holes. Ann. Phys. 2020, 420, 168269. [Google Scholar] [CrossRef]
- Ohgami, T.; Sakai, N. Wormhole shadows. Phys. Rev. D 2015, 91, 124020. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Sapone, D. Crossing the phantom divide. Phys. Rev. D 2006, 74, 123503. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.K. Scale factor dependent equation of state for curvature inspired dark energy, phantom barrier and late cosmic acceleration. Phys. Lett. B 2006, 643, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Clément, G. Scattering of Klein-Gordon and Maxwell waves by an Ellis geometry. Int. J. Theor. Phys. 1984, 23, 335–350. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Potapov, A.A. Bending of light in Ellis wormhole geometry. Mod. Phys. Lett. A 2010, 25, 2399. [Google Scholar] [CrossRef]
- Izmailov, R.N.; Bhattacharya, A.; Zhdanov, E.R.; Potapov, A.A.; Nandi, K.K. Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole? Eur. Phys. J. Plus 2019, 134, 384. [Google Scholar] [CrossRef]
- Gao, X.; Song, S.; Yang, J. Light bending and gravitational lensing in Brans-Dicke theory. Phys. Lett. B 2019, 795, 144. [Google Scholar] [CrossRef]
- Cheng, X.-T.; Xie, Y. Probing a black-bounce, traversable wormhole with weak deflection gravitational lensing. Phys. Rev. D 2021, 103, 064040. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusupova, R.M.; Karimov, R.K.; Izmailov, R.N.; Nandi, K.K. Accretion Flow onto Ellis–Bronnikov Wormhole. Universe 2021, 7, 177. https://doi.org/10.3390/universe7060177
Yusupova RM, Karimov RK, Izmailov RN, Nandi KK. Accretion Flow onto Ellis–Bronnikov Wormhole. Universe. 2021; 7(6):177. https://doi.org/10.3390/universe7060177
Chicago/Turabian StyleYusupova, Rosaliya M., Ramis Kh. Karimov, Ramil N. Izmailov, and Kamal K. Nandi. 2021. "Accretion Flow onto Ellis–Bronnikov Wormhole" Universe 7, no. 6: 177. https://doi.org/10.3390/universe7060177
APA StyleYusupova, R. M., Karimov, R. K., Izmailov, R. N., & Nandi, K. K. (2021). Accretion Flow onto Ellis–Bronnikov Wormhole. Universe, 7(6), 177. https://doi.org/10.3390/universe7060177