Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817
Abstract
:1. Introduction
- What have we learned about the symmetry energy from the tidal deformation of canonical neutron stars from GW170817, the mass of PSR J0740+6620, and NICER’s simultaneous observation of mass and radius of PSR J0030+0451 and PSR J0740+6620?
- How do the symmetry energy parameters extracted from recent observations of neutron stars compare with what we knew before the discovery of GW170817 that were mostly from terrestrial experiments?
- What can we learn about the high-density symmetry energy from future, more precise radius measurement of massive neutron stars?
- What are the effects of hadron–quark phase transition on extracting the symmetry energy from neutron star observables? How does the symmetry energy affect the fraction and size of quark cores in hybrid stars?
- What are the effects of symmetry energy on the nature of GW190814’s second component of mass (2.50–2.67) ?
- If all the characteristics of nuclear symmetry energy at saturation density , e.g., its slope L, curvature , and skewness , are precisely determined by the astrophysical observations and/or terrestrial experiments, how do we use them to predict the symmetry energy at suprasaturation densities, such as ? Nuclear symmetry energy is normally expanded or simply parameterized as a function of in the form of . However, such kinds of expansions/parameterizations do not converge at suprasaturation densities where is not small enough, hindering an accurate determination of high-density . Is there a better way that one can predict accurately the symmetry energy at high densities using L, , and ?
2. What Have We Learned about the Symmetry Energy from the Tidal Deformation of Canonical Neutron Stars from GW170817 as Well as NICER’s Simultaneous Observations of Mass and Radius of PSR J0030+0451 and PSR J0740+6620? How Do They Compare with What We Knew before GW170817?
2.1. Updated Systematics of Symmetry Energy Parameters at after Incorporating the Results of Recent Analyses of Neutron Star Observables since GW170817
2.2. Symmetry Energy at Extracted from Neutron Star Observables
2.3. Directly Solving Neutron Star Inverse-Structure Problems in the High-Density EOS Parameter Space
2.4. Bayesian Inference of Symmetry Energy Parameters from the Radii of Canonical Neutron Stars
2.5. Future Radius Measurements of Massive Neutron Stars and Their Constrains on High-Density Nuclear Symmetry Energy
3. Effects of Hadron–Quark Phase Transition on Extracting Nuclear Symmetry Energy from Neutron Star Observables
3.1. Bayesian Inference of Hadronic and Quark Matter EOS Parameters from Observations of Canonical Neutron Stars
3.2. Comparing Symmetry Energy Parameters from Analyzing Neutron Star Observables with and without Considering the Hadron-Quark Phase Transition
4. Effects of Symmetry Energy on the Second Component of GW190814 as a Supermassive and Superfast Pulsar
4.1. Is GW190814’s Secondary a Superfast and Supermassive Neutron Star or Something Else?
4.2. Is GW190814’s Secondary r-Mode Stable If It Is Really a Superfast Pulsar?
4.3. Effects of Symmetry Energy on the Mass, Radius, and Minimum Rotation Frequency of GW190814’s Secondary Component as a Supermassive and Superfast Pulsar
5. An Auxiliary Function Approach for Predicting the High-Density Behavior of Nuclear Symmetry Energy Based on Its Slope , Curvature , and Skewness at
5.1. Theoretical Framework
5.2. An Example of Applications
6. Summary and Outlook
- What have we learned about the symmetry energy from the tidal deformation of canonical neutron stars from GW170817, the mass of PSR J0740+6620, and NICER’s simultaneous observation of the mass and radius of PSR J0030+0451 and PSR J0740+6620?
- The average value of the slope parameter L of nuclear symmetry energy from 24 new analyses of neutron star observables was about MeV at a 68% confidence level, while the average value of the curvature from 16 new analyses was about MeV, and the magnitude of nuclear symmetry energy at was found to be MeV from nine new analyses;
- While the available data from canonical neutron stars did not provide tight constraints on nuclear symmetry energy at densities above about , the lower radius boundary km from NICER’s very recent observation of PSR J0740+6620 having a mass of and radius R = 12.2–16.3 km at a 68% confidence level set a tighter lower limit for nuclear symmetry energy at densities above compared to what we knew before from analyzing earlier data;
- How do the symmetry energy parameters extracted from recent observations of neutron stars compare with what we knew before the discovery of GW170817? Before GW170817, there were surveys of symmetry energy parameters based on over 50 analyses of various terrestrial nuclear experiments and some astrophysical observations of neutron stars. The newly extracted average value of L was in good agreement with the earlier fiducial value within the error bars. There was little information about the curvature and before GW170817. The latter two quantities characterizing the symmetry energy from were mostly from analyzing the new data of neutron star observations;
- What can we learn about the high-density symmetry energy from future, more precise radius measurement of massive neutron stars? Using characteristically different mock mass–radius data up to 2 within Bayesian analyses, it was found that the radius of massive neutron stars can constrain more tightly the lower boundary of high-density symmetry energy without much influence of the remaining uncertainties of SNM EOS. Indeed, as mentioned above, NICER’s very recent observation of PSR J0740+6620 made this real. Moreover, the radii of massive neutron stars may help identify twin stars, the size of quark cores, and the nature of the hadron–quark phase transition [15,180,181];
- What are the effects of hadron–quark phase transition on extracting the symmetry energy from neutron star observables? How does the symmetry energy affect the fraction and size of quark cores in hybrid stars? Bayesian inferences of nuclear symmetry energy using models encapsulating a first-order hadron–quark phase transition from observables of canonical neutron stars indicated that the phase transition shifts appreciably both L and to higher values, but with larger uncertainties compared to analyses assuming no such phase transition. It was also found that the available astrophysical data prefer the formation of a large volume of quark matter even in canonical NSs. The correlations among the symmetry energy parameters and the hadron–quark phase transition density, as well as the quark matter fraction were found to be weak. Moreover, the symmetry energy parameters extracted with or without considering the hadron–quark phase transition in neutron stars were all consistent with their known constraints within the still relatively large uncertainties. Thus, more precise constraints on the high-density symmetry energy are needed;
- What are the effects of symmetry energy on the nature of GW190814’s second component of mass (2.50–2.67) ? The high-density behavior of nuclear symmetry energy significantly affects the minimum rotational frequency of GW190814’s secondary component of mass (2.50–2.67) as a superfast pulsar. It also affects the r-mode stability boundary of GW190814’s secondary in the frequency–temperature plane. Moreover, its equatorial radius and Kepler frequency also depend strongly on the high-density behavior of nuclear symmetry energy;
- If all the characteristics of nuclear symmetry energy at saturation density , e.g., its slope L, curvature , and skewness , are precisely determined by the astrophysical observations and/or terrestrial experiments, how do we use them to predict the symmetry energy at suprasaturation densities, such as ? It was found very recently that by expanding in terms of a properly chosen auxiliary function with a parameter fixed accurately by an experimental value at a reference density , the shortcomings of the conventional -expansion can be completely removed or significantly reduced in determining the high-density behavior of .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The National Academies Press. New Worlds, New Horizons in Astronomy and Astrophysics; The National Academies Press: Washington, DC, USA, 2011; Available online: https://www.nap.edu/catalog/12951/new-worlds-new-horizons-in-astronomy-and-astrophysics (accessed on 2 June 2021).
- The National Academies Press. Nuclear Physics: Exploring the Heart of Matter; Report of the Committee on the Assessment of and Outlook for Nuclear Physics; The National Academies Press: Washington, DC, USA, 2012; Available online: https://www.nap.edu/catalog/13438/nuclear-physics-exploring-the-heart-of-matter (accessed on 2 June 2021).
- 2015 U.S. Long Range Plan for Nuclear Sciences. Available online: https://www.osti.gov/servlets/purl/1296778 (accessed on 2 June 2021).
- The Nuclear Physics European Collaboration Committee (NuPECC). Long Range Plan 2017 Perspectives in Nuclear Physics. Available online: https://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf (accessed on 2 June 2021).
- Lattimer, J.M.; Prakash, M. Neutron star structure and the equation of state. Astrophys. J. 2001, 550, 426–442. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Prakash, M. The equation of state of hot, dense matter and neutron stars. Phys. Rep. 2016, 621, 127–164. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.L.; Andersson, N.; Chakrabarty, D.; Feroci, M.; Hebeler, K.; Israel, G.; Lamb, F.K.; Miller, M.C.; Morsink, S.; Özel, F.; et al. Colloquium: Measuring the neutron star equation of state using X-ray timing. Rev. Mod. Phys. 2016, 88, 021001. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 2016, 88, 401–440. [Google Scholar] [CrossRef] [Green Version]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef]
- Baiotti, L. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys. 2019, 109, 103714. [Google Scholar] [CrossRef] [Green Version]
- Li, B.A.; Krastev, P.G.; Wen, D.H.; Zhang, N.B. Towards understanding astrophysical effects of nuclear symmetry energy. Eur. Phys. J. A 2019, 55, 117. [Google Scholar] [CrossRef] [Green Version]
- Weber, F.; Negreiros, R.; Roseneld, P.; Stejner, M. Pulsars as astrophysical laboratories for nuclear andparticle physics. Prog. Part. Nucl. Phys. 2007, 59, 94–113. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Han, S.; Schwenzer, K. Signatures for quark matter from multi-messenger observations. J. Phys. G Nucl. Part. Phys. 2019, 46, 114001. [Google Scholar] [CrossRef] [Green Version]
- Capano, C.D.; Tews, I.; Brown, S.M.; Margalit, B.; De, S.; Kumar, S.; Brown, D.A.; Krishnan, B.; Reddy, S. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 2020, 4, 625–632. [Google Scholar] [CrossRef]
- Blaschke, D.; Ayriyan, A.; Alvarez-Castillo, D.E.; Grigorian, H. Was GW170817 a canonical neutron star merger? Bayesian analysis with a third family of compact stars. Universe 2020, 6, 81. [Google Scholar] [CrossRef]
- Chatziioannou, K. Neutron-star tidal deformability and equation-of-state constraints. Gen. Relativ. Gravit. 2020, 52, 109. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett. 2018, 120, 172703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kievsky, A.; Viviani, M.; Logoteta, D.; Bombaci, I.; Girlanda, L. Correlations imposed by the unitary limit between few-nucleon systems and compact stellar systems. Phys. Rev. Lett. 2018, 121, 072901. [Google Scholar] [CrossRef] [Green Version]
- Landry, P.; Essick, R.; Chatziioannou, K. Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations. Phys. Rev. D 2020, 101, 123007. [Google Scholar] [CrossRef]
- Dietrich, T.; Coughlin, M.W.; Pang, P.T.H.; Bulla, M.; Heinzel, J.; Issa, L.; Tews, I.; Antier, S. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 2020, 370, 1450–1453. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhu, Z.Y.; Zhou, E.P.; Dong, J.M.; Hu, J.N.; Xia, C.J. Neutron star equation of state: Quark mean-field (QMF) modeling and applications. J. High Energy Astrophys. 2020, 28, 19–46. [Google Scholar] [CrossRef]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 298, 1592–1596. [Google Scholar] [CrossRef] [Green Version]
- Baran, V.; Colonna, M.; Greco, V.; Di Toro, M. Reaction dynamics with exotic nuclei. Phys. Rep. 2005, 410, 335–466. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.W.; Prakash, M.; Lattimer, J.M.; Ellis, P.J. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 2005, 411, 325–375. [Google Scholar] [CrossRef] [Green Version]
- Li, B.A.; Chen, L.W.; Ko, C.M. Recent Progress and New Challenges in Isospin Physics with Heavy-Ion Reactions. Phys. Rep. 2008, 464, 113–281. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.W. Higher order bulk characteristic parameters of asymmetric nuclear matter. Sci. China Phys. Mech. Astron. 2011, 54, 124–129. [Google Scholar] [CrossRef]
- Trautmann, W.; Wolter, H.H. Elliptic flow and the symmetry energy at suprasaturation density. Int. J. Mod. Phys. E 2012, 21, 1230003. [Google Scholar] [CrossRef]
- Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.; Lynch, W.G.; Kohley, Z.; et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 2012, 86, 015803. [Google Scholar] [CrossRef] [Green Version]
- Li, B.A.; Ramos, À.; Verde, G.; Vidaña, I. Topical Issue on Nuclear Symmetry Energy. Eur. Phys. J. A 2014, 50, 9. [Google Scholar] [CrossRef] [Green Version]
- Baldo, M.; Burgio, G.F. The nuclear symmetry energy. Prog. Part. Nucl. Phys. 2016, 91, 203–258. [Google Scholar] [CrossRef] [Green Version]
- Li, B.A. Nuclear symmetry energy extracted from laboratory experiments. Nucl. Phys. News 2017, 27, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Li, B.A.; Cai, B.J.; Chen, L.W.; Xu, J. Nucleon effective masses in neutron-rich matter. Prog. Part. Nucl. Phys. 2018, 99, 29–119. [Google Scholar] [CrossRef]
- Burgio, G.F.; Vidaña, I. The Equation of State of Nuclear Matter: From Finite Nuclei to Neutron Stars. Universe 2020, 6, 119. [Google Scholar] [CrossRef]
- Bombaci, I.; Lombardo, U. Asymmetric nuclear matter equation of state. Phys. Rev. C 1991, 44, 1892. [Google Scholar] [CrossRef]
- Li, B.A.; Xie, W.J. Symmetry energy of super-dense neutron-rich matter from integrating barotropic pressures in neutron stars and heavy-ion reactions. Phys. Lett. B 2020, 806, 135517. [Google Scholar] [CrossRef]
- Newton, W.G.; Li, B.A. Constraining the gravitational binding energy of PSR J0737-3039B using terrestrial nuclear data. Phys. Rev. C 2009, 80, 065809. [Google Scholar] [CrossRef] [Green Version]
- He, X.T.; Fattoyev, F.J.; Li, B.A.; Newton, W.G. Impact of the equation-of-state–gravity degeneracy on constraining the nuclear symmetry energy from astrophysical observables. Phys. Rev. C 2015, 91, 015810. [Google Scholar] [CrossRef] [Green Version]
- Psaltis, D. Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum. Living Rev. Relativ. 2008, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunes, N.; Psaltis, D.; Özel, F.; Loeb, A. Constraining Parity Violation in Gravity with Measurements of Neutron-Star Moments of Inertia. Phys. Rev. D 2010, 81, 064020. [Google Scholar] [CrossRef] [Green Version]
- DeDeo, S.; Psaltis, D. Towards New Tests of Strong-field Gravity with Measurements of Surface Atomic Line Redshifts from Neutron Stars. Phys. Rev. Lett. 2003, 90, 141101. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.-H.; Li, B.-A.; Chen, L.-W. Can the maximum mass of neutron stars rule out any equation of state of dense stellar matter before gravity is well understood? arXiv 2011, arXiv:1101.1504. [Google Scholar]
- Zhang, N.B.; Li, B.A. GW190814’s Secondary Component with Mass 2.50–2.67 M⊙ as a Superfast Pulsar. Astrophys. J. 2020, 902, 38. [Google Scholar] [CrossRef]
- Zhou, X.; Li, A.; Li, B.A. R-mode Stability of GW190814’s Secondary Component as a Supermassive and Superfast Pulsar. Astrophys. J. 2021, 910, 62. [Google Scholar] [CrossRef]
- Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. Early appearance of Δ isobars in neutron stars. Phys. Rev. C 2014, 90, 065809. [Google Scholar] [CrossRef]
- Cai, B.J.; Fattoyev, F.J.; Li, B.A.; Newton, W.G. Critical density and impact of Δ(1232) resonance formation in neutron stars. Phys. Rev. C 2015, 92, 015802. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Y.; Li, A.; Hu, J.N.; Sagawa, H. Δ(1232) effects in density-dependent relativistic hartree-fock theory and neutron stars. Phys. Rev. C 2016, 94, 045803. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, H.S.; Mitra, G.; Mishra, R.; Panda, P.K.; Li, B.A. Neutron star matter with Δ isobars in a relativistic quark model. Phys. Rev. C 2018, 98, 045801. [Google Scholar] [CrossRef] [Green Version]
- Li, J.J.; Sedrakian, A.; Weber, F. Competition between delta isobars and hyperons and properties of compact stars. Phys. Lett. B 2018, 783, 234–240. [Google Scholar] [CrossRef]
- Ribes, P.; Ramos, A.; Tolos, L.; Gonzalez-Boquera, C.; Centelles, M. Interplay between Δ Particles and Hyperons in Neutron Stars. Astrophys. J. 2019, 883, 168. [Google Scholar] [CrossRef]
- Li, J.J.; Sedrakian, A. Implications from GW170817 for Delta-isobar Admixed Hypernuclear Compact Stars. Astrophys. J. Lett. 2019, 874, L22. [Google Scholar] [CrossRef] [Green Version]
- Raduta, A.R.; Oertel, M.; Sedrakian, A. Proto-neutron stars with heavy baryons and universal relations. Mon. Not. R. Astron. Soc. 2020, 499, 914–931. [Google Scholar] [CrossRef]
- Raduta, A.R. Δ-admixed neutron stars: Spinodal instabilities and dUrca processes. Phys. Lett. B 2021, 814, 136070. [Google Scholar] [CrossRef]
- Thapa, V.B.; Sinha, M.; Li, J.J.; Sedrakian, A. Massive Δ-resonance admixed hypernuclear stars with antikaon condensations. Phys. Rev. D 2021, 103, 063004. [Google Scholar] [CrossRef]
- Sen, D. Variation of the Δ baryon mass and hybrid star properties in static and rotating conditions. Phys. Rev. C 2021, 103, 045804. [Google Scholar] [CrossRef]
- Jiang, W.Z.; Li, B.A.; Chen, L.W. Large-mass neutron stars with hyperonization. Astrophys. J. 2012, 756, 56. [Google Scholar] [CrossRef] [Green Version]
- Providência, C.; Fortin, M.; Pais, H.; Rabhi, A. Hyperonic stars and the nuclear symmetry energy. Front. Astron. Space Sci. 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Vidaña, I. Hyperons: The strange ingredients of the nuclear equation of state. Proc. R. Soc. Lond. A 2018, 474, 20180145. [Google Scholar] [CrossRef]
- Choi, S.; Miyatsu, T.; Cheoun, M.K.; Saito, K. Constraints on Nuclear Saturation Properties from Terrestrial Experiments and Astrophysical Observations of Neutron Stars. Astrophys. J. 2021, 909, 156. [Google Scholar] [CrossRef]
- Fortin, M.; Raduta, A.R.; Avancini, S.; Providência, C. Thermal evolution of relativistic hyperonic compact stars with calibrated equations of state. Phys. Rev. D 2021, 103, 083004. [Google Scholar] [CrossRef]
- Cai, B.J.; Li, B.A. Auxiliary Function Approach for Determining Symmetry Energy at Supra-saturation Densities. Phys. Rev. C 2021, 103, 054611. [Google Scholar] [CrossRef]
- Li, B.A.; Han, X. Constraining the neutron–proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 2013, 727, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Drischler, C.; Furnstahl, R.J.; Melendez, J.A.; Phillips, D.R. How well do we know the neutron-matter equation of state at the densities inside neutron stars? A Bayesian approach with correlated uncertainties. Phys. Rev. Lett. 2020, 125, 202702. [Google Scholar] [CrossRef]
- Mondal, C.; Agrawal, B.K.; De, J.N.; Samaddar, S.K.; Centelles, M.; Viñas, X. Interdependence of different symmetry energy elements. Phys. Rev. C 2017, 96, 021302. [Google Scholar] [CrossRef] [Green Version]
- Malik, T.; Alam, N.; Fortin, M.; Providência, C.; Agrawal, B.K.; Jha, T.K.; Kumar, B.; Patra, S.K. GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability. Phys. Rev. C 2018, 98, 035804. [Google Scholar] [CrossRef]
- Biswas, B.; Char, P.; Nandi, R.; Bose, S. Towards mitigation of apparent tension between nuclear physics and astrophysical observations by improved modeling of neutron star matter. arXiv 2020, arXiv:2008.01582. [Google Scholar]
- Tsang, C.Y.; Tsang, M.B.; Danielewicz, P.; Lynch, W.G.; Fattoyev, F.J. Impact of the neutron-star deformability on equation of state parameters. Phys. Rev. C 2020, 102, 045808. [Google Scholar] [CrossRef]
- Xie, W.J.; Li, B.A. Bayesian Inference of the Symmetry Energy of Superdense Neutron-rich Matter from Future Radius Measurements of Massive Neutron Stars. Astrophys. J. 2020, 899, 4. [Google Scholar] [CrossRef]
- d’Etivaux, N.B.; Guillot, S.; Margueron, J.; Webb, N.; Catelan, M.; Reisenegger, A. New constraints on the nuclear equation of state from the thermal emission of neutron stars in quiescent low-mass X-ray binaries. Astrophys. J. 2019, 887, 48. [Google Scholar] [CrossRef]
- Malik, T.; Agrawal, B.K.; Providência, C.; De, J.N. Unveiling the correlations of tidal deformability with the nuclear symmetry energy parameters. Phys. Rev. C 2020, 102, 052801. [Google Scholar] [CrossRef]
- Zhao, T.; Lattimer, J.M. Tidal Deformabilities and Neutron Star Mergers. Phys. Rev. D 2018, 98, 063020. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.; Holt, J.W. Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817. Eur. Phys. J. A 2019, 55, 209. [Google Scholar] [CrossRef]
- Margueron, J.; Casali, R.H.; Gulminelli, F. Equation of state for dense nucleonic matter from metamodeling. II. Predictions for neutron star properties. Phys. Rev. C 2018, 97, 025806. [Google Scholar] [CrossRef] [Green Version]
- Tan, N.H.; Khoa, D.T.; Loan, D.T. Spin-polarized β-stable neutron star matter: The nuclear symmetry energy and GW170817 constraint. Phys. Rev. C 2020, 102, 045809. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Xia, C.J.; Li, Z.; Biswal, S.K. Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars. Phys. Rev. C 2020, 101, 034303. [Google Scholar] [CrossRef] [Green Version]
- Chamel, N.; Pearson, J.M.; Potekhin, A.Y.; Fantina, A.F.; Ducoin, C.; Dutta, A.; Goriely, S.; Perot, L. Role of the Symmetry Energy on the Structure of Neutron Stars with Unified Equations of State. AIP Conf. Proc. 2019, 2127, 020021. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.X.; Hu, J.N.; Zhang, Y.; Shen, H. The possibility of the secondary object in GW190814 as a neutron star. Astrophys. J. 2020, 904, 39. [Google Scholar] [CrossRef]
- Tews, I.; Margueron, J.; Reddy, S. Confronting gravitational-wave observations with modern nuclear physics constraints. Eur. Phys. J. A 2019, 55, 97. [Google Scholar] [CrossRef] [Green Version]
- Gil, H.; Kim, Y.M.; Papakonstantinou, P.; Ho, C. Constraining the density dependence of the symmetry energy with nuclear data and astronomical observations in the KIDS framework. Phys. Rev. C 2021, 103, 034330. [Google Scholar] [CrossRef]
- Raithel, C.A.; Özel, F. Measurement of the nuclear symmetry energy parameters from gravitational wave events. Astrophys. J. 2019, 885, 121. [Google Scholar] [CrossRef] [Green Version]
- Yue, T.G.; Chen, L.W.; Zhang, Z.; Zhou, Y. Constraints on the Symmetry Energy from PREX-II in the Multimessenger Era. arXiv 2021, arXiv:2102.05267. [Google Scholar]
- Essick, R.; Tews, I.; Landry, P.; Schwenk, A. Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of 208Pb with Minimal Modeling Assumptions. arXiv 2021, arXiv:2102.10074. [Google Scholar]
- Li, B.A.; Magno, M. Curvature-slope correlation of nuclear symmetry energy and its imprints on the crust-core transition, radius and tidal deformability of canonical neutron stars. Phys. Rev. C 2020, 102, 045807. [Google Scholar] [CrossRef]
- Estee, J.; et al. [SπRIT Collaboration] Probing the Symmetry Energy with the Spectral Pion Ratio. Phys. Rev. Lett. 2021, 126, 162701. [Google Scholar] [CrossRef]
- Adhikari, D.; et al. [PREX Collaboration] An Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef]
- Reed, B.T.; Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J. Implications of PREX-II on the equation of state of neutron-rich matter. Phys. Rev. Lett. 2021, 126, 172503. [Google Scholar] [CrossRef]
- Xu, J.; Xie, W.J.; Li, B.A. Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thickness in 116,118,120,122,124,130,132Sn, 208Pb, and 48Ca. Phys. Rev. C 2020, 102, 044316. [Google Scholar] [CrossRef]
- Biswas, B. Impact of PREX-II, the revised mass measurement of PSRJ0740+6620, and possible NICER observation on the dense matter equation of state. arXiv 2021, arXiv:2105.02886. [Google Scholar]
- Zimmerman, J.; Carson, Z.; Schumacher, K.; Steiner, A.W.; Yagi, K. Measuring Nuclear Matter Parameters with NICER and LIGO/Virgo. arXiv 2020, arXiv:2002.03210. [Google Scholar]
- Carson, Z.; Steiner, A.W.; Yagi, K. Future Prospects for Constraining Nuclear Matter Parameters with Gravitational Waves. Phys. Rev. D 2019, 100, 023012. [Google Scholar] [CrossRef] [Green Version]
- Tews, I.; Lattimer, J.M.; Ohnishi, A.; Kolomeitsev, E.E. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy. Astrophys. J. 2017, 848, 105. [Google Scholar] [CrossRef]
- Zhang, N.B.; Cai, B.J.; Li, B.A.; Newton, W.G.; Xu, J. How tightly is the nuclear symmetry energy constrained by a unitary Fermi gas? Nucl. Sci. Tech. 2017, 28, 181. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.; Lim, Y. Universal correlations in the nuclear symmetry energy, slope parameter, and curvature. Phys. Lett. B 2018, 784, 77. [Google Scholar] [CrossRef]
- Russotto, P.; Wu, P.Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R.C.; Li, Q.; ukasik, J.; Pagano, A.; Pawłowski, P.; et al. Symmetry energy from elliptic flow in 197Au+197Au. Phys. Lett. B 2011, 697, 471–476. [Google Scholar] [CrossRef]
- Russotto, P.; Gannon, S.; Kupny, S.; Lasko, P.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; et al. Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density. Phys. Rev. C 2016, 94, 034608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.B.; Li, B.A.; Xu, J. Combined Constraints on the Equation of State of Dense Neutron-rich Matter from Terrestrial Nuclear Experiments and Observations of Neutron Stars. Astrophys. J. 2018, 859, 90. [Google Scholar] [CrossRef]
- Zhang, N.B.; Li, B.A. Extracting Nuclear Symmetry Energies at High Densities from Observations of Neutron Stars and Gravitational Waves. Eur. Phys. J. A 2019, 55, 39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.B.; Li, B.A. Implications of the Mass M=M⊙ of PSR J0740+6620 on the Equation of State of Super-dense Neutron-rich Nuclear Matter. Astrophys. J. 2019, 879, 99. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.J.; Li, B.A. Bayesian Inference of High-density Nuclear Symmetry Energy from Radii of Canonical Neutron Stars. Astrophys. J. 2019, 883, 174. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, L.W.; Zhang, Z. Equation of state of dense matter in the multimessenger era. Phys. Rev. D 2019, 99, 121301. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, K.; Suzuki, H. Cooling timescale for protoneutron stars and properties of nuclear matter: Effective mass and symmetry energy at high densities. Astrophys. J. 2019, 878, 25. [Google Scholar] [CrossRef] [Green Version]
- Lonardoni, D.; Tews, I.; Gandolfi, S.; Carlson, J. Nuclear and neutron-star matter from local chiral interactions. Phys. Rev. Res. 2020, 2, 022033(R). [Google Scholar] [CrossRef]
- Zhang, N.B.; Li, B.A. Delineating Effects of Nuclear Symmetry Energy on the Radii and Tidal Polarizabilities of Neutron Stars. J. Phys. G 2019, 46, 014002. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; et al. [The LIGO Scientific Collaboration and the Virgo Collaboration] GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Steiner, A.W. Constraints on the symmetry energy using the mass–radius relation of neutron stars. Eur. Phys. J. A 2014, 50, 40. [Google Scholar] [CrossRef] [Green Version]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2020, 4, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, E.; Cromartie, H.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-Mass PSR J0740+6620. arXiv 2021, arXiv:2104.00880. [Google Scholar]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer, J.M.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. arXiv 2021, arXiv:2105.06979. [Google Scholar]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. arXiv 2021, arXiv:2105.06980. [Google Scholar]
- Zhang, N.B.; Li, B.A. Constraints on the muon fraction and density profile in neutron stars. Astrophys. J. 2020, 893, 61. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, L.W. Ruling out the supersoft high-density symmetry energy from the discovery of PSR J0740+6620 with mass M⊙. Astrophys. J. 2019, 886, 52. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C. NICER Measurements of Pulsars PSR J0030+0451 and PSR J0740+6620. Seminar at the Institute for Nuclear Theory, University of Washington, 22 April 2021. Available online: https://www.int.washington.edu/talks/S@INTtalks/Miller_Apr_22_2021.pdf (accessed on 2 June 2021).
- Zhang, N.B.; Li, B.A. Impacts of NICER’s Radius Measurement of PSR J0740+6620 on Nuclear Symmetry Energy at Suprasaturation Densities. arXiv 2021, arXiv:2105.11031. [Google Scholar]
- Chen, L.W. Symmetry energy systematics and its high density behavior. Eur. Phys. J. Web Conf. 2018, 88, 00017. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Providência, C.; Raduta, Ad.R.; Gulminelli, F.; Zdunik, J.L.; Haensel, P.; Bejger, M. Neutron star radii and crusts: Uncertainties and unified equations of state. Phys. Rev. C 2016, 94, 035804. [Google Scholar] [CrossRef] [Green Version]
- Newton, W.G.; Crocombe, G. The nuclear symmetry energy from neutron skins and pure neutron matter in a Bayesian framework. arXiv 2020, arXiv:2008.00042. [Google Scholar]
- Alford, M.; Braby, M.; Paris, M.; Reddy, S. Hybrid stars that masquerade as neutron stars. Astrophys. J. 2005, 629, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Bauswein, A.; Bastian, N.U.F.; Blaschke, D.B.; Chatziioannou, K.; Clark, J.A.; Fischer, T.; Oertel, M. Identifying a first-order phase transition in neutron star mergers through gravitational waves. Phys. Rev. Lett. 2019, 122, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weih, L.R.; Hanauske, M.; Rezzolla, L. Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. Phys. Rev. Lett. 2020, 124, 171103. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.J.; Li, B.A. Bayesian inference of the dense-matter equation of state encapsulating a first-order hadron–quark phase transition from observables of canonical neutron stars. Phys. Rev. C 2021, 103, 035802. [Google Scholar] [CrossRef]
- Alford, M.G.; Han, S.; Prakash, M. Generic conditions for stable hybrid stars. Phys. Rev. D 2013, 88, 083013. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.P.; Jiang, J.L.; Gao, W.H.; Fan, Y.Z.; Wei, D.M. Constraint on phase transition with the multimessenger data of neutron stars. Phys. Rev. D 2021, 103, 063026. [Google Scholar] [CrossRef]
- Li, A.; Miao, Z.; Han, S.; Zhang, B. Constraints on the maximum mass of neutron stars with a quark core from GW170817 and NICER PSR J0030+0451 data. Astrophys. J. 2021, 913, 27. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Abbott, R.; et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett. 2020, 896, L44. [Google Scholar] [CrossRef]
- Farr, W.M.; Sravan, N.; Cantrell, A.; Kreidberg, L.; Bailyn, C.D. The mass distribution of stellar-mass balck holes. Astrophys. J. 2011, 741, 103. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Psaltis, D.; Narayan, R.; McClintock, J.E. The black hole mass distribution in the galaxy. Astrophys. J. 2010, 725, 1918. [Google Scholar] [CrossRef] [Green Version]
- Farr, W.M.; Chatziioannou, K. A Population-Informed Mass Estimate for Pulsar J0740+6620. Res. Notes AAS 2020, 4, 65. [Google Scholar] [CrossRef]
- Abbott, B.P.; et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Safarzadeh, M.; Loeb, A. Formation of mass gap objects in highly asymmetric mergers. Astrophys. J. Lett. 2020, 899, L15. [Google Scholar] [CrossRef]
- Vattis, K.; Goldstein, I.S.; Koushiappas, S.M. Could the 2.6 M⊙ object in GW190814 be a primordial black hole? Phys. Rev. D 2020, 102, 061301. [Google Scholar] [CrossRef]
- Zevin, M.; Spera, M.; Berry, C.P.; Kalogera, V. Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution. Astrophys. J. Lett. 2020, 899, L1. [Google Scholar] [CrossRef]
- Essick, R.; Landry, P. Discriminating between Neutron Stars and Black Holes with Imperfect Knowledge of the Maximum Neutron Star Mass. Astrophys. J. 2020, 904, 80. [Google Scholar] [CrossRef]
- Tews, I.; Pang, P.T.H.; Dietrich, T.; Coughlin, M.W.; Antier, S.; Bulla, M.; Heinzel, J.; Issa, L. On the nature of GW190814 and its impact on the understanding of supranuclear matter. Astrophys. J. Lett. 2021, 908, L1. [Google Scholar] [CrossRef]
- Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J.; Reed, B. GW190814: Impact of a 2.6 solar mass neutron star on the nucleonic equations of state. Phys. Rev. C 2020, 102, 065805. [Google Scholar] [CrossRef]
- Das, H.C.; Kumar, A.; Kumar, B.; Biswal, S.K.; Patra, S.K. The BigApple force and it’s implications to finite nuclei and astrophysical objects. arXiv 2020, arXiv:2009.10690. [Google Scholar]
- Li, J.J.; Sedrakian, A.; Weber, F. Rapidly rotating Δ-resonance-admixed hypernuclear compact stars. Phys. Lett. B 2020, 810, 135812. [Google Scholar] [CrossRef]
- Sedrakian, A.; Weber, F.; Li, J.J. Confronting GW190814 with hyperonization in dense matter and hypernuclear compact stars. Phys. Rev. D 2020, 102, 041301. [Google Scholar] [CrossRef]
- Biswal, S.K.; Das, H.C.; Kumar, A.; Kumar, B.; Patra, S.K. Correlation between the curvature and some properties of the neutron star. arXiv 2020, arXiv:2012.13673. [Google Scholar]
- Bombaci, I.; Drago, A.; Logoteta, D.; Pagliara, G.; Vidaña, I. Was GW190814 a black hole—Strange quark star system? Phys. Rev. Lett. 2021, 126, 162702. [Google Scholar] [CrossRef]
- Godzieba, D.A.; Radice, D.; Bernuzzi, S. On the Maximum Mass of Neutron Stars and GW190814. Astrophys. J. 2021, 908, 122. [Google Scholar] [CrossRef]
- Gonçalves, V.P.; Lazzari, L. Electrically charged strange stars with an interacting quark matter equation of state. Phys. Rev. D 2020, 102, 034031. [Google Scholar] [CrossRef]
- Lim, Y.; Bhattacharya, A.; Holt, J.W.; Pati, D. Radius and equation of state constraints from massive neutron stars and GW190814. arXiv 2021, arXiv:2007.06526. [Google Scholar]
- Lourenço, O.; Lenzi, C.H.; Dutra, M. Tidal deformability of strange stars and the GW170817 event. Phys. Rev. D 2021, 103, 103010. [Google Scholar] [CrossRef]
- Rather, I.A.; Rahaman, U.; Dexheimer, V.; Usmani, A.A.; Patra, S.K. Heavy Magnetic Neutron Stars. arXiv 2021, arXiv:2104.05950. [Google Scholar]
- Roupas, Z.; Panotopoulos, G.; Lopes, I. QCD color superconductivity in compact stars: Color-flavor locked quark star candidate for the gravitational-wave signal GW190814. arXiv 2020, arXiv:2010.11020. [Google Scholar]
- Tan, H.; Noronha-Hostler, J.; Yunes, N. Neutron Star Equation of State in Light of GW190814. Phys. Rev. Lett. 2020, 125, 261104. [Google Scholar] [CrossRef]
- Wu, X.H.; Bao, S.S.; Shen, H.; Xu, R.X. Symmetry energy effect on the secondary component of GW190814 as a neutron star. arXiv 2021, arXiv:2101.05476. [Google Scholar]
- Demircik, T.; Ecker, C.; Järvinen, M. Rapidly Spinning Compact Stars with Deconfinement Phase Transition. Astrophys. J. Lett. 2021, 907, L37. [Google Scholar] [CrossRef]
- Dexheimer, V.; Gomes, R.O.; Klähn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 2021, 103, 0025808. [Google Scholar] [CrossRef]
- Khadkikar, S.; Raduta, A.R.; Oertel, M.; Sedrakian, A. Maximum mass of compact stars from gravitational wave events with finite-temperature equations of state. arXiv 2021, arXiv:2102.00988. [Google Scholar]
- Most, E.R.; Papenfort, L.J.; Weih, L.R.; Rezzolla, L. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. Mon. Not. R. Astron. Soc. Lett. 2020, 499, L82. [Google Scholar] [CrossRef]
- Riahi, R.; Kalantari, S.Z. Properties of Rotating Neutron Star in Density-dependent Relativistic Mean-field Models. Int. J. Mod. Phys. D 2021, 30, 2150001. [Google Scholar] [CrossRef]
- Stone, J.R.; Dexheimer, V.; Guichon, P.A.M.; Thomas, A.W.; Typel, S. Equation of state of hot dense hyperonic matter in the Quark-Meson-Coupling (QMC-A) model. Mon. Not. R. Astron. Soc. 2021, 502, 3476–3490. [Google Scholar] [CrossRef]
- Tsokaros, A.; Ruiz, M.; Shapiro, S.L. GW190814: Spin and Equation of State of a Neutron Star Companion. Astrophys. J. 2020, 905, 48. [Google Scholar] [CrossRef]
- Christian, J.E.; Schaffner-Bielich, J. Supermassive neutron stars rule out twin stars. Phys. Rev. D 2020, 103, 063042. [Google Scholar] [CrossRef]
- Thapa, V.B.; Sinha, M. Dense matter equation of state of a massive neutron star with antikaon condensation. Phys. Rev. D 2020, 102, 123007. [Google Scholar] [CrossRef]
- Hessels, J.W.; Ransom, S.M.; Stairs, I.H.; Freire, P.C.; Kaspi, V.M.; Camilo, F. A radio pulsar spinning at 716 Hz. Science 2006, 311, 1901–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, B.; Nandi, R.; Char, P.; Bose, S.; Stergioulas, N. GW190814: On the properties of the secondary component of the binary. arXiv 2020, arXiv:2010.02090. [Google Scholar]
- Andersson, N.; Kokkotas, K.D. The r-mode instability in rotating neutron stars. Int. J. Mod. Phys. D 2001, 10, 381–441. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 1970, 24, 611. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schutz, B.F. Secular instability of rotating Newtonian stars. Astrophys. J. 1978, 222, 281. [Google Scholar] [CrossRef] [Green Version]
- Krastev, P.G.; Li, B.A.; Worley, A. Constraining properties of rapidly rotating neutron stars using data from heavy-ion collisions. Astrophys. J. 2008, 676, 1170–1177. [Google Scholar] [CrossRef] [Green Version]
- Worley, A.; Krastev, P.G.; Li, B.A. Nuclear constraints on the momenta of inertia of neutron stars. Astrophys. J. 2008, 685, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.H.; Newton, W.G.; Li, B.A. Sensitivity of the neutron star -mode instability window to the density dependence of the nuclear symmetry energy. Phys. Rev. C 2012, 85, 025801. [Google Scholar] [CrossRef] [Green Version]
- Vidaña, I. Nuclear symmetry energy and the r-mode instability of neutron stars. Phys. Rev. C 2014, 85, 045808. [Google Scholar] [CrossRef] [Green Version]
- Stergioulas, N. RNS Code. 1995. Available online: http://www.gravity.phys.uwm.edu/rns/ (accessed on 2 June 2021).
- Danielewicz, P.; Lee, J. Symmetry Energy II: Isobaric Analog States. Nucl. Phys. A 2014, 922, 1–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, L.W. Electric dipole polarizability in 208Pb as a probe of the symmetry energy and neutron matter around ρ0/3. Phys. Rev. C 2015, 92, 031301. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhou, J.; Zhang, Z.; Xie, W.J.; Li, B.A. Constraining isovector nuclear interactions with giant resonances within a Bayesian approach. Phys. Lett. B 2020, 810, 135820. [Google Scholar] [CrossRef]
- Cai, B.J.; Li, B.A. Intrinsic correlations among characteristics of neutron-rich matter imposed by the unbound nature of pure neutron matter. Phys. Rev. C 2021, 103, 034607. [Google Scholar] [CrossRef]
- Garg, U.; Colò, G. The compression-mode giant resonances and nuclear incompressibility. Prog. Part. Nucl. Phys. 2018, 101, 55–95. [Google Scholar] [CrossRef] [Green Version]
- Youngblood, D.H.; Clark, H.L.; Lui, Y.W. Incompressibility of Nuclear Matter from the Giant Monopole Resonance. Phys. Rev. Lett. 1999, 82, 691. [Google Scholar] [CrossRef]
- Shlomo, S.; Kolomietz, V.M.; Colo, G. Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 2006, 30, 23–30. [Google Scholar] [CrossRef]
- Chen, L.W.; Gu, J.Z. Correlations between the nuclear breathing mode energy and properties of asymmetric nuclear matter. J. Phys. G 2012, 39, 035104. [Google Scholar] [CrossRef]
- Colo, G.; Garg, U.; Sagawa, H. Symmetry energy from the nuclear collective motion: Constraints from dipole, quadrupole, monopole and spin-dipole resonances. Eur. Phys. J. A 2014, 50, 26. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.J.; Chen, L.W. Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model. Nucl. Sci. Tech. 2017, 28, 185. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Prakash, M. On the minimum radius of very massive neutron stars. Astrophys. J. 2020, 899, 164. [Google Scholar] [CrossRef]
- Somasundaram, R.; Margueron, J. Impact of massive neutron star radii on the nature of phase transitions in dense matter. arXiv 2021, arXiv:2104.13612. [Google Scholar]
Model | () | (Hz) | () | ( K) |
---|---|---|---|---|
DD2 | 2.42 | 1197 | 0.76 | 3.0 |
DDME2 | 2.48 | 1170 | 0.74 | 3.9 |
SKb | 2.20 | 1447 | 0.81 | 1.3 |
SkI6 | 2.20 | 1433 | 0.83 | 1.1 |
SLy9 | 2.16 | 1515 | 0.86 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.-A.; Cai, B.-J.; Xie, W.-J.; Zhang, N.-B. Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe 2021, 7, 182. https://doi.org/10.3390/universe7060182
Li B-A, Cai B-J, Xie W-J, Zhang N-B. Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe. 2021; 7(6):182. https://doi.org/10.3390/universe7060182
Chicago/Turabian StyleLi, Bao-An, Bao-Jun Cai, Wen-Jie Xie, and Nai-Bo Zhang. 2021. "Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817" Universe 7, no. 6: 182. https://doi.org/10.3390/universe7060182
APA StyleLi, B. -A., Cai, B. -J., Xie, W. -J., & Zhang, N. -B. (2021). Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe, 7(6), 182. https://doi.org/10.3390/universe7060182