Green Functions Scattering in the Casimir Effect
Abstract
:1. Introduction
2. Casimir–Polder Potential of Anisotropic Atom above a Dielectric Half-Space
3. Force between Two Dielectric Half-Spaces
4. Casimir–Polder Potential of Anisotropic Atom between Two Dielectric Half-Spaces
5. Conducting 2 + 1 Layer
6. Polarization Operator of 2 + 1 Fermions and Graphene
7. Impedance Boundary Conditions
8. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet. B 1948, 51, 793–795. [Google Scholar]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Zh. Eksp. Teor. Fiz. 1955, 29, 94–110, Translated: Sov. Phys. JETP 1956, 2, 73–83. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics, Part II; Pergamon: Oxford, UK, 1980. [Google Scholar]
- Barash, Y.S.; Ginzburg, V.L. Electromagnetic fluctuations in matter and molecular (Van-der-Waals) forces between them. Sov. Phys. Usp. 1975, 18, 305–322. [Google Scholar] [CrossRef]
- Barash, Y.S.; Ginzburg, V.L. Some problems in the theory of Van der Waals forces. Sov. Phys. Usp. 1984, 27, 467–491. [Google Scholar] [CrossRef]
- Plunien, G.; Müller, B.; Greiner, W. The Casimir effect. Phys. Rept. 1986, 134, 87–193. [Google Scholar] [CrossRef]
- Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New Developments in the Casimir Effect. Phys. Rep. 2001, 353, 1–205. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, E.M. Evaluation of Casimir energies through spectral functions. Theor. Math. Phys. 2002, 131, 527–542. [Google Scholar] [CrossRef]
- Milton, K.A. The Casimir effect: recent controversies and progress. J. Phys. A Math. Gen. 2004, 37, R 209. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, R.L. Casimir effect and the quantum vacuum. Phys. Rev. D 2005, 72, 021301(R). [Google Scholar] [CrossRef] [Green Version]
- Scheel, S.; Buhmann, S. Y. Macroscopic quantum electrodynamics - concepts and applications. Acta Phys. Slovaca 2008, 58, 675–809. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Capasso, F.; Johnson, S. The Casimir effect in microstructured geometries. Nat. Photon 2011, 5, 211–221. [Google Scholar] [CrossRef]
- Marachevsky, V.N. The Casimir effect: medium and geometry. J. Phys. A Math. Theor. 2012, 45, 374021. [Google Scholar] [CrossRef]
- Woods, L.M.; Dalvit, D.A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A.W.; Podgornik, R. Materials perspective on Casimir and van der Waals interactions. Rev. Mod. Phys. 2016, 88, 045003. [Google Scholar] [CrossRef]
- Woods, L.M.; Krüger, M.; Dodonov, V.V. Perspective on Some Recent and Future Developments in Casimir Interactions. Appl. Sci. 2021, 11, 292. [Google Scholar]
- Elizalde, E. Ten Physical Applications of Spectral Zeta Functions (Lecture Notes in Physics); Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Kirsten, K. Spectral Functions in Mathematics and Physics; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Fursaev, D.; Vassilevich, D. Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Buhmann, S.Y. Dispersion Forces; Springer: Berlin/Heidelberg, Germany, 2012; Volumes I–II. [Google Scholar]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Schram, K. On the macroscopic theory of retarded Van der Waals forces. Phys. Lett. A 1973, 43, 282–284. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir effect in source theory II. Lett. Math. Phys. 1992, 24, 59–61. [Google Scholar] [CrossRef]
- Nesterenko, V.V.; Pirozhenko, I.G. Lifshitz formula by a spectral summation method. Phys. Rev. D 2012, 86, 052503. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, A.; Marachevsky, V.N. Casimir interaction of dielectric gratings. Phys. Rev. Lett. 2008, 101, 160403. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, A.; Marachevsky, V.N. Theory of the Casimir effect in one-dimensional periodic dielectric systems. Int. J. Mod. Phys. A 2009, 24, 1789–1795. [Google Scholar] [CrossRef]
- Rayleigh, O.M. On the dynamical theory of gratings. Proc. Roy. Soc. A 1907, 79, 399–415. [Google Scholar]
- Chan, H.B.; Bao, Y.; Zou, J.; Cirelli, R.A.; Klemens, F.; Mansfield, W.; Pai, C. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 2008, 101, 030401. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Klimchitskaya, G.L.; Marachevsky, V.N.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the asymmetric lateral Casimir force between corrugated surfaces in the nonadditive regime. Phys. Rev. B 2009, 80, 121402(R). [Google Scholar] [CrossRef] [Green Version]
- Chiu, H.-C.; Klimchitskaya, G.L.; Marachevsky, V.N.; Mostepanenko, V.M.; Mohideen, U. Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Phys. Rev. B 2010, 81, 115417. [Google Scholar] [CrossRef] [Green Version]
- Derjaguin, B.V.; Abrikosova, I.I.; Lifshitz, E.M. Direct measurement of molecular attraction between solids separated by a narrow gap. Q. Rev. 1956, 10, 295–329. [Google Scholar] [CrossRef]
- Bao, Y.; Guérout, R.; Lussange, J.; Lambrecht, A.; Cirelli, R.A.; Klemens, F.; Mansfield, W.M.; Pai, C.S.; Chan, H.B. Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects. Phys. Rev. Lett. 2010, 105, 250402. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Wang, M.; Ng, C.Y.; Nikolic, M.; Chan, C.T.; Rodriguez, A.W.; Chan, H.B. Measurement of non-monotonic Casimir forces between silicon nanostructures. Nat. Photon 2017, 11, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tang, L.; Ng, C.Y.; Messina, R.; Guizal, B.; Crosse, J.A.; Antezza, M.; Chan, C.T.; Chan, H.B. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nat. Commun. 2021, 12, 600. [Google Scholar] [CrossRef]
- Antezza, M.; Chan, H.B.; Guizal, B.; Marachevsky, V.N.; Messina, R.; Wang, M. Giant Casimir torque between rotated gratings and the θ = 0 anomaly. Phys. Rev. Lett. 2020, 124, 013903. [Google Scholar] [CrossRef] [Green Version]
- Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 2007, 99, 170403. [Google Scholar] [CrossRef] [Green Version]
- Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Scattering theory approach to electromagnetic Casimir forces. Phys. Rev. D 2009, 80, 085021. [Google Scholar] [CrossRef] [Green Version]
- Emig, T.; Jaffe, R.L.; Kardar, M.; Scardicchio, A. Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 2006, 96, 080403. [Google Scholar] [CrossRef] [Green Version]
- Canaguier-Durand, A.; Maia Neto, P.A.; Cavero-Pelaez, I.; Lambrecht, A.; Reynaud, S. Casimir Interaction between Plane and Spherical Metallic Surfaces. Phys. Rev. Lett. 2009, 102, 230404. [Google Scholar] [CrossRef]
- Bordag, M.; Pirozhenko, I. Vacuum energy between a sphere and a plane at finite temperature. Phys. Rev. D 2010, 81, 085023. [Google Scholar] [CrossRef] [Green Version]
- Markov, V.N.; Pis’mak, Y.M. Casimir effect for thin films in QED. J. Phys. A Math. Gen. 2006, 39, 6525–6532. [Google Scholar] [CrossRef]
- Marachevsky, V.N. Casimir effect for Chern-Simons layers in the vacuum. Theor. Math. Phys. 2017, 190, 315–320. [Google Scholar] [CrossRef]
- Marachevsky, V.N. Casimir interaction of two dielectric half spaces with Chern-Simons boundary layers. Phys. Rev. B 2019, 99, 075420. [Google Scholar] [CrossRef] [Green Version]
- Marachevsky, V.N. Chern-Simons boundary layers in the Casimir effect. Mod. Phys. Lett. A 2020, 35, 2040015. [Google Scholar] [CrossRef]
- Fialkovsky, I.; Khusnutdinov, N.; Vassilevich, D. Quest for Casimir repulsion between Chern-Simons surfaces. Phys. Rev. B 2018, 97, 165432. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.-D.; Wilczek, F. Chiral Casimir force: Repulsive, enhanced, tunable. Phys. Rev. B 2019, 99, 125403. [Google Scholar] [CrossRef] [Green Version]
- Høye, J.S.; Brevik, I. Casimir force between ideal metal plates in a chiral vacuum. Eur. Phys. J. Plus 2020, 135, 271. [Google Scholar] [CrossRef]
- Brevik, I.; Lygren, M.; Marachevsky, V.N. Casimir-Polder effect for a perfectly conducting wedge. Ann. Phys. 1998, 267, 134–142. [Google Scholar] [CrossRef]
- Messina, R.; Dalvit, D.A.R.; Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Dispersive interactions between atoms and nonplanar surfaces. Phys. Rev. A 2009, 80, 022119. [Google Scholar] [CrossRef] [Green Version]
- Bender, H.; Stehle, C.; Zimmermann, C.; Slama, S.; Fiedler, J.; Scheel, S.; Buhmann, S.Y.; Marachevsky, V.N. Probing atom-surface interactions by diffraction of Bose-Einstein condensates. Phys. Rev. X 2014, 4, 011029. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.; McCauley, A.P.; Rodriguez, A.W.; Homer Reid, M.T.; Johnson, S.G. Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett. 2010, 105, 090403. [Google Scholar] [CrossRef] [Green Version]
- Buhmann, S.Y.; Marachevsky, V.N.; Scheel, S. Impact of anisotropy on the interaction of an atom with a one-dimensional nano-grating. Int. J. Mod. Phys. A 2016, 31, 1641029. [Google Scholar] [CrossRef]
- Marachevsky, V.N.; Pis’mak, Y.M. Casimir-Polder effect for a plane with Chern-Simons interaction. Phys. Rev. D 2010, 81, 065005. [Google Scholar] [CrossRef] [Green Version]
- Buhmann, S.Y.; Marachevsky, V.N.; Scheel, S. Charge-parity-violating effects in Casimir-Polder potentials. Phys. Rev. A 2018, 98, 022510. [Google Scholar] [CrossRef] [Green Version]
- Passante, R.; Rizzuto, L.; Spagnolo, S.; Tanaka, S.; Petrosky, T.Y. Harmonic oscillator model for the atom-surface Casimir-Polder interaction energy. Phys. Rev. A 2012, 85, 062109. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M.; Klimchitskaya, G.L.; Mostepanenko, V.M. Nonperturbative theory of atom-surface interaction: Corrections at short separations. J. Phys. Condens. Matter 2018, 30, 055003. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Ausbreitung elektromagnetischer Wellen uber einen Leiter. Ann. Phys. 1919, 60, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1982. [Google Scholar]
- Vasiliev, A.N. Functional Methods in Quantum Field Theory and Statistics; Gordon and Breach: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: New York, NY, USA, 1996; Volume I. [Google Scholar]
- Khriplovich, I.B. Parity Nonconservation in Atomic Phenomena; Gordon and Breach: Philadelphia, PA, USA, 1991. [Google Scholar]
- Tomaš, M.S. Green function for multilayers: light scattering in planar cavities. Phys. Rev. A 1995, 51, 2545–2559. [Google Scholar] [CrossRef]
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. General theory of van der Waals’ forces. Sov. Phys. Usp. 1961, 4, 153–176. [Google Scholar] [CrossRef]
- Renne, M.J. Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies. Physica 1971, 56, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Schwinger, J.; de Raad, L.L., Jr.; Milton, K.A. Casimir effect in dielectrics. Ann. Phys. 1978, 115, 1–23. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir energy for dielectrics. Proc. Natl. Acad. Sci. USA 1992, 89, 4091–4093. [Google Scholar] [CrossRef] [Green Version]
- Tomaš, M.S. Casimir force in absorbing multilayers. Phys. Rev. A 2002, 66, 052103. [Google Scholar] [CrossRef] [Green Version]
- Raabe, C.; Knöll, L.; Welsch, D.-G. Three-dimensional Casimir force between absorbing multilayer dielectrics. Phys. Rev. A 2003, 68, 033810. [Google Scholar] [CrossRef] [Green Version]
- Barton, G. Quantum-electrodynamic level shifts between parallel mirrors: analysis. Proc. R. Soc. Lond. A 1987, 410, 141–174. [Google Scholar]
- Rodriguez, A.; Ibanescu, M.; Iannuzzi, D.; Capasso, F.; Joannopoulos, J.D.; Johnson, S.G. Computation and visualization of Casimir forces in arbitrary geometries: nonmonotonic lateral-wall forces and the failure of proximity-force approximations. Phys. Rev. Lett. 2007, 99, 080401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahi, S.J.; Rodriguez, A.W.; Emig, T.; Jaffe, R.L.; Johnson, S.G.; Kardar, M. Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders. Phys. Rev. A 2008, 77, 030101(R). [Google Scholar] [CrossRef] [Green Version]
- Emig, T. Fluctuation-induced quantum interactions between compact objects and a plane mirror. J. Stat. Mech. Theory Exp. 2008, 2008, P04007. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P.; Rahi, S.J.; Emig, T. Three-body Casimir effects and nonmonotonic forces. Phys. Rev. A 2009, 80, 022519. [Google Scholar] [CrossRef]
- Zaheer, S.; Rahi, S.J.; Emig, T.; Jaffe, R.L. Casimir interactions of an object inside a spherical metal shell. Phys. Rev. A 2010, 81, 030502(R). [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P.; Emig, T.; Noruzifar, E.; Zandi, R. Effect of curvature and confinement on the Casimir-Polder interaction. Phys. Rev. A 2015, 91, 012516. [Google Scholar] [CrossRef] [Green Version]
- Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Casimir-Polder effect for a stack of conductive planes. Phys. Rev. A 2016, 94, 012513. [Google Scholar] [CrossRef] [Green Version]
- Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Thermal Casimir and Casimir-Polder interactions in N parallel 2D Dirac materials. 2D Mater. 2018, 5, 035032. [Google Scholar] [CrossRef] [Green Version]
- Tse, W.-K.; MacDonald, A.H. Quantized Casimir force. Phys. Rev. Lett. 2012, 109, 236806. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P.; Grushin, A.G. Repulsive Casimir effect with Chern insulators. Phys. Rev. Lett. 2014, 112, 056804. [Google Scholar] [CrossRef] [Green Version]
- Fialkovsky, I.V.; Marachevsky, V.N.; Vassilevich, D.V. Finite-temperature Casimir effect for graphene. Phys. Rev. B 2011, 84, 035446. [Google Scholar] [CrossRef] [Green Version]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Katsnelson, M.I. Graphene: Carbon in Two Dimensions; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Bordag, M.; Fialkovsky, I.V.; Gitman, D.M.; Vassilevich, D.V. Casimir interaction between a perfect conductor and graphene described by the Dirac model. Phys. Rev. B 2009, 80, 245406. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Theory of the Casimir interaction for graphene-coated substrates using the polarization tensor and comparison with experiment. Phys. Rev. B 2014, 89, 115419. [Google Scholar] [CrossRef] [Green Version]
- Beneventano, C.G.; Giacconi, P.; Santangelo, E.M.; Soldati, R. Planar QED at finite temperature and density: Hall conductivity, Berry’s phases and minimal conductivity of graphene. J. Phys. A Math. Theor. 2009, 42, 275401. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Kort-Kamp, W.; Dalvit, D.; Woods, L.M. Casimir force phase transitions in the graphene family. Nat. Commun. 2017, 8, 14699. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Petrov, V.M. Quantum field theoretical description for the reflectivity of graphene. Phys. Rev. D 2015, 91, 045037, Erratum in 2016, 93, 089907. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Casimir and Casimir-Polder forces in graphene systems: quantum field theoretical description and thermodynamics. Universe 2020, 6, 150. [Google Scholar] [CrossRef]
- Kats, E.I. Influence of nonlocality effects on van der Waals interaction. Zh. Eksp. Teor. Fiz. 1977, 73, 212–220. [Google Scholar]
- Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M. Surface-impedance approach solves problems with the thermal Casimir force between real metals. Phys. Rev. A 2003, 67, 062102. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 2005, 318, 37–80. [Google Scholar] [CrossRef] [Green Version]
- Brevik, I.; Ellingsen, S.E.; Milton, K.A. Thermal corrections to the Casimir effect. New J. Phys. 2006, 8, 236. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marachevsky, V.N.; Sidelnikov, A.A. Green Functions Scattering in the Casimir Effect. Universe 2021, 7, 195. https://doi.org/10.3390/universe7060195
Marachevsky VN, Sidelnikov AA. Green Functions Scattering in the Casimir Effect. Universe. 2021; 7(6):195. https://doi.org/10.3390/universe7060195
Chicago/Turabian StyleMarachevsky, Valery N., and Arseny A. Sidelnikov. 2021. "Green Functions Scattering in the Casimir Effect" Universe 7, no. 6: 195. https://doi.org/10.3390/universe7060195
APA StyleMarachevsky, V. N., & Sidelnikov, A. A. (2021). Green Functions Scattering in the Casimir Effect. Universe, 7(6), 195. https://doi.org/10.3390/universe7060195