Editorial to the Special Issue “The Casimir Effect: From a Laboratory Table to the Universe”
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. B 1948, 51, 793–795. [Google Scholar]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Zh. Eksp. Teor. Fiz. 1955, 29, 94–110, Translated in Sov. Phys. JETP 1956, 2, 73–83. [Google Scholar]
- Mahanty, J.; Ninham, B.W. Dispersion Forces; Academic Press: London, UK, 1976. [Google Scholar]
- Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Mostepanenko, V.M.; Trunov, N.N. The Casimir Effect and Its Applications; Clarendon Press: Oxford, UK, 1997. [Google Scholar]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific: Singapore, 2001. [Google Scholar]
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Buhmann, S.Y. Disperson Forces, I, II; Springer: Berlin, Germany, 2012. [Google Scholar]
- Sernelius, Bo E. Fundamentals of van der Waals and Casimir Interactions; Springer: New York, NY, USA, 2018. [Google Scholar]
- Bimonte, G.; Emig, T. Unifying Theory for Casimir Forces: Bulk and Surface Formulations. Universe 2021, 7, 225. [Google Scholar] [CrossRef]
- Marachevsky, V.N.; Sinelnikov, A.A. Green Functions Scattering in the Casimir Effect. Universe 2021, 7, 195. [Google Scholar] [CrossRef]
- Nunes, R.O.; Spreng, B.; de Melo e Souza, R.; Ingold, G.-L.; Maia Neto, P.A.; Rosa, F.S.S. The Casimir Interaction between Spheres Immersed in Electrolytes. Universe 2021, 7, 156. [Google Scholar] [CrossRef]
- Henning, V.; Spreng, B.; Maia Neto, P.A.; Ingold, G.-L. Casimir Interaction between a Plane and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures. Universe 2021, 7, 129. [Google Scholar] [CrossRef]
- Bimonte, G.; Spreng, B.; Maia Neto, P.A.; Ingold, G.-L.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Decca, R.S. Measurement of the Casimir Force between 0.2 and 8 μm: Experimental Procedures and Comparison with Theory. Universe 2021, 7, 93. [Google Scholar] [CrossRef]
- Soldatenkov, I.A.; Yakovenko, A.A.; Svetovoy, V.B. Measuring the Casimir Forces with an Adhered Cantilever: Analysis of Roughness and Background Effects. Universe 2021, 7, 64. [Google Scholar] [CrossRef]
- Sedmik, R.I.P.; Pitschmann, M. Next Generation Design and Prospects for Cannex. Universe 2021, 7, 234. [Google Scholar] [CrossRef]
- Mostepanenko, V.M. Casimir Puzzle and Casimir Conundrum: Discovery and Search for Resolution. Universe 2021, 7, 84. [Google Scholar] [CrossRef]
- Hannemann, M.; Wegner, G.; Henkel, C. No-Slip Boundary Conditions for Electron Hydrodynamics and the Thermal Casimir Pressure. Universe 2021, 7, 108. [Google Scholar] [CrossRef]
- Castillo-López, S.G.; Villarreal, C.; Pirruccio, G.; Esquivel-Sirvent, R. Role of Electronic Relaxation Rates in the Casimir Force between High-Tc Superconductors. Universe 2021, 7, 69. [Google Scholar] [CrossRef]
- Tajik, F.; Babamahdi, Z.; Sedighi, M.; Palasantzas, G. Nonlinear Actuation of Casimir Oscillators toward Chaos: Comparison of Topological Insulators and Metals. Universe 2021, 7, 123. [Google Scholar] [CrossRef]
- Khusnutdinov, N.; Emelianova, N. The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene. Universe 2021, 7, 70. [Google Scholar] [CrossRef]
- Lu, B.-S. The Casimir Effect in Topological Matter. Universe 2021, 7, 237. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Kort-Kamp, W.J.M. Shaping Dynamical Casimir Photons. Universe 2021, 7, 189. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion-Induced Radiation Due to an Atom in the Presence of a Graphene Plane. Universe 2021, 7, 158. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation. Universe 2021, 7, 60. [Google Scholar] [CrossRef]
- Dedkov, G.V. Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry. Universe 2021, 7, 106. [Google Scholar] [CrossRef]
- Szilard, D.; Abrantes, P.P.; Pinheiro, F.A.; Rosa, F.S.S.; Farina, C.; Kort-Kamp, W.J.M. Optical Forces on an Oscillating Dipole Near VO2 Phase Transition. Universe 2021, 7, 159. [Google Scholar] [CrossRef]
- Brevik, I. Axion Electrodynamics and the Axionic Casimir Effect. Universe 2021, 7, 133. [Google Scholar] [CrossRef]
- Grats, Y.V.; Spirin, P. Vacuum Polarization in a Zero-Width Potential: Self-Adjoint Extension. Universe 2021, 7, 127. [Google Scholar] [CrossRef]
- Fermi, D. Vacuum Polarization with Zero-Range Potentials on a Hyperplane. Universe 2021, 7, 92. [Google Scholar] [CrossRef]
- Saharian, A.; Petrosyan, T.; Hovhannisyan, A. Casimir Effect for Fermion Condensate in Conical Rings. Universe 2021, 7, 73. [Google Scholar] [CrossRef]
- Bordag, M. Vacuum Energy for a Scalar Field with Self-Interaction in (1 + 1) Dimensions. Universe 2021, 7, 55. [Google Scholar] [CrossRef]
- Cavero-Peláez, I.; Parashar, P.; Shajesh, K.V. Quantum Vacuum Energy of Self-Similar Configurations. Universe 2021, 7, 128. [Google Scholar] [CrossRef]
- Elizalde, E. Zeta Functions and the Cosmos—A Basic Brief Review. Universe 2021, 7, 5. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L. Constraints on Theoretical Predictions beyond the Standard Model from the Casimir Effect and Some Other Tabletop Physics. Universe 2021, 7, 47. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Santana Mota, H.F.; Rodrigues Muniz, C.; Romero, C. Remarks on Some Results Related to the Thermal Casimir Effect in Einstein and Closed Friedmann Universes with a Cosmic String. Universe 2021, 7, 232. [Google Scholar] [CrossRef]
- Pirozhenko, I.G. Vacuum Interaction of Crossed Cosmic Strings. Universe 2021, 7, 217. [Google Scholar] [CrossRef]
- Spirin, P. Scalar Radiation in Interaction of Cosmic String with Point Charge. Universe 2021, 7, 206. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimchitskaya, G.L. Editorial to the Special Issue “The Casimir Effect: From a Laboratory Table to the Universe”. Universe 2021, 7, 266. https://doi.org/10.3390/universe7080266
Klimchitskaya GL. Editorial to the Special Issue “The Casimir Effect: From a Laboratory Table to the Universe”. Universe. 2021; 7(8):266. https://doi.org/10.3390/universe7080266
Chicago/Turabian StyleKlimchitskaya, Galina L. 2021. "Editorial to the Special Issue “The Casimir Effect: From a Laboratory Table to the Universe”" Universe 7, no. 8: 266. https://doi.org/10.3390/universe7080266
APA StyleKlimchitskaya, G. L. (2021). Editorial to the Special Issue “The Casimir Effect: From a Laboratory Table to the Universe”. Universe, 7(8), 266. https://doi.org/10.3390/universe7080266