Tractor Beams, Pressor Beams and Stressor Beams in General Relativity
Abstract
:1. Introduction
- We modify the Alcubierre fixed-flow-direction warp field.
- We modify the Natário zero-expansion warp field.
- We modify the zero-vorticity warp field.
2. When Things Need to Be Moved
3. Natário’s Generic Warp Field
3.1. Kinematics
3.2. Stress-Energy Tensor
- The Gauss–Codazzi equations yield the Eulerian energy density:In the current context, this can be recast as [18]:
- The Gauss–Mainardi equations yield the Eulerian energy flux:
- The stress tensor is somewhat messier and can be expressed in terms of the extrinsic curvature and its Lie derivatives [18]:For the various explicit examples we consider below, we often use ab initio calculations instead of this general (but relatively intractable) result.
- In contrast, the trace of the stress tensor is somewhat easier to deal with. For the average pressure , we have [18]:This implies
4. Beam Profile
4.1. Beam Kinematics
4.2. Stress-Energy Basics
4.3. Force
4.4. Flux
4.5. Off-Diagonal Stress Components
4.6. Eulerian Energy Density
4.7. Weak Energy Condition
4.8. Null Energy Condition
5. Special Cases
5.1. Modified Alcubierre Warp Flow
5.2. Zero-Expansion Beam
5.2.1. Force
5.2.2. Energy Conditions
5.3. Zero-Vorticity Beam
5.3.1. Force
5.3.2. Energy Density and Null Energy Condition
6. Specific Examples
6.1. Gaussian Beam Profiles
6.1.1. Generic Gaussian beam
6.1.2. Alcubierre-Based Gaussian Beam
6.1.3. Zero-Expansion Gaussian Beam
6.1.4. Zero Vorticity Gaussian Beam
6.2. Envelope Functions
6.2.1. Illustrating Gaussian beams
6.2.2. Bump Functions
7. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | Again, this definition depends on the relative positions of generator and target, and we assume the target is always to the right of the generator. |
2 |
References
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press: Woodbury, MN, USA, 1995. [Google Scholar]
- Hawking, S.W. Chronology protection conjecture. Phys. Rev. D 1992, 46, 603. [Google Scholar] [CrossRef]
- Visser, M. The Quantum physics of chronology protection. In The Future of Theoretical Physics and Cosmology, Celebrating Steven Hawking’s 60th Birthday; Gibbons, G.W., Shellard, E.P.S., Drake, S.J., Eds.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Visser, M. From wormhole to time machine: Comments on Hawking’s chronology protection conjecture. Phys. Rev. D 1993, 47, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Hawking’s chronology protection conjecture: Singularity structure of the quantum stress-energy tensor. Nucl. Phys. B 1994, 416, 895–906. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.L.; Higuchi, A. Topological censorship and chronology protection. Annalen Phys. 2006, 15, 109–128. [Google Scholar] [CrossRef]
- Liberati, S. Do not mess with time: Probing faster than light travel and chronology protection with superluminal warp drives. In Proceedings of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity, University of Rome “La Sapienza”, Rome, Italy, 12–18 July 2015. [Google Scholar] [CrossRef] [Green Version]
- Tippett, B.K.; Tsang, D. The Blue Box White Paper. arXiv 2013, arXiv:1310.7983. [Google Scholar]
- Alcubierre, M. The Warp drive: Hyperfast travel within general relativity. Class. Quant. Grav. 1994, 11, L73–L77. [Google Scholar] [CrossRef]
- Natário, J. Warp drive with zero expansion. Class. Quant. Grav. 2002, 19, 1157–1166. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Visser, M. Fundamental limitations on ’warp drive’ spacetimes. Class. Quant. Grav. 2004, 21, 5871–5892. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions. Fundam. Theor. Phys. 2017, 189, 1–279. [Google Scholar] [CrossRef]
- Alcubierre, M.; Lobo, F.S.N. Warp Drive Basics. Fundam. Theor. Phys. 2017, 189, 257–279. [Google Scholar] [CrossRef]
- Santiago, J.; Schuster, S.; Visser, M. Generic warp drives violate the null energy condition. arXiv 2021, arXiv:2105.03079. [Google Scholar]
- Tippett, B.K. Gravitational Lensing as a Mechanism For Effective Cloaking. Phys. Rev. D 2011, 84, 104034. [Google Scholar] [CrossRef] [Green Version]
- Tippett, B.K. Possible Bubbles of Spacetime Curvature in the South Pacific. arXiv 2012, arXiv:1210.8144. [Google Scholar]
- Tractor Beam. Available online: https://en.wikipedia.org/wiki/Tractor_beam (accessed on 27 July 2021).
- Pressor Beam. Available online: http://www.sf-encyclopedia.com/entry/pressor_beam (accessed on 27 July 2021).
- Pressor Beam. Available online: https://sfdictionary.com/view/93/pressor-beam (accessed on 27 July 2021).
- Démoré, C.E.; Dahl, P.M.; Yang, Z.; Glynne-Jones, P.; Melzer, A.; Cochran, S.; Spalding, G.C. Acoustic Tractor Beam. Phys. Rev. Lett. 2014, 112, 174302. [Google Scholar] [CrossRef] [Green Version]
- Mitri, F.G. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers. Ann. Phys. 2008, 323, 1604–1620. [Google Scholar] [CrossRef]
- Abdelaziz, M.A.; Grier, D.G. Acoustokinetics: Crafting force landscapes from sound waves. Phys. Rev. Res. 2020, 2, 013172. [Google Scholar] [CrossRef] [Green Version]
- Marzo, A.; Caleap, M.; Drinkwater, B.W. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles. Phys. Rev. Lett. 2018, 120, 044301. [Google Scholar] [CrossRef] [Green Version]
- Gorlach, A.A.; Gorlach, M.A.; Lavrinenko, A.V.; Novitsky, A. Matter-Wave Tractor Beams. Phys. Rev. Lett. 2017, 118, 180401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novotny, L.; Bian, R.X.; Xie, X.S. Theory of Nanometric Optical Tweezers. Phys. Rev. Lett. 1997, 79, 645. [Google Scholar] [CrossRef] [Green Version]
- Kardashev Scale. Available online: https://en.wikipedia.org/wiki/Kardashev_scale (accessed on 27 July 2021).
- Kardashev, N.S. Transmission of Information by Extraterrestrial Civilizations. Sov. Astron. 1964, 8, 217. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar] [CrossRef]
- Curiel, E. A Primer on Energy Conditions. Einstein Stud. 2017, 13, 43–104. [Google Scholar] [CrossRef] [Green Version]
- Kontou, E.A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Class. Quant. Grav. 2020, 37. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Semiclassical energy conditions for quantum vacuum states. JHEP 2013, 9, 050. [Google Scholar] [CrossRef] [Green Version]
- Barceló, C.; Visser, M. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. If vacuum energy can be negative, why is mass always positive?: Uses of the subdominant trace energy condition. Phys. Rev. D 2013, 88, 125005. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Barceló, C. Energy conditions and their cosmological implications. World Sci. 2000, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. General relativistic energy conditions: The Hubble expansion in the epoch of galaxy formation. Phys. Rev. D 1997, 56, 7578–7587. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Energy conditions in the epoch of galaxy formation. Science 1997, 276, 88–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M. Energy conditions and galaxy formation. In Proceedings of the Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, Jerusalem, Israel, 22–27 June 1997; pp. 1348–1350. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Classical and quantum flux energy conditions for quantum vacuum states. Phys. Rev. D 2013, 88, 061701. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Visser, M. Classical and semi-classical energy conditions. Fundam. Theor. Phys. 2017, 189, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Martín-Moruno, P.; Visser, M. Semi-classical and nonlinear energy conditions. In Proceedings of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity, University of Rome “La Sapienza”, Rome, Italy, 12–18 July 2015; pp. 1442–1447. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Gravitational vacuum polarization. 1: Energy conditions in the Hartle-Hawking vacuum. Phys. Rev. D 1996, 54, 5103–5115. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Gravitational vacuum polarization. 2: Energy conditions in the Boulware vacuum. Phys. Rev. D 1996, 54, 5116–5122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M. Gravitational vacuum polarization. 3: Energy conditions in the (1+1) Schwarzschild space-time. Phys. Rev. D 1996, 54, 5123–5128. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Gravitational vacuum polarization. 4: Energy conditions in the Unruh vacuum. Phys. Rev. D 1997, 56, 936–952. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Gravitational vacuum polarization. In Proceedings of the Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, Jerusalem, Israel, 22–27 June 1997; pp. 842–844. [Google Scholar] [CrossRef]
- Fewster, C.J.; Roman, T.A. Null energy conditions in quantum field theory. Phys. Rev. D 2003, 67, 044003. [Google Scholar] [CrossRef] [Green Version]
- Fewster, C.J.; Galloway, G.J. Singularity theorems from weakened energy conditions. Class. Quant. Grav. 2011, 28, 125009. [Google Scholar] [CrossRef] [Green Version]
- Fewster, C.J. Lectures on quantum energy inequalities, Lectures given at the Albert Einstein Institute, Golm. arXiv 2012, arXiv:1208.5399. [Google Scholar]
- Visser, M. Scale anomalies imply violation of the averaged null energy condition. Phys. Lett. B 1995, 349, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, E.E.; Wald, R.M. Does back reaction enforce the averaged null energy condition in semiclassical gravity? Phys. Rev. D 1996, 54, 6233–6283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, L.H.; Roman, T.A. Averaged energy conditions and quantum inequalities. Phys. Rev. D 1995, 51, 4277–4286. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.H.; Roman, T.A. Averaged energy conditions and evaporating black holes. Phys. Rev. D 1996, 53, 1988–2000. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.H. The Classical singularity theorems and their quantum loop holes. Int. J. Theor. Phys. 2003, 42, 1219–1227. [Google Scholar] [CrossRef]
- Ford, L.H. Spacetime in semiclassical gravity. In 100 Years of Relativity: Space-Time Structure: Einstein and Beyond; World Scientific (Singapore): Singapore, 2005; pp. 293–310. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M.; Yurtsever, U. General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time. Phys. Rev. D 1991, 44, 403–416. [Google Scholar] [CrossRef]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, D.; Visser, M. Dynamic wormholes, anti-trapped surfaces, and energy conditions. Phys. Rev. D 1998, 58, 044021. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, D.; Visser, M. The Null energy condition in dynamic wormholes. Phys. Rev. Lett. 1998, 81, 746–749. [Google Scholar] [CrossRef] [Green Version]
- Barceló, C.; Visser, M. Scalar fields, energy conditions, and traversable wormholes. Class. Quant. Grav. 2000, 17, 3843–3864. [Google Scholar] [CrossRef]
- Barceló, C.; Visser, M. Brane surgery: Energy conditions, traversable wormholes, and voids. Nucl. Phys. B 2000, 584, 415–435. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Roman, T.A.; Bergmann, P.G. Stellar collapse without singularities? Phys. Rev. D 1983, 28, 1265–1277. [Google Scholar] [CrossRef]
- Roman, T.A. Some thoughts on energy conditions and wormholes. In Proceedings of the Tenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Rio de Janeiro, Brazil, 20–26 July 2003; Volume 3, pp. 1909–1924. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. From the Flamm–Einstein–Rosen bridge to the modern renaissance of traversable wormholes. Int. J. Mod. Phys. D 2016, 25, 1630017. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, D.; Molina-París, C.; Visser, M. Tolman wormholes violate the strong energy condition. Phys. Rev. D 1999, 59, 044011. [Google Scholar] [CrossRef] [Green Version]
- Lentz, E.W. Breaking the warp barrier: Hyper-fast solitons in Einstein–Maxwell-plasma theory. Class. Quant. Grav. 2021, 38, 075015. [Google Scholar] [CrossRef]
- Bobrick, A.; Martire, G. Introducing physical warp drives. Class. Quant. Grav. 2021, 38, 105009. [Google Scholar] [CrossRef]
- Fell, S.D.B.; Heisenberg, L. Positive energy warp drive from hidden geometric structures. Class. Quant. Grav. 2021, 38, 155020. [Google Scholar] [CrossRef]
- Santos-Pereira, O.L.; Abreu, E.M.C.; Ribeiro, M.B. Charged dust solutions for the warp drive spacetime. Gen. Rel. Grav. 2021, 53, 23. [Google Scholar] [CrossRef]
- Santos-Pereira, O.L.; Abreu, E.M.C.; Ribeiro, M.B. Fluid dynamics in the warp drive spacetime geometry. Eur. Phys. J. C 2021, 81, 133. [Google Scholar] [CrossRef]
- Santos-Pereira, O.L.; Abreu, E.M.C.; Ribeiro, M.B. Dust content solutions for the Alcubierre warp drive spacetime. Eur. Phys. J. C 2020, 80, 786. [Google Scholar] [CrossRef]
- See Wikipedia: Stoney Units. Available online: https://en.wikipedia.org/wiki/Stoney_units (accessed on 27 July 2021).
- Johnstone Stoney, G. On The Physical Units of Nature. Phil. Mag. 1881, 11, 381–391, In Proceedings of the Scientific Royal Dublin Society, 1883; Volume 3, pp. 51–60. Available online: https://www.biodiversitylibrary.org/item/95768#page/73/mode/1up (accessed on 27 July 2021). [CrossRef] [Green Version]
- Jowsey, A.; Visser, M. Counterexamples to the maximum force conjecture. arXiv 2021, arXiv:2102.01831. [Google Scholar]
- Jowsey, A.; Visser, M. Reconsidering maximum luminosity. arXiv 2021, arXiv:2105.06650. [Google Scholar]
- Gourgoulhon, E. 3+1 formalism and bases of numerical relativity. In Lecture Notes in Physics; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; Volume 846. [Google Scholar]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2004; ISBN 13: 0521830915. [Google Scholar]
- Alcubierre, M. Introduction to 3+1 Numerical Relativity; Oxford University Press: Oxford, UK, 2008; ISBN 13: 9780199205677. [Google Scholar]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. In Gravitation: An Introduction to Current Research; Chapter 7; Witten, L., Ed.; Wiley: New York, NY, USA, 1962; pp. 227–265, Republished as: Gen. Rel. Grav. 2008, 40, 1997–2027. [Google Scholar] [CrossRef] [Green Version]
- Everett, A.E. Warp drive and causality. Phys. Rev. D 1996, 53, 7365–7368. [Google Scholar] [CrossRef] [PubMed]
- Everett, A.E.; Roman, T.A. A Superluminal subway: The Krasnikov tube. Phys. Rev. D 1997, 56, 2100–2108. [Google Scholar] [CrossRef] [Green Version]
- Hiscock, W.A. Quantum effects in the Alcubierre warp drive space-time. Class. Quant. Grav. 1997, 14, L183–L188. [Google Scholar] [CrossRef] [Green Version]
- Pfenning, M.J. Quantum inequality restrictions on negative energy densities in curved space-times. arXiv 1998, arXiv:gr-qc/9805037. [Google Scholar]
- Low, R.J. Speed limits in general relativity. Class. Quant. Grav. 1999, 16, 543–549. [Google Scholar] [CrossRef]
- Olum, K.D. Superluminal travel requires negative energies. Phys. Rev. Lett. 1998, 81, 3567–3570. [Google Scholar] [CrossRef] [Green Version]
- Van Den Broeck, C. A warp drive with reasonable total energy requirements. Class. Quant. Grav. 1999, 16, 3973–3979. [Google Scholar] [CrossRef] [Green Version]
- Van Den Broeck, C. On the (im)possibility of warp bubbles. arXiv 1999, arXiv:gr-qc/9906050. [Google Scholar]
- Clark, C.; Hiscock, W.A.; Larson, S.L. Null geodesics in the Alcubierre warp drive space-time: The view from the bridge. Class. Quant. Grav. 1999, 16, 3965–3972. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Bassett, B.; Liberati, S. Perturbative superluminal censorship and the null energy condition. AIP Conf. Proc. 1999, 493, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Alcubierre, M. Warp propulsion, wormholes, time travel. Sterne Weltraum S 2001, 6, 70–76. [Google Scholar]
- Lobo, F.S.N.; Crawford, P. Weak energy condition violation and superluminal travel. Lect. Notes Phys. 2003, 617, 277–291. [Google Scholar]
- Lobo, F.S.N.; Visser, M. Linearized warp drive and the energy conditions Proceedings of the Spanish Relativity Meeting-2004 (Miraflores de la Sierra, Madrid, September 2004). arXiv, 2004; arXiv:gr-qc/0412065. [Google Scholar]
- Lobo, F.S.N. Exotic solutions in General Relativity: Traversable wormholes and warp drive spacetimes. arXiv 2007, arXiv:0710.4474. [Google Scholar]
- Finazzi, S.; Liberati, S.; Barceló, C. Semiclassical instability of dynamical warp drives. Phys. Rev. D 2009, 79, 124017. [Google Scholar] [CrossRef] [Green Version]
- McMonigal, B.; Lewis, G.F.; O’Byrne, P. The Alcubierre warp drive: On the matter of matter. Phys. Rev. D 2012, 85, 064024. [Google Scholar] [CrossRef] [Green Version]
- Tu, L.W. An Introduction to Manifolds; Springer: New York, NY, USA, 2011; ISBN 13: 9781441973993. [Google Scholar] [CrossRef]
- Raychaudhuri, A.K. Relativistic cosmology I. Phys. Rev. 1955, 98, 1123–1126. [Google Scholar] [CrossRef]
- Kar, S.; SenGupta, S. The Raychaudhuri equations: A Brief review. Pramana 2007, 69, 49. [Google Scholar] [CrossRef] [Green Version]
- Dadhich, N. Derivation of the Raychaudhuri equation. arXiv 2005, arXiv:gr-qc/0511123. [Google Scholar]
- Ehlers, J.A.K. Raychaudhuri and his equation. Int. J. Mod. Phys. D 2006, 15, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Borde, A. Geodesic focusing, energy conditions and singularities. Class. Quant. Grav. 1987, 4, 343–356. [Google Scholar] [CrossRef]
- Visser, M. van Vleck determinants: Geodesic focusing and defocusing in Lorentzian space-times. Phys. Rev. D 1993, 47, 2395–2402. [Google Scholar] [CrossRef] [Green Version]
- Abreu, G.; Visser, M. Some generalizations of the Raychaudhuri equation. Phys. Rev. D 2011, 83, 104016. [Google Scholar] [CrossRef] [Green Version]
Generic Natário | Modified Alcubierre | Zero Expansion | Zero Vorticity |
---|---|---|---|
envelope | 0 | ||
envelope | v | v | |
profile | 0 | h | |
profile | f | f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago, J.; Schuster, S.; Visser, M. Tractor Beams, Pressor Beams and Stressor Beams in General Relativity. Universe 2021, 7, 271. https://doi.org/10.3390/universe7080271
Santiago J, Schuster S, Visser M. Tractor Beams, Pressor Beams and Stressor Beams in General Relativity. Universe. 2021; 7(8):271. https://doi.org/10.3390/universe7080271
Chicago/Turabian StyleSantiago, Jessica, Sebastian Schuster, and Matt Visser. 2021. "Tractor Beams, Pressor Beams and Stressor Beams in General Relativity" Universe 7, no. 8: 271. https://doi.org/10.3390/universe7080271
APA StyleSantiago, J., Schuster, S., & Visser, M. (2021). Tractor Beams, Pressor Beams and Stressor Beams in General Relativity. Universe, 7(8), 271. https://doi.org/10.3390/universe7080271