The Hunt for Pevatrons: The Case of Supernova Remnants
Abstract
:1. Introduction
1.1. The Hunt for the Sources of Galactic Cosmic Rays
1.2. 100 TeV Gamma Rays
2. Supernova Remnants
- Energetic considerations: a simple back-of-the-envelope calculation illustrates that converting a fraction (~1–10%) of the total explosion energy of SNe into CRs can account the measured energy density of CRs at the Earth.
- Spectrum of accelerated particles: at SNRs, which are strong shock waves (i.e., of compression factor ≳4), a first order Fermi mechanism, referred to as Diffusive shock acceleration (DSA) [49,50,51,52] can explain the efficient acceleration of particles with a power law in momentum ∝, with for a strong shock (which corresponds, at high energy to ), somewhat compatible with the Local CR spectrum measured at the Earth.
- Magnetic field amplification: several mechanisms have been shown to be able to amplify the magnetic field at SNRs shock fronts, therefore helping to the reach the PeV range. Indeed, the Hillas criterion, where the Larmor radius of particles is equated to the typical size of the accelerator (the SNR radius ) gives that the maximum energy of particles is typically at most:
- Gamma rays: the detection of GeV to multi-TeV gamma rays from SNRs, and especially the capacity of current IACTs to resolve the shells corresponding to the spherical expanding shock waves, is an undeniable indication that efficient particle acceleration is taking place.
- Gamma-ray spectra: in the TeV range, the spectral index of all SNRs appears to be >2. This is problematic since the gamma-ray spectrum is expected to mimic the spectrum of particles accelerated at the SNR shock. Hence, this seems to indicate that the spectrum of particles accelerated at the shock is steeper than what is expected in the test particle limit ∝. Although the authors of various works have studied how efficient CRs at shocks can modified the produced spectrum, though nonlinear effects [55,56,57,58,59,60], the question of the slope of particles accelerated at SNR shocks is still open.
- The spectrum of particles injected in the ISM: from B/C measurements, the effects of the transport in the Galaxy have been estimated, finding that it should affect the CR spectrum by ∝ (see e.g., [61]). In order to produce the spectrum of the local CR spectrum below the knee ∝, this means that the CR sources must inject in the ISM a spectrum ∝, i.e., steeper than what is predicted in the usual test particle limit (∝). The problem of the spectrum injected by SNRs in the ISM is still open [62,63].
- The Ne/Ne abundance measured in CRs is a factor ~5 larger than the one in the solar wind [64,65]. This overabundance is not easily accounted for under the SNR hypothesis alone [66]. This has motivated the study of alternative scenarios, in which particles are at least in part accelerated in an environment enriched by stellar outflows (e.g., massive stars, stellar clusters, OB associations, superbubbles) and might explain the overabundance of Ne/Ne [67]. Other issues in the chemical composition of CRs have also been reported: for example, the enhanced Fe/Fe ratio, or the linear dependency of the B and Be abundance with metallicity in metal poor halo stars, that are not easily explained under the SNR hypothesis [54].
- No pevatron: As mentioned in the introduction, the sources of CRs are expected to be pevatrons. This means that SNRs are expected, for at least a period of their evolution, to be pevatrons. Since the gamma rays from accelerated protons scale as , the detection of gamma rays in the ~100 TeV range probes the acceleration of PeV CR protons. So far, the observation of all SNR shells in the VHE domain have revealed cut offs indicating that PeV CRs are not efficiently produced.
2.1. Acceleration up to the PeV Range
- Acoustic instabilities, where a gradient of the CR pressure in a fluid of density leads to the acceleration of the fluid ∝. In an inhomogeneous medium, the inhomogeneities of density will in turn lead to inhomogeneities in the acceleration, therefore amplifying the starting density fluctuations [76,77,78,79].
- Resonant streaming instabilities: induced by accelerated CRs, the background plasma reacts to moving CRs and creates a current compensating the positive charge excess created by CRs. For particle of Larmor radius , this leads to the growth of resonant waves of wave number . The resonant nature of this process typically leads to a saturation when the amplified field becomes of the order of the pre-existing ordered magnetic field [82,83].
- Nonresonant streaming instabilities (often referred to as Bell instability): as in the resonant streaming instability, the current of CRs accelerated at the shock cause the background to react with an oppositely directed current. This results in a force responsible for the growth of perturbations in the magnetic field. The growth is the fastest on scales much smaller than the Larmor radius of particles, hence the nonresonant label [84,85,86,87].
2.2. Supernovae
2.3. Archeology of Pevatrons
3. The Detection of Galactic Pevatrons with Gamma Rays
3.1. The Crab Nebula
3.2. The First Galactic Pevatron Detected through VHE Gamma Rays
3.3. A Population of Galactic Pevatrons
4. All Kinds of Pevatrons: Pulsars, Massive Stars, Stellar Clusters & Superbubbles
4.1. Pulsars and Surroundings
4.2. Massive Stars, OB Associations and Stellar Clusters
4.3. Superbubbles
4.4. Other Candidates
4.5. Superpevatrons
5. Gamma Rays: Limitations and Hopes for the Future
6. Open Questions and the Hunt in the Coming Years
- Is the gamma-ray emission from Galactic pevatrons due to the acceleration of electrons or protons?
- What mechanism(s) drive(s) the acceleration of particle up to the PeV range?
- What astrophysical object(s) is (are) responsible for the acceleration of PeV protons (and thus likely candidate for the origin of CRs)?
- How long do the pevatron phases last?
- When do PeV CRs escape their sources? What is the distribution of particles around the pevatrons?
- What is the population and distribution of Galactic proton and electron pevatrons?
- If the proton knee is, as suggested by some experimental results, below 1 PeV (~0.7 PeV), how does this affect the search for the sources of Galactic CRs?
- Which objects are superpevatrons? How do they contribute to the CR spectrum?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | A term borrowed to J. Holder. |
References
- Gaisser, T.K. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ackermann, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E.D.; et al. Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations. Astron. Astrophys. 2016, 586, A71. [Google Scholar] [CrossRef] [Green Version]
- Tibaldo, L.; Gaggero, D.; Martin, P. Gamma Rays as Probes of Cosmic-Ray Propagation and Interactions in Galaxies. Universe 2021, 7, 141. [Google Scholar] [CrossRef]
- Antoni, T.; Apel, W.D.; Badea, A.F.; Bekk, K.; Bercuci, A.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Chilingarian, A.; Daumiller, K.; et al. KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astropart. Phys. 2005, 24, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Cao, Z.; Catalanotti, S.; Chen, S.Z.; Chen, T.L.; Cui, S.W.; Dai, B.Z.; D’Amone, A.; et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D 2015, 92, 092005. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Ma, L.; Zong, Z.; Yin, L.; Bi, B.; Zhang, S.; Suomijärvi, T. Measurement of the knees of proton and H&He spectra below 1 PeV. J. Phys. Conf. Ser. 2020, 1342, 012009. [Google Scholar] [CrossRef]
- An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bi, X.J.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; Chen, J.L.; et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv. 2019, 5, eaax3793. [Google Scholar] [CrossRef] [Green Version]
- Longair, M.S. High Energy Astrophysics; Cambridge University Press: Cambridge, UK, 1994; Volume 2. [Google Scholar]
- Hinton, J.A.; Hofmann, W. Teraelectronvolt Astronomy. Annu. Rev. Astron. Astrophys. 2009, 47, 523–565. [Google Scholar] [CrossRef] [Green Version]
- Berezhko, E.G.; Völk, H.J. Hadronic versus leptonic origin of the gamma-ray emission from supernova remnant RX J1713.7-3946. Astron. Astrophys. 2008, 492, 695–701. [Google Scholar] [CrossRef]
- Morlino, G.; Amato, E.; Blasi, P. Gamma-ray emission from SNR RX J1713.7-3946 and the origin of galactic cosmic rays. Mon. Not. R. Astron. Soc. 2009, 392, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhang, L.; Zhang, J.F.; Tang, Y.Y.; Yu, H. The multi-band non-thermal emission from the supernova remnant RX J1713.7-3946. Mon. Not. R. Astron. Soc. 2009, 392, 925–929. [Google Scholar] [CrossRef] [Green Version]
- Casanova, S.; Jones, D.I.; Aharonian, F.A.; Fukui, Y.; Gabici, S.; Kawamura, A.; Onishi, T.; Rowell, G.; Sano, H.; Torii, K.; et al. Modeling the Gamma-Ray Emission Produced by Runaway Cosmic Rays in the Environment of RX J1713.7-3946. Publ. Astron. Soc. Jpn. 2010, 62, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Zirakashvili, V.N.; Aharonian, F.A. Nonthermal Radiation of Young Supernova Remnants: The Case of RX J1713.7-3946. Astrophys. J. 2010, 708, 965–980. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.C.; Slane, P.; Patnaude, D.J.; Bykov, A.M. Core-collapse Model of Broadband Emission from SNR RX J1713.7-3946 with Thermal X-Rays and Gamma Rays from Escaping Cosmic Rays. Astrophys. J. 2012, 744, 39. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Powale, G. Gamma rays from cosmic rays in supernova remnants. Astron. Astrophys. 2013, 553, A34. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liu, S. Energy Partition between Energetic Electrons and Turbulent Magnetic Field in Supernova Remnant RX J1713.7-3946. Astrophys. J. 2013, 773, 138. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, E.; Krivonos, R.; Churazov, E.; Lyskova, N.; Lutovinov, A. Progressive steepening of the SNR RX J1713.7-3946 X-ray spectrum from XMM-Newton to INTEGRAL. Mon. Not. R. Astron. Soc. 2019, 489, 1828–1836. [Google Scholar] [CrossRef]
- Tsuji, N.; Uchiyama, Y.; Aharonian, F.; Berge, D.; Higurashi, R.; Krivonos, R.; Tanaka, T. NuSTAR Observations of the Supernova Remnant RX J1713.7-3946. Astrophys. J. 2019, 877, 96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, S. Electron Acceleration in Middle-age Shell-type γ-Ray Supernova Remnants. Astrophys. J. 2019, 876, 24. [Google Scholar] [CrossRef] [Green Version]
- Fukui, Y.; Sano, H.; Yamane, Y.; Hayakawa, T.; Inoue, T.; Tachihara, K.; Rowell, G.; Einecke, S. Pursuing the origin of the gamma rays in RX J1713.7-3946 quantifying the hadronic and leptonic components. arXiv 2021, arXiv:2105.02734. [Google Scholar]
- Cristofari, P.; Niro, V.; Gabici, S. Gamma rays and neutrinos from RX J1713.7-3946 in a lepto-hadronic scenario. arXiv 2021, arXiv:2105.12494. [Google Scholar]
- Bai, X.; Bi, B.Y.; Bi, X.J.; Cao, Z.; Chen, S.Z.; Chen, Y.; Chiavassa, A.; Cui, X.H.; Dai, Z.G.; della Volpe, D.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper. arXiv 2019, arXiv:1905.02773. [Google Scholar]
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array; World Scientific Publishing: Singapore, 2019. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Alfaro, R.; Ashkar, H.; Alvarez, C.; Álvarez, J.; Arteaga-Velázquez, J.C.; Ayala Solares, H.A.; Arceo, R.; Bellido, J.A.; BenZvi, S.; et al. Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere. arXiv 2019, arXiv:1902.08429. [Google Scholar]
- Balbo, M.; Walter, R.; Ferrigno, C.; Bordas, P. Twelve-hour spikes from the Crab Pevatron. Astron. Astrophys. 2011, 527, L4. [Google Scholar] [CrossRef]
- Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. The observation of the Crab Nebula with LHAASO-KM2A for the performance study. arXiv 2020, arXiv:2010.06205. [Google Scholar]
- Cao, Z.; Aharonian, F.A.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef]
- Breuhaus, M.; Hahn, J.; Romoli, C.; Reville, B.; Giacinti, G.; Tuffs, R.; Hinton, J.A. Ultra-high Energy Inverse Compton Emission from Galactic Electron Accelerators. Astrophys. J. Lett. 2021, 908, L49. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Barger, V.; Cholis, I.; Goldberg, H.; Hooper, D.; Kusenko, A.; Learned, J.G.; Marfatia, D.; Pakvasa, S.; Paul, T.C.; et al. Cosmic neutrino pevatrons: A brand new pathway to astronomy, astrophysics, and particle physics. J. High Energy Astrophys. 2014, 1, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Amato, E.; Blasi, P. Cosmic ray transport in the Galaxy: A review. Adv. Space Res. 2018, 62, 2731–2749. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Towards Understanding the Origin of Cosmic-Ray Electrons. Phys. Rev. Lett. 2019, 122, 101101. [Google Scholar] [CrossRef] [Green Version]
- Evoli, C.; Blasi, P.; Amato, E.; Aloisio, R. Signature of Energy Losses on the Cosmic Ray Electron Spectrum. Phys. Rev. Lett. 2020, 125, 051101. [Google Scholar] [CrossRef]
- Evoli, C.; Amato, E.; Blasi, P.; Aloisio, R. Galactic factories of cosmic-ray electrons and positrons. Phys. Rev. D 2021, 103, 083010. [Google Scholar] [CrossRef]
- Weekes, T.C.; Badran, H.; Biller, S.D.; Bond, I.; Bradbury, S.; Buckley, J.; Carter-Lewis, D.; Catanese, M.; Criswell, S.; Cui, W.; et al. VERITAS: The Very Energetic Radiation Imaging Telescope Array System. Astropart. Phys. 2002, 17, 221–243. [Google Scholar] [CrossRef]
- Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. VHE γ-Ray Observation of the Crab Nebula and its Pulsar with the MAGIC Telescope. Astrophys. J. 2008, 674, 1037–1055. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. Observations of the Crab nebula with HESS. Astron. Astrophys. 2006, 457, 899–915. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.G.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.L.; Cortina, J.; et al. The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observations with the HEGRA Stereoscopic Air Cerenkov Telescopes. Astrophys. J. 2004, 614, 897–913. [Google Scholar] [CrossRef]
- HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Angüner, E.O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J.B.; et al. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 2016, 531, 476–479. [Google Scholar] [CrossRef] [Green Version]
- HAWC Collaboration; Abeysekara, A.U.; Albert, A.; Alfaro, R.; Camacho, J.R.A.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Baghmanyan, V.; et al. Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC. arXiv 2019, arXiv:1909.08609. [Google Scholar]
- Amenomori, M.; Bao, Y.W.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Chen, X.; Chen, Y.; Cirennima; Cui, S.W.; et al. First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source. Phys. Rev. Lett. 2019, 123, 051101. [Google Scholar] [CrossRef] [Green Version]
- Ginzburg, V.L.; Syrovatskii, S.I. The Origin of Cosmic Rays; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Berezinskii, V.S.; Bulanov, S.V.; Dogiel, V.A.; Ptuskin, V.S. Astrophysics of Cosmic Rays; North-Holland Publishing Company: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Blasi, P. Acceleration of galactic cosmic rays. Nuovo C. Riv. Ser. 2019, 42, 549–600. [Google Scholar] [CrossRef]
- Gabici, S.; Evoli, C.; Gaggero, D.; Lipari, P.; Mertsch, P.; Orlando, E.; Strong, A.; Vittino, A. The origin of Galactic cosmic rays: Challenges to the standard paradigm. Int. J. Mod. Phys. D 2019, 28, 1930022. [Google Scholar] [CrossRef]
- Drury, L.O. REVIEW ARTICLE: An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 1983, 46, 973–1027. [Google Scholar] [CrossRef] [Green Version]
- Blasi, P. The origin of galactic cosmic rays. Astron. Astrophys. Rev. 2013, 21, 70. [Google Scholar] [CrossRef] [Green Version]
- Amato, E. The origin of galactic cosmic rays. Int. J. Mod. Phys. D 2014, 23, 1430013. [Google Scholar] [CrossRef] [Green Version]
- Axford, W.I.; Leer, E.; Skadron, G. The Acceleration of Cosmic Rays by Shock Waves. Int. Cosm. Ray Conf. 1977, 11, 132. [Google Scholar]
- Krymskii, G.F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk. Sssr Dokl. 1977, 234, 1306–1308. [Google Scholar]
- Bell, A.R. The acceleration of cosmic rays in shock fronts—I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.R. The acceleration of cosmic rays in shock fronts—II. Mon. Not. R. Astron. Soc. 1978, 182, 443–455. [Google Scholar] [CrossRef]
- Vink, J. Supernova remnants: The X-ray perspective. Astron. Astrophys. Rev. 2012, 20, 49. [Google Scholar] [CrossRef] [Green Version]
- Tatischeff, V.; Gabici, S. Particle Acceleration by Supernova Shocks and Spallogenic Nucleosynthesis of Light Elements. Annu. Rev. Nucl. Part. Sci. 2018, 68, 377–404. [Google Scholar] [CrossRef] [Green Version]
- Malkov, M.A. Analytic Solution for Nonlinear Shock Acceleration in the Bohm Limit. Astrophys. J. 1997, 485, 638–654. [Google Scholar] [CrossRef]
- Amato, E.; Blasi, P. A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 2005, 364, L76–L80. [Google Scholar] [CrossRef] [Green Version]
- Amato, E.; Blasi, P. Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon. Not. R. Astron. Soc. 2006, 371, 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, D. Cosmic-ray acceleration in supernova remnants: Non-linear theory revised. J. Cosmol. Astropart. Phys. 2012, 2012, 038. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, D.; Haggerty, C.C.; Blasi, P. Kinetic Simulations of Cosmic-Ray-modified Shocks. II. Particle Spectra. Astrophys. J. 2020, 905, 2. [Google Scholar] [CrossRef]
- Haggerty, C.C.; Caprioli, D. Kinetic Simulations of Cosmic-Ray-modified Shocks. I. Hydrodynamics. Astrophys. J. 2020, 905, 1. [Google Scholar] [CrossRef]
- Amato, E.; Casanova, S. On particle acceleration and transport in plasmas in the Galaxy: Theory and observations. arXiv 2021, arXiv:2104.12428. [Google Scholar]
- Diesing, R.; Caprioli, D. Spectrum of Electrons Accelerated in Supernova Remnants. Phys. Rev. Lett. 2019, 123, 071101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristofari, P.; Blasi, P.; Caprioli, D. Cosmic ray protons and electrons from supernova remnants. Astron. Astrophys. 2021, 650, A62. [Google Scholar] [CrossRef]
- Higdon, J.C.; Lingenfelter, R.E. The Superbubble Origin of 22Ne in Cosmic Rays. Astrophys. J. 2003, 590, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Binns, W.R.; Wiedenbeck, M.E.; Arnould, M.; Cummings, A.C.; George, J.S.; Goriely, S.; Israel, M.H.; Leske, R.A.; Mewaldt, R.A.; Meynet, G.; et al. Wolf-Rayet stars, OB associations, and the origin of galactic cosmic rays. New Astron. Rev. 2006, 50, 516–520. [Google Scholar] [CrossRef]
- Prantzos, N. On the origin and composition of Galactic cosmic rays. Astron. Astrophys. 2012, 538, A80. [Google Scholar] [CrossRef]
- Gupta, S.; Nath, B.B.; Sharma, P.; Eichler, D. Realistic modelling of wind and supernovae shocks in star clusters: Addressing 22Ne/20Ne and other problems in Galactic cosmic rays. Mon. Not. R. Astron. Soc. 2020, 493, 3159–3177. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Alfaro, R.; Alvarez, C.; Camacho, J.R.A.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; et al. HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron. Astrophys. J. Lett. 2020, 896, L29. [Google Scholar] [CrossRef]
- Tibet ASγ Collaboration; Amenomori, M.; Bao, Y.W.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Chen, X.; Chen, Y.; Cui, S.W.; et al. Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays. Nat. Astron. 2021. [Google Scholar] [CrossRef]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.M.; Buckley, J.H.; et al. Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with Veritas. Astrophys. J. Lett. 2009, 703, L6–L9. [Google Scholar] [CrossRef]
- Cristofari, P.; Gabici, S.; Terrier, R.; Humensky, T.B. On the search for Galactic supernova remnant PeVatrons with current TeV instruments. Mon. Not. R. Astron. Soc. 2018, 479, 3415–3421. [Google Scholar] [CrossRef] [Green Version]
- Cristofari, P.; Blasi, P.; Amato, E. The low rate of Galactic pevatrons. Astropart. Phys. 2020, 123, 102492. [Google Scholar] [CrossRef]
- Chevalier, R.A. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 1982, 258, 790–797. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Emission from Circumstellar Interaction in Normal Type II Supernovae. Astrophys. J. 1994, 420, 268. [Google Scholar] [CrossRef]
- Gabici, S.; Gaggero, D.; Zandanel, F. Can supernova remnants accelerate protons up to PeV energies? arXiv 2016, arXiv:1610.07638. [Google Scholar]
- Drury, L.O.; Falle, S.A.E.G. On the Stability of Shocks Modified by Particle Acceleration. Mon. Not. R. Astron. Soc. 1986, 223, 353. [Google Scholar] [CrossRef]
- Drury, L.O.; Downes, T.P. Turbulent magnetic field amplification driven by cosmic ray pressure gradients. Mon. Not. R. Astron. Soc. 2012, 427, 2308–2313. [Google Scholar] [CrossRef] [Green Version]
- Downes, T.P.; Drury, L.O. Cosmic ray pressure driven magnetic field amplification: Dimensional, radiative and field orientation effects. Mon. Not. R. Astron. Soc. 2014, 444, 365–375. [Google Scholar] [CrossRef] [Green Version]
- del Valle, M.V.; Lazarian, A.; Santos-Lima, R. Turbulence-induced magnetic fields in shock precursors. Mon. Not. R. Astron. Soc. 2016, 458, 1645–1659. [Google Scholar] [CrossRef] [Green Version]
- Giacalone, J.; Jokipii, J.R. Magnetic Field Amplification by Shocks in Turbulent Fluids. Astrophys. J. Lett. 2007, 663, L41–L44. [Google Scholar] [CrossRef]
- Guo, F.; Li, S.; Li, H.; Giacalone, J.; Jokipii, J.R.; Li, D. On the Amplification of Magnetic Field by a Supernova Blast Shock Wave in a Turbulent Medium. Astrophys. J. 2012, 747, 98. [Google Scholar] [CrossRef]
- Skilling, J. Cosmic ray streaming—I. Effect of Alfvén waves on particles. Mon. Not. R. Astron. Soc. 1975, 172, 557–566. [Google Scholar] [CrossRef]
- Achterberg, A. Modification of scattering waves and its importance for shock acceleration. Astron. Astrophys. 1983, 119, 274–278. [Google Scholar]
- Bell, A.R. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 2004, 353, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.R.; Schure, K.M.; Reville, B.; Giacinti, G. Cosmic-ray acceleration and escape from supernova remnants. Mon. Not. R. Astron. Soc. 2013, 431, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Schure, K.M.; Bell, A.R. Cosmic ray acceleration in young supernova remnants. Mon. Not. R. Astron. Soc. 2013, 435, 1174–1185. [Google Scholar] [CrossRef] [Green Version]
- Schure, K.M.; Bell, A.R. From cosmic ray source to the Galactic pool. Mon. Not. R. Astron. Soc. 2014, 437, 2802–2805. [Google Scholar] [CrossRef] [Green Version]
- Tatischeff, V. Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J. Astron. Astrophys. 2009, 499, 191–213. [Google Scholar] [CrossRef] [Green Version]
- Marcowith, A.; Renaud, M.; Dwarkadas, V.; Tatischeff, V. Cosmic-ray acceleration and gamma-ray signals from radio supernovæ. Nucl. Phys. B Proc. Suppl. 2014, 256, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Thompson, T.A.; Ofek, E.O. Probing cosmic ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 2014, 440, 2528–2543. [Google Scholar] [CrossRef]
- Giacinti, G.; Bell, A.R. Collisionless shocks and TeV neutrinos before Supernova shock breakout from an optically thick wind. Mon. Not. R. Astron. Soc. 2015, 449, 3693–3699. [Google Scholar] [CrossRef] [Green Version]
- Zirakashvili, V.N.; Ptuskin, V.S. Type IIn supernovae as sources of high energy astrophysical neutrinos. Astropart. Phys. 2016, 78, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae. Mon. Not. R. Astron. Soc. 2017, 470, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Bykov, A.M.; Ellison, D.C.; Marcowith, A.; Osipov, S.M. Cosmic Ray Production in Supernovae. Space Sci. Rev. 2018, 214, 41. [Google Scholar] [CrossRef] [Green Version]
- Bykov, A.M.; Ellison, D.C.; Gladilin, P.E.; Osipov, S.M. Supernovae in compact star clusters as sources of high-energy cosmic rays and neutrinos. Adv. Space Res. 2018, 62, 2764–2772. [Google Scholar] [CrossRef] [Green Version]
- Marcowith, A.; Dwarkadas, V.V.; Renaud, M.; Tatischeff, V.; Giacinti, G. Core-collapse supernovae as cosmic ray sources. Mon. Not. R. Astron. Soc. 2018, 479, 4470–4485. [Google Scholar] [CrossRef]
- Tamborra, I.; Murase, K. Neutrinos from Supernovae. Space Sci. Rev. 2018, 214, 31. [Google Scholar] [CrossRef]
- Murase, K.; Franckowiak, A.; Maeda, K.; Margutti, R.; Beacom, J.F. High-energy Emission from Interacting Supernovae: New Constraints on Cosmic-Ray Acceleration in Dense Circumstellar Environments. Astrophys. J. 2019, 874, 80. [Google Scholar] [CrossRef]
- Fang, K.; Metzger, B.D.; Murase, K.; Bartos, I.; Kotera, K. Multimessenger Implications of AT2018cow: High-energy Cosmic-Ray and Neutrino Emissions from Magnetar-powered Superluminous Transients. Astrophys. J. 2019, 878, 34. [Google Scholar] [CrossRef] [Green Version]
- Cristofari, P.; Renaud, M.; Marcowith, A.; Dwarkadas, V.V.; Tatischeff, V. Time-dependent high-energy gamma-ray signal from accelerated particles in core-collapse supernovae: The case of SN 1993J. Mon. Not. R. Astron. Soc. 2020, 494, 2760–2765. [Google Scholar] [CrossRef]
- Gabici, S.; Aharonian, F.A.; Casanova, S. Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon. Not. R. Astron. Soc. 2009, 396, 1629–1639. [Google Scholar] [CrossRef] [Green Version]
- Baghmanyan, V.; Peron, G.; Casanova, S.; Aharonian, F.; Zanin, R. Evidence of Cosmic-Ray Excess from Local Giant Molecular Clouds. Astrophys. J. Lett. 2020, 901, L4. [Google Scholar] [CrossRef]
- Mitchell, A.M.W.; Rowell, G.P.; Celli, S.; Einecke, S. Using interstellar clouds to search for Galactic PeVatrons: Gamma-ray signatures from supernova remnants. Mon. Not. R. Astron. Soc. 2021, 503, 3522–3539. [Google Scholar] [CrossRef]
- Celli, S.; Aharonian, F.; Gabici, S. Spectral Signatures of PeVatrons. Astrophys. J. 2020, 903, 61. [Google Scholar] [CrossRef]
- Meyer, M.; Horns, D.; Zechlin, H.S. The Crab Nebula as a standard candle in very high-energy astrophysics. Astron. Astrophys. 2010, 523, A2. [Google Scholar] [CrossRef] [Green Version]
- Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Giuliani, A.; Pucella, G.; Argan, A.; Bulgarelli, A.; Colafrancesco, S.; Cardillo, M.; et al. Variable Gamma-Ray Emission from the Crab Nebula: Short Flares and Long “Waves”. Astrophys. J. 2013, 765, 52. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. Observations of the Crab Pulsar between 25 and 100 GeV with the MAGIC I Telescope. Astrophys. J. 2011, 742, 43. [Google Scholar] [CrossRef]
- Uzdensky, D.A.; Cerutti, B.; Begelman, M.C. Reconnection-powered Linear Accelerator and Gamma-Ray Flares in the Crab Nebula. Astrophys. J. Lett. 2011, 737, L40. [Google Scholar] [CrossRef]
- Arons, J. Pulsar Wind Nebulae as Cosmic Pevatrons: A Current Sheet’s Tale. Space Sci. Rev. 2012, 173, 341–367. [Google Scholar] [CrossRef] [Green Version]
- Bykov, A.M.; Pavlov, G.G.; Artemyev, A.V.; Uvarov, Y.A. Twinkling pulsar wind nebulae in the synchrotron cut-off regime and the γ-ray flares in the Crab Nebula. Mon. Not. R. Astron. Soc. 2012, 421, L67–L71. [Google Scholar] [CrossRef] [Green Version]
- Lyutikov, M.; Otte, N.; McCann, A. The Very High Energy Emission from Pulsars: A Case for Inverse Compton Scattering. Astrophys. J. 2012, 754, 33. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, B.; Werner, G.R.; Uzdensky, D.A.; Begelman, M.C. Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?a). Phys. Plasmas 2014, 21, 056501. [Google Scholar] [CrossRef] [Green Version]
- Lyutikov, M.; Sironi, L.; Komissarov, S.; Porth, O. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares. arXiv 2016, arXiv:1603.05731. [Google Scholar] [CrossRef] [Green Version]
- Giacinti, G.; Kirk, J.G. Acceleration of X-Ray Emitting Electrons in the Crab Nebula. Astrophys. J. 2018, 863, 18. [Google Scholar] [CrossRef]
- Khangulyan, D.; Arakawa, M.; Aharonian, F. Detection of ultra-high-energy gamma rays from the Crab Nebula: Physical implications. Mon. Not. R. Astron. Soc. 2020, 491, 3217–3224. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.; An, Q.; Axikegu, L.X.; Bai, Y.X.; Bai, Y.W.; Bao, D.; Bastieri, X.J.; Bi, Y.J.; Bi, H.; et al. PeV gamma-ray emission from the Crab Nebula. Science 2021, 373, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Amato, E. The theory of Pulsar Wind Nebulae: Recent progress. arXiv 2020, arXiv:2001.04442. [Google Scholar]
- Adams, C.B.; Benbow, W.; Brill, A.; Brose, R.; Buchovecky, M.; Capasso, M.; Christiansen, J.L.; Chromey, A.J.; Daniel, M.K.; Errando, M.; et al. VERITAS Observations of the Galactic Center Region at Multi-TeV Gamma-Ray Energies. arXiv 2021, arXiv:2104.12735. [Google Scholar]
- Biermann, P.L.; Becker Tjus, J.; de Boer, W.; Caramete, L.I.; Chieffi, A.; Diehl, R.; Gebauer, I.; Gergely, L.Á.; Haug, E.; Kronberg, P.P.; et al. Supernova explosions of massive stars and cosmic rays. Adv. Space Res. 2018, 62, 2773–2816. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Cholis, I.; Linden, T. TeV gamma rays from Galactic Center pulsars. Phys. Dark Univ. 2018, 21, 40. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Linden, T. Millisecond pulsars, TeV halos, and implications for the Galactic Center gamma-ray excess. Phys. Rev. D 2018, 98, 043005. [Google Scholar] [CrossRef] [Green Version]
- Guépin, C.; Rinchiuso, L.; Kotera, K.; Moulin, E.; Pierog, T.; Silk, J. Pevatron at the Galactic Center: Multi-wavelength signatures from millisecond pulsars. J. Cosmol. Astropart. Phys. 2018, 2018, 042. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Murase, K.; Kimura, S.S. Sagittarius A* as an origin of the Galactic PeV cosmic rays? J. Cosmol. Astropart. Phys. 2017, 2017, 037. [Google Scholar] [CrossRef] [Green Version]
- Istomin, Y.N.; Gunya, A.A. Centrifugal acceleration of protons by a supermassive black hole. Mon. Not. R. Astron. Soc. 2020, 492, 4884–4891. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. The H.E.S.S. Survey of the Inner Galaxy in Very High Energy Gamma Rays. Astrophys. J. 2006, 636, 777–797. [Google Scholar] [CrossRef] [Green Version]
- Paredes, J.M.; MAGIC Collaboration. MAGIC Highlights. In Proceedings of the Multifrequency Behaviour of High Energy Cosmic Sources—XIII, Palermo, Italy, 3–8 June 2019; p. 43. [Google Scholar]
- Hillas, A.M. Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov Telescope Arrays. Astropart. Phys. 2013, 43, 19–43. [Google Scholar] [CrossRef]
- Rieger, F.M.; de Oña-Wilhelmi, E.; Aharonian, F.A. TeV astronomy. Front. Phys. 2013, 8, 714–747. [Google Scholar] [CrossRef]
- Caraveo, P.A. The golden age of high-energy gamma-ray astronomy: The Cherenkov Telescope Array in the multimessenger era. Nuovo C. Riv. Ser. 2020, 43, 281–318. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Ayala Solares, H.A.; Barber, A.S.; Baughman, B.; et al. The 2HWC HAWC Observatory Gamma-Ray Catalog. Astrophys. J. 2017, 843, 40. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Zeng, H.; Liu, S.; Fan, Y.; Wei, D. VER J2227+608: A Hadronic PeVatron Pulsar Wind Nebula? Astrophys. J. 2019, 885, 162. [Google Scholar] [CrossRef]
- Pineault, S.; Joncas, G. G106.3+2.7: A Supernova Remnant in a Late Stage of Evolution. Astron. J. 2000, 120, 3218–3225. [Google Scholar] [CrossRef]
- Kothes, R.; Uyaniker, B.; Pineault, S. The Supernova Remnant G106.3+2.7 and Its Pulsar-Wind Nebula: Relics of Triggered Star Formation in a Complex Environment. Astrophys. J. 2001, 560, 236–243. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Camacho, J.R.A.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Rojas, D.A.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; et al. Evidence of 200 TeV Photons from HAWC J1825-134. Astrophys. J. Lett. 2021, 907, L30. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Camacho, J.R.A.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Rojas, D.A.; Solares, H.A.A.; Baghmanyan, V.; et al. HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nat. Astron. 2021, 5, 465–471. [Google Scholar] [CrossRef]
- Giunti, L.; Khelifi, B.; Kosack, K.; Collaboration, R. Evidence of 100 TeV γ-ray emission from HESS J1702-420: A new PeVatron candidate. arXiv 2021, arXiv:2108.02989. [Google Scholar]
- Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; et al. Evidence of 100 TeV γ-ray emission from HESS J1702-420: A new PeVatron candidate. arXiv 2021, arXiv:2106.06405. [Google Scholar]
- Sudoh, T.; Linden, T.; Beacom, J.F. TeV halos are everywhere: Prospects for new discoveries. Phys. Rev. D 2019, 100, 043016. [Google Scholar] [CrossRef] [Green Version]
- Giacinti, G.; Mitchell, A.M.W.; López-Coto, R.; Joshi, V.; Parsons, R.D.; Hinton, J.A. Halo fraction in TeV-bright pulsar wind nebulae. Astron. Astrophys. 2020, 636, A113. [Google Scholar] [CrossRef]
- Voelk, H.J.; Forman, M. Cosmic rays and gamma-rays from OB stars. Astrophys. J. 1982, 253, 188–198. [Google Scholar] [CrossRef]
- Cesarsky, C.J.; Montmerle, T. Gamma-Rays from Active Regions in the Galaxy—the Possible Contribution of Stellar Winds. Space Sci. Rev. 1983, 36, 173–193. [Google Scholar] [CrossRef]
- Lagage, P.O.; Cesarsky, C.J. The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 1983, 125, 249–257. [Google Scholar]
- Stevens, I.R.; Hartwell, J.M. The cluster wind from local massive star clusters. Mon. Not. R. Astron. Soc. 2003, 339, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Morlino, G.; Blasi, P.; Peretti, E.; Cristofari, P. Particle acceleration in winds of star clusters. Mon. Not. R. Astron. Soc. 2021. [Google Scholar] [CrossRef]
- Bykov, A.M.; Marcowith, A.; Amato, E.; Kalyashova, M.E.; Kruijssen, J.M.D.; Waxman, E. High-Energy Particles and Radiation in Star-Forming Regions. Space Sci. Rev. 2020, 216, 42. [Google Scholar] [CrossRef] [Green Version]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; et al. Discovery of extended VHE γ-ray emission from the vicinity of the young massive stellar cluster Westerlund 1. Astron. Astrophys. 2012, 537, A114. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.z.; de Oña Wilhelmi, E.; Aharonian, F. Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2. Astron. Astrophys. 2018, 611, A77. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; Yang, R.; de Oña Wilhelmi, E. Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 2019, 3, 561–567. [Google Scholar] [CrossRef]
- Saha, L.; Domínguez, A.; Tibaldo, L.; Marchesi, S.; Ajello, M.; Lemoine-Goumard, M.; López, M. Morphological and Spectral Study of 4FGL J1115.1-6118 in the Region of the Young Massive Stellar Cluster NGC 3603. Astrophys. J. 2020, 897, 131. [Google Scholar] [CrossRef]
- Sun, X.N.; Yang, R.Z.; Liang, Y.F.; Peng, F.K.; Zhang, H.M.; Wang, X.Y.; Aharonian, F. Diffuse γ-ray emission toward the massive star-forming region, W40. Astron. Astrophys. 2020, 639, A80. [Google Scholar] [CrossRef]
- Murphy, R.P.; Sasaki, M.; Binns, W.R.; Brandt, T.J.; Hams, T.; Israel, M.H.; Labrador, A.W.; Link, J.T.; Mewaldt, R.A.; Mitchell, J.W.; et al. Galactic Cosmic Ray Origins and OB Associations: Evidence from SuperTIGER Observations of Elements 26Fe through 40Zr. Astrophys. J. 2016, 831, 148. [Google Scholar] [CrossRef] [Green Version]
- Parizot, E. Superbubbles and the Galactic evolution of Li, Be and B. Astron. Astrophys. 2000, 362, 786–798. [Google Scholar]
- Koo, B.C.; McKee, C.F. Dynamics of Wind Bubbles and Superbubbles. I. Slow Winds and Fast Winds. Astrophys. J. 1992, 388, 93. [Google Scholar] [CrossRef]
- Koo, B.C.; McKee, C.F. Dynamics of Wind Bubbles and Superbubbles. II. Analytic Theory. Astrophys. J. 1992, 388, 103. [Google Scholar] [CrossRef]
- Bykov, A.M.; Toptygin, I.N. A Model of Particle Acceleration to High Energies by Multiple Supernova Explosions in OB Associations. Astron. Lett. 2001, 27, 625–633. [Google Scholar] [CrossRef]
- Parizot, E.; Marcowith, A.; van der Swaluw, E.; Bykov, A.M.; Tatischeff, V. Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron. Astrophys. 2004, 424, 747–760. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Nath, B.B.; Sharma, P.; Eichler, D. Lack of thermal energy in superbubbles: Hint of cosmic rays? Mon. Not. R. Astron. Soc. 2018, 473, 1537–1553. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; et al. A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble. Science 2011, 334, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhappuev, D.D.; Afashokov, Y.Z.; Dzaparova, I.M.; Dzhatdoev, T.A.; Gorbacheva, E.A.; Karpikov, I.S.; Khadzhiev, M.M.; Klimenko, N.F.; Kudzhaev, A.U.; Kurenya, A.N.; et al. Observation of photons above 300 TeV associated with a high-energy neutrino from the Cygnus Cocoon region. arXiv 2021, arXiv:2105.07242. [Google Scholar]
- Kimura, S.S.; Sudoh, T.; Kashiyama, K.; Kawanaka, N. Magnetically Arrested Disks in Quiescent Black Hole Binaries: Formation Scenario, Observable Signatures, and Potential PeVatrons. Astrophys. J. 2021, 915, 31. [Google Scholar] [CrossRef]
- Guépin, C.; Cerutti, B.; Kotera, K. Proton acceleration in pulsar magnetospheres. Astron. Astrophys. 2020, 635, A138. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Linden, T. Evidence of TeV Halos Around Millisecond Pulsars. arXiv 2021, arXiv:2104.00014. [Google Scholar]
- Zirakashvili, V.N.; Aharonian, F. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 2007, 465, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Blasi, P. Shock acceleration of electrons in the presence of synchrotron losses—I. Test-particle theory. Mon. Not. R. Astron. Soc. 2010, 402, 2807–2816. [Google Scholar] [CrossRef] [Green Version]
- Balagopal V., A.; Haungs, A.; Huege, T.; Schröder, F.G. Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole. Eur. Phys. J. C 2018, 78, 111. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Liu, R.Y.; Niu, S.; Chen, Y.; Wang, X.Y. Revealing a peculiar supernova remnant G106.3+2.7 as a petaelectronvolt proton accelerator with X-ray observations. Innovation 2021, 2, 100118. [Google Scholar] [CrossRef]
- Gabici, S.; Aharonian, F.A. Searching for Galactic Cosmic-Ray Pevatrons with Multi-TeV Gamma Rays and Neutrinos. Astrophys. J. Lett. 2007, 665, L131–L134. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Garcia, M.C.; Halzen, F.; Mohapatra, S. Identifying Galactic PeVatrons with neutrinos. Astropart. Phys. 2009, 31, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Gladilin, P.E.; Bykov, A.M.; Osipov, S.M.; Romansky, V.I. Compact Star Clusters as Sources of Cosmic Rays and Neutrinos. Phys. At. Nucl. 2018, 81, 1350–1354. [Google Scholar] [CrossRef]
- The Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; et al. Multi-Messenger Physics with the Pierre Auger Observatory. arXiv 2019, arXiv:1904.11918. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2020, 23, 3. [Google Scholar] [CrossRef]
Source | Possible Association | Reference |
---|---|---|
HESS J1745-290 | Sagittarius A*/Galactic center | [39] |
Crab/LHAASO J0534+2202 | PSR J0534+2200 | [26,28,41,107] |
LHAASO J1825-1326/2HWC J1825-134 | PSR J1826-1334/PSR J1826-1256 | [28,134] |
LHAASO J1839-0545/2HWC 1837-065 | PSR J1837-0034/PSRJ1838-0537 | [28,40] |
LHAASO J1843-0338/2HWC J1844-032 | SNR G.28.6-0.1 | [28,40] |
LHAASO J1849-0003 | PSR J1849-0001/W43 | [28] |
LHAASO J1908+0621/MGRO 1908+06/ | SNR G40.5-0.5/PSR 1907+0602/PSR 1907+0631 | [28,40] |
2HWC 1908+063 | ||
LHAASO J1929+1745 | PSR J1928+1746/PSR1930+1852/SNR G54.1+0.3 | [28] |
LHAASO J1956+2845 | PSR J1958+2846/SNR G66.0-0.0 | [28] |
LHAASO J2018+3651 | PSR J2021+3651/Sh 2-104 (HII/YMC) | [28] |
HWC J2019+368 | [40] | |
LHAASO J2032+4102/2HWC J2031+415 | Cygnus OB2/PSR 2032+4127/SNR G79.8+1.2 | [28,135] |
LHAASO J2108+5157 | [28] | |
LHAASO J2226+6057 | SNR G106.3+2.7/PSR J2229+6114 | [28,69] |
HESS J1702-420A | SNR G344.7-0.1/PSR J1702-4128 | [136,137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristofari, P. The Hunt for Pevatrons: The Case of Supernova Remnants. Universe 2021, 7, 324. https://doi.org/10.3390/universe7090324
Cristofari P. The Hunt for Pevatrons: The Case of Supernova Remnants. Universe. 2021; 7(9):324. https://doi.org/10.3390/universe7090324
Chicago/Turabian StyleCristofari, Pierre. 2021. "The Hunt for Pevatrons: The Case of Supernova Remnants" Universe 7, no. 9: 324. https://doi.org/10.3390/universe7090324
APA StyleCristofari, P. (2021). The Hunt for Pevatrons: The Case of Supernova Remnants. Universe, 7(9), 324. https://doi.org/10.3390/universe7090324