AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres
Abstract
:1. Introduction
2. The Computational Laboratory
2.1. Structure and Building Blocks of AGB Stars’ Model Atmospheres
2.2. The Iterative Sequential Procedure
2.3. Flowchart of the Iterative Sequential Procedure
- (1)
- Because of the spherical symmetry assumed, the natural (discrete) independent variable is the outward radial direction, defined on the external input r-grid. The main external input is the initial temperature distribution that will be up-to-dated at each stage of the iterative procedure by means of the temperature corrector in the energy block;
- (2)
- The fundamental stellar parameters M, R, and that individualize a star, as well as its chemical composition, constitute a further input to the mechanical block;
- (3)
- A first checkpoint can be set in the mechanical lock: as a by-product of the solution of the equation of state we get quantitative information on the presence of the molecules under study (H2, H2O, CO, SiO, and TiO). Opacity data for molecules are extracted from the EXOMOL database [24];
- (4)
- Within the opacity block we can ascertain the effect of individual molecules on the global absorption coefficient;
- (5)
- External input: local supply at a chosen depth of an arbitrary amount of non-radiative energy that mimics the passage of a shock wave;
- (6)
- Another valuable checkpoint can be set after the computation of the variable Eddington factors. The latter are defined as the ratio of the K-moment (2nd order angular moment of the specific intensity of the radiation field) to the zero-order J-moment, which yield the closure of the system of bolometric RT equations, whose solution —necessary for correcting the temperature distribution—automatically satisfies the ER constraint.
3. A Test Case
3.1. The Temperature Correction
3.2. Preliminary Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
1 | fruity.oa-abruzzo.inaf.it, accessed on 10 June 2021. |
2 | The expression ’curse of dimensionality’ was coined by R.E. Bellman (Dynamic programming, 1957, Princeton University Press). |
3 | Teide is the volcano that dominates the island of Tenerife, where a substantial part of the present investigation is carried on at the Instituto de Astrofísica de Canarias. |
References
- Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S. Chemical evolution with rotating massive star yields—I. The solar neighbourhood and the s-process elements. Mon. Not. R. Astron. Soc. 2018, 476, 3432–3459. [Google Scholar] [CrossRef] [Green Version]
- Prantzos, N.; Abia, C.; Cristallo, S.; Limongi, M.; Chieffi, A. Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r-process components. Mon. Not. R. Astron. Soc. 2020, 491, 1832–1850. [Google Scholar] [CrossRef]
- Dorfi, E.A.; Hoefner, S. Dust formation in winds of long-period variables. I—Equations, method of solution, simple examples. Astron. Astrophys. 1991, 248, 105–114. [Google Scholar]
- Woitke, P.; Goeres, A.; Sedlmayr, E. On the gas temperature in the shocked circumstellar envelopes of pulsating stars. II. Shock induced condensation around R Coronae Borealis stars. Astron. Astrophys. 1996, 313, 217–228. [Google Scholar]
- Decin, L.; Hony, S.; de Koter, A.; Justtanont, K.; Tielens, A.G.G.M.; Waters, L.B.F.M. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. I. Theoretical model—Mass-loss history unravelled in VY CMa. Astron. Astrophys. 2006, 456, 549–563. [Google Scholar] [CrossRef] [Green Version]
- Höfner, S. Winds of M-type AGB stars driven by micron-sized grains. Astron. Astrophys. 2008, 491, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, L.; Wahlin, R.; Höfner, S. Dust driven mass loss from carbon stars as a function of stellar parameters. I. A grid of solar-metallicity wind models. Astron. Astrophys. 2010, 509, A14. [Google Scholar] [CrossRef]
- Nowotny, W.; Höfner, S.; Aringer, B. Line formation in AGB atmospheres including velocity effects. Molecular line profile variations of long period variables. Astron. Astrophys. 2010, 514, A35. [Google Scholar] [CrossRef]
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 2018, 26, 1–92. [Google Scholar] [CrossRef] [Green Version]
- Boulangier, J.; Gobrecht, D.; Decin, L.; de Koter, A.; Yates, J. Developing a self-consistent AGB wind model—II. Non-classical, non-equilibrium polymer nucleation in a chemical mixture. Mon. Not. R. Astron. Soc. 2019, 489, 4890–4911. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef] [Green Version]
- Piersanti, L.; Cristallo, S.; Straniero, O. The Effects of Rotation on s-process Nucleosynthesis in Asymptotic Giant Branch Stars. Astrophys. J. 2013, 774, 98. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311–339. [Google Scholar] [CrossRef] [Green Version]
- Bowen, G.H. Dynamical modeling of long-period variable star atmospheres. Astrophys. J. 1988, 329, 299–317. [Google Scholar] [CrossRef]
- Cherchneff, I.; Barker, J.R. Polycyclic Aromatic Hydrocarbons and Molecular Equilibria in Carbon-rich Stars. Astrophys. J. 1992, 394, 703. [Google Scholar] [CrossRef]
- Gobrecht, D.; Cherchneff, I.; Sarangi, A.; Plane, J.M.C.; Bromley, S.T. Dust formation in the oxygen-rich AGB star IK Tauri. Astron. Astrophys. 2016, 585, A6. [Google Scholar] [CrossRef] [Green Version]
- Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars. Astron. Astrophys. 2016, 594, A108. [Google Scholar] [CrossRef] [Green Version]
- Winters, J.M.; Le Bertre, T.; Jeong, K.S.; Helling, C.; Sedlmayr, E. A systematic investigation of the mass loss mechanism in dust forming long-period variable stars. Astron. Astrophys. 2000, 361, 641–659. [Google Scholar]
- Cristallo, S.; Piersanti, L.; Gobrecht, D.; Crivellari, L.; Nanni, A. AGB Stars and Their Circumstellar Envelopes. I. the VULCAN Code. Universe 2021, 7, 80. [Google Scholar] [CrossRef]
- Crivellari, L.; Simonneau, E.; Cardona, O. A numerical laboratory for the diagnostics of stellar properties. Mem. Della Soc. Astron. Ital. Suppl. 2003, 3, 97. [Google Scholar]
- Gros, M.; Crivellari, L.; Simonneau, E. An Implicit Integral Method to Solve Selected Radiative Transfer Problems. IV. The Case of Spherical Geometry. Astrophys. J. 1997, 489, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Crivellari, L. The Stellar Atmosphere Physical System II. An Operative Sequential Algorithm to Solve the Stellar Atmosphere Problem. Serbian Astron. J. 2019, 198, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Barton, E.J.; Chubb, K.L.; Coles, P.A.; Diamantopoulou, S.; Gorman, M.N.; Hill, C.; Lam, A.Z.; et al. The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 2016, 327, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Simonneau, E.; Crivellari, L. On the Application of Iteration Factors for Temperature Correction in Stellar Atmospheres. Astrophys. J. 1988, 330, 415. [Google Scholar] [CrossRef]
- Crivellari, L.; Simonneau, E. The Use of Iteration Factors for Temperature Correction in a Stellar Atmosphere When Convective Transport Is Present. Astrophys. J. 1991, 367, 612. [Google Scholar] [CrossRef]
- Simonneau, E.; Cardona, O.; Crivellari, L. An improved version of the implicit integral method to solving radiative transfer problems. Astrophysics 2012, 55, 110–126. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crivellari, L.; Cristallo, S.; Piersanti, L. AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres. Universe 2021, 7, 340. https://doi.org/10.3390/universe7090340
Crivellari L, Cristallo S, Piersanti L. AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres. Universe. 2021; 7(9):340. https://doi.org/10.3390/universe7090340
Chicago/Turabian StyleCrivellari, Lucio, Sergio Cristallo, and Luciano Piersanti. 2021. "AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres" Universe 7, no. 9: 340. https://doi.org/10.3390/universe7090340
APA StyleCrivellari, L., Cristallo, S., & Piersanti, L. (2021). AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres. Universe, 7(9), 340. https://doi.org/10.3390/universe7090340