Testing Screened Modified Gravity
Abstract
:1. Introduction: Why Light Scalars?
2. Screening Light Scalars
2.1. Coupling Scalars to Matter
2.2. Modified Gravity
2.3. The Non-Derivative Screening Mechanisms: Chameleon and Damour–Polyakov
2.4. The Derivative Screening Mechanisms: K-Mouflage and Vainshtein
2.4.1. K-Mouflage
2.4.2. Vainshtein
2.5. Screening Criteria: The Newtonian Potential and Its Derivatives
2.6. Disformally Induced Charge
2.7. Examples of Screened Models
2.7.1. Massive Gravity
2.7.2. Cubic Galileon Models
2.7.3. Quartic K-Mouflage
2.7.4. Ratra–Peebles and f(R) Chameleons
2.7.5. and Brans-Dicke
2.7.6. The Symmetron
2.7.7. Beyond 4D: Dvali–Gabadadze–Porrati Gravity
2.8. Horndeski Theory and Beyond
2.9. Solar System Tests
3. Testing Screening in the Laboratory
3.1. Casimir Interaction and Eötwash Experiment
3.2. Quantum Bouncer
3.3. Atomic Interferometry
3.4. Atomic Spectroscopy
3.5. Combined Laboratory Constraints
3.6. Quantum Constraints
4. Astrophysical Constraints and Prospects
4.1. Stellar Tests
4.2. Galaxy and Void Tests
4.3. Galaxy Cluster Tests
5. Cosmological Consequences
5.1. Screening and Cosmic Acceleration
5.2. Screening and Structure Formation
5.3. Cosmological Probes: CMB and Large Scale Structure
5.3.1. ISW and CMB Lensing
5.3.2. Cosmological Perturbations in Large Scale Structure
Models and Chameleon Theories
Jordan–Brans–Dicke Models
Horndeski Theory
DGP Models
5.4. Large Scale Structure Observations: Galaxy Clustering and Weak Lensing
5.5. Going beyond Linear Scales
5.6. Constraints on Screened Models with Current Data
5.6.1. Constraints on Models
5.6.2. Constraints on nDGP Models
5.6.3. Constraints on Brans–Dicke Theory
5.6.4. Constraints on Horndeski Theories and Beyond
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | A term in could also be introduced leading to a contribution to the mass of the scalar field proportional to . This term represents a density-dependent contribution to the scalar mass, which would naturally occur in the case of the chameleon mechanism as the perturbation to the scalar mass by the local overdensity and does not alter the discussion that follows. |
2 | This follows from the coupling of the Newtonian potential to matter, . |
3 | One can also introduce the screening factor whereby screening occurs when . The screening factor is also related to the mass of the thin shell as where is its width and are respectively the mass and the typical radius of the object. |
4 | To be pronounced as camouflage. |
5 | Equation (21) should be understood as integrated over a ball of radius r. The left hand side is proportional to the point mass and the right hand side to the volume of the ball. |
6 | This inequality can be understood as where the integration volume is taken as a ball of radius r and . |
7 | As the background metric is the Minkowskian one, the use of Fourier modes is legitimate. |
8 | This theorem states that only potentials in and lead to closed trajectories. |
9 | The usual Casimir interaction due to photon fluctuations is obtained using Dirichlet boundary conditions for the electromagnetic modes corresponding to the limit of infinite fine structure constant [93]. In the scalar case, the same Dirichlet boundary conditions correspond to the limit where the density in the boundaries is considered to be very large compared to the one in the vacuum between the plates. In this case, the minimum of the effective potential almost vanishes in the plates. This applies to screening models of the chameleon or Damour–Polyakov types. For K-mouflage and Vainshtein screenings, the scalar profile is dictated by the presence of the Earth, and therefore, the plates have very little influence and thus do not lead to classical and quantum effects. The only exception to this rule appears for Galileon models where planar configurations do not feel the field induced by the Earth. In this case, planar Casimir experiments lead to a constraint on the conformal coupling strength [91]. |
10 | This reasoning, as we will see, does not apply to the symmetron case as the field vanishes between two plates when very light. |
11 | |
12 | https://www.desi.lbl.gov/ (accessed on 14 November 2021) |
13 | https://www.euclid-ec.org/ (accessed on 14 November 2021) |
14 | https://www.lsst.org/ (accessed on 14 November 2021) |
15 | https://roman.gsfc.nasa.gov/ (accessed on 14 November 2021) |
16 | https://camb.info (accessed on 14 November 2021) |
17 | https://class-code.net (accessed on 14 November 2021) |
18 | https://labs.utdallas.edu/mishak/isitgr/ (accessed on 14 November 2021) |
19 | https://github.com/sfu-cosmo/MGCAMB (accessed on 14 November 2021) |
20 | http://miguelzuma.github.io/hi_class_public/ (accessed on 14 November 2021) |
21 | http://eftcamb.org (accessed on 14 November 2021) |
References
- D’Amico, G.; Kamionkowski, M.; Sigurdson, K. Dark Matter Astrophysics; Springer: Dordrecht, The Netherlands, 2009; p. 0907.1912. [Google Scholar]
- Garrett, K.; Duda, G. Dark matter: A primer. Adv. Astron. 2011, 2011, 968283. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G. et al. [Supernova Search Team]. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S. et al. [Supernova Cosmology Project]. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—current status and future prospects. Rept. Prog. Phys. 2017, 81, 066201. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. 2006, D15, 1753. [Google Scholar] [CrossRef] [Green Version]
- Brax, P. What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rept. Prog. Phys. 2018, 81, 016902. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E. et al. [XENON]. The XENON1T Dark Matter Experiment. Eur. Phys. J. C 2017, 77, 881. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON]. Projected WIMP sensitivity of the XENONnT dark matter experiment. J. Cosmol. Astropart. Phys. 2020, 11, 031. [Google Scholar]
- Agnese, R. et al. [SuperCDMS]. Projected Sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 2017, 95, 082002. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H. et al. [CDEX]. Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg × day Data of the CDEX-10 Experiment. Phys. Rev. Lett. 2018, 120, 241301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavarria, A.E.; Tiffenberg, J.; Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Cancelo, G.; D’Olivo, J.C.; Estrada, J.; Moroni, G.F.; Izraelevitch, F.; et al. DAMIC at SNOLAB. Phys. Procedia 2015, 61, 21. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.H. et al. [CRESST]. First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 2019, 100, 102002. [Google Scholar] [CrossRef] [Green Version]
- Amole, C. et al. [PICO]. Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, Q. et al. [EDELWEISS]. First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment. Phys. Rev. Lett. 2020, 125, 141301. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, O. et al. [SENSEI]. SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper-CCD. Phys. Rev. Lett. 2019, 122, 161801. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S. et al. [LUX]. First Searches for Axions and Axionlike Particles with the LUX Experiment. Phys. Rev. Lett. 2017, 118, 261301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. et al. [PandaX-II]. Results of dark matter search using the full PandaX-II exposure. Chin. Phys. C 2020, 44, 125001. [Google Scholar] [CrossRef]
- Zhang, H. et al. [PandaX]. Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 2019, 62, 31011. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.J.E. Axion cosmology. Phys. Rep. 2016, 643, 1. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H.; Hertzberg, M.P.; Prescod-Weinstein, C. Do Dark Matter Axions Form a Condensate with Long-Range Correlation? Phys. Rev. D 2015, 92, 103513. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Cembranos, J.A.R.; Valageas, P. Nonrelativistic formation of scalar clumps as a candidate for dark matter. Phys. Rev. D 2020, 102, 083012. [Google Scholar] [CrossRef]
- Guth, A.H.; Weinberg, E.J. Do Dark Matter Axions Form a Condensate with Long-Range Correlation? Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Riotto, A. Inflation and the theory of cosmological perturbations. ICTP Lect. Notes Ser. 2003, 14, 317. [Google Scholar]
- Akrami, Y. et al. [Planck]. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2018, 641, A10. [Google Scholar]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys. 1988, B302, 668. [Google Scholar] [CrossRef] [Green Version]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. 1988, D37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Gubitosi, G.; Piazza, F.; Vernizzi, F. The Effective Field Theory of Dark Energy. J. Cosmol. Astropart. Phys. 2013, 1302, 032. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Shaw, D.J. f(R) Gravity and Chameleon Theories. Phys. Rev. D 2008, D78, 104021. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J. Theories of Dark Energy with Screening Mechanisms. arXiv 2010, arXiv:1011.5909. [Google Scholar]
- Khoury, J. Les Houches Lectures on Physics Beyond the Standard Model of Cosmology. arXiv 2013, arXiv:1312.2006. [Google Scholar]
- Brax, P. Screening mechanisms in modified gravity. Class. Quant. Grav. 2013, 30, 214005. [Google Scholar] [CrossRef]
- Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept. 2015, 568, 1. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J. Astrophysical tests of screened modified gravity. Int. J. Mod. Phys. D 2018, 27, 1848008. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.; Barreira, A.; Desmond, H.; Ferreira, P.; Jain, B.; Koyama, K.; Li, B.; Lombriser, L.; Nicola, A.; Sakstein, J.; et al. Novel Probes Project: Tests of gravity on astrophysical scales. Rev. Mod. Phys. 2021, 93, 015003. [Google Scholar] [CrossRef]
- Burrage, C.; Sakstein, J. A Compendium of Chameleon Constraints. J. Cosmol. Astropart. Phys. 2016, 11, 045. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Sakstein, J. Tests of Chameleon Gravity. Living Rev. Rel. 2018, 21, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saridakis, E.N. et al. [CANTATA]. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582. [Google Scholar]
- Langlois, D. Dark energy and modified gravity in degenerate higher-order scalar–tensor (DHOST) theories: A review. Int. J. Mod. Phys. D 2019, 28, 1942006. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Valageas, P. K-mouflage cosmology: The background evolution. Phys. Rev. D 2014, 90, 023507. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. The Relation between physical and gravitational geometry. Phys. Rev. 1993, D48, 3641. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Weltman, A. Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Weltman, A. Chameleon Cosmology. Phys. Rev. 2004, D69, 044026. [Google Scholar] [CrossRef]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Khoury, J.; Weltman, A. Detecting dark energy in orbit: The cosmological chameleon. Phys. Rev. 2004, D70, 123518. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.; Khoury, J.; Weltman, A. Chameleon dark energy. AIP Conf. Proc. 2005, 736, 105. [Google Scholar]
- Damour, T.; Polyakov, A.M. The String dilaton and a least coupling principle. Nucl. Phys. 1994, B423, 532. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Davis, A.-C.; Li, B.; Winther, H.A. A Unified Description of Screened Modified Gravity. arXiv 2012, arXiv:1203.4812. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Deffayet, C.; Ziour, R. k-Mouflage gravity. Int. J. Mod. Phys. 2009, D18, 2147. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Burrage, C.; Davis, A.-C. Screening fifth forces in k-essence and DBI models. J. Cosmol. Astropart. Phys. 2013, 1, 20. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Rizzo, L.A.; Valageas, P. K-mouflage imprints on cosmological observables and data constraints. Phys. Rev. D 2015, 92, 043519. [Google Scholar] [CrossRef] [Green Version]
- Benevento, G.; Raveri, M.; Lazanu, A.; Bartolo, N.; Liguori, M.; Brax, P.; Valageas, P. K-mouflage Imprints on Cosmological Observables and Data Constraints. J. Cosmol. Astropart. Phys. 2019, 5, 027. [Google Scholar] [CrossRef] [Green Version]
- Vainshtein, A. To the problem of nonvanishing gravitation mass. Phys. Lett. 1972, B39, 393. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R.; Trincherini, E. The Galileon as a local modification of gravity. Phys. Rev. D 2009, D79, 064036. [Google Scholar] [CrossRef] [Green Version]
- Fierz, M.; Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. Lond. A 1939, 173, 211. [Google Scholar]
- Rubakov, V.A.; Tinyakov, P.G. Infrared-modified gravities and massive gravitons. arXiv 2008, arXiv:0802.4379. [Google Scholar] [CrossRef]
- de Rham, C.; Ribeiro, R.H. Riding on irrelevant operators. J. Cosmol. Astropart. Phys. 2014, 1411, 016. [Google Scholar] [CrossRef]
- Brax, P.; Valageas, P. Improving relativistic modified Newtonian dynamics with Galileon k-mouflage. Phys. Rev. D 2016, 94, 043529. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Deffayet, C.; Esposito-Farese, G. Improving relativistic MOND with Galileon k-mouflage. Phys. Rev. D 2011, D84, 061502. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J. Disformal Theories of Gravity: From the Solar System to Cosmology. J. Cosmol. Astropart. Phys. 2014, 12, 012. [Google Scholar] [CrossRef]
- van Dam, H.; Veltman, M.J.G. Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 1970, 22, 397. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.I. Linearized gravitation theory and the graviton mass. J. High Energy Phys. Lett. 1970, 12, 312. [Google Scholar]
- Damour, T.; Esposito-Farese, G. Tensor multiscalar theories of gravitation. Class.Quant.Grav. 1992, 9, 2093. [Google Scholar] [CrossRef]
- Hu, W.; Sawicki, I. Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. Phys. Rev. 2007, D76, 064004. [Google Scholar] [CrossRef] [Green Version]
- Will, C. The confrontation between general relativity and experiment. Pramana 2004, 63, 731. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The Confrontation between general relativity and experiment. Living Rev. Rel. 2006, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Hinterbichler, K.; Khoury, J. Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration. Phys. Rev. Lett. 2010, 104, 231301. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gabadadze, G.; Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 2000, 485, 208. [Google Scholar] [CrossRef] [Green Version]
- Charmousis, C.; Gregory, R.; Kaloper, N.; Padilla, A. DGP Specteroscopy. J. High Energy Phys. 2006, 10, 066. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P. et al. [Virgo, LIGO Scientific]. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P. et al. [Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific]. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Beltran Jimenez, J.; Piazza, F.; Velten, H. Evading the Vainshtein mechanism with anomalous gravitational wave speed: Constraints on modified gravity from binary pulsars. Phys. Rev. Lett. 2016, 116, 061101. [Google Scholar] [CrossRef]
- Baker, T.; Clampitt, J.; Jain, B.; Trodden, M. Void Lensing as a Test of Gravity. Phys. Rev. 2018, D98, 023511. [Google Scholar] [CrossRef] [Green Version]
- Creminelli, P.; Lewandowski, M.; Tambalo, G.; Vernizzi, F. Gravitational wave decay into dark energy. J. Cosmol. Astropart. Phys. 2018, 12, 025. [Google Scholar] [CrossRef] [Green Version]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [Green Version]
- Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Healthy theories beyond Horndeski. Phys. Rev. Lett. 2015, 114, 211101. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Watanabe, Y.; Yamauchi, D. Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski. Phys. Rev. D 2015, 91, 064013. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Baldauf, T.; Vlah, Z.; Seljak, U. Okumura, T.; McDonald, P. Understanding higher-order nonlocal halo bias at large scales by combining the power spectrum with the bispectrum. Phys. Rev. D 2014, 90, 123522. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 2004, 93, 261101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar laser ranging tests of the equivalence principle. Class. Quantum Gravity 2012, 29, 184004. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hui, L.; Khoury, J. No-go theorems for generalized chameleon field theories. Phys. Rev. Lett. 2012, 109, 241301. [Google Scholar] [CrossRef] [PubMed]
- Brax, P.; Davis, A.-C.; Li, B. Modified Gravity Tomography. Physics Lett. B 2011, 715, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gruzinov, A.; Zaldarriaga, M. The Accelerated universe and the moon. Phys. Rev. D 2003, 68, 024012. [Google Scholar] [CrossRef] [Green Version]
- Barreira, A.; Brax, P.; Clesse, S.; Li, B.; Valageas, P. K-mouflage gravity models that pass Solar System and cosmological constraints. Phys. Rev. D 2015, 91, 123522. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Burrage, C.; Davis, A.-C. Laboratory Tests of the Galileon. J. Cosmol. Astropart. Phys. 2011, 9, 020. [Google Scholar] [CrossRef]
- Babichev, E.; Deffayet, C.; Esposito-Farese, G. Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G. Phys. Rev. Lett. 2011, 107, 251102. [Google Scholar] [CrossRef]
- Jaffe, R.L. Casimir effect and the quantum vacuum. Phys. Rev. D 2005, 72, 021301. [Google Scholar] [CrossRef] [Green Version]
- Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 micrometers range. Phys. Rev. Lett. 1997, 78, 5, Erratum in Phys. Rev. Lett. 1998, 81, 5475–5476. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Davis, A.C. Casimir, Gravitational and Neutron Tests of Dark Energy. Phys. Rev. D 2015, 91, 063503. [Google Scholar] [CrossRef] [Green Version]
- Upadhye, A. Symmetron dark energy in laboratory experiments. Phys. Rev. Lett. 2013, 110, 031301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Mota, D.F.; Shaw, D.J. Detecting chameleons through Casimir force measurements. Phys. Rev. D 2007, D76, 124034. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.S.; Lopez, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 2007, 75, 077101. [Google Scholar] [CrossRef] [Green Version]
- Elder, B.; Vardanyan, V.; Akrami, Y.; Brax, P.; Davis, A.-C.; Decca, R.S. Classical symmetron force in Casimir experiments. Phys. Rev. D 2020, 101, 064065. [Google Scholar] [CrossRef] [Green Version]
- Adelberger, E.G. [EOT-WASH Group]. Sub-millimeter tests of the gravitational inverse square law. World Sci. 2002, 9–15. [Google Scholar]
- Upadhye, A. Dark energy fifth forces in torsion pendulum experiments. Phys. Rev. D 2012, 86, 102003. [Google Scholar] [CrossRef] [Green Version]
- Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.D.; Swanson, H.E. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 2007, 98, 021101. [Google Scholar] [CrossRef] [Green Version]
- Cronenberg, G.; Brax, P.; Filter, H.; Geltenbort, P.; Jenke, T.; Pignol, G.; Pitschmann, M.; Thalhammer, M.; Abele, H. Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy. Nat. Phys. 2018, 14, 1022. [Google Scholar] [CrossRef]
- Brax, P.; Pignol, G. Strongly coupled chameleons and the neutronic quantum bouncer. Phys. Rev. Lett. 2011, 107, 111301. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Pignol, G.; Roulier, D. Probing Strongly Coupled Chameleons with Slow Neutrons. Phys. Rev. D 2013, 88, 083004. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Pitschmann, M. Exact solutions to nonlinear symmetron theory: One- and two-mirror systems. Phys. Rev. D 2018, 97, 064015. [Google Scholar] [CrossRef] [Green Version]
- Kasevich, M.; Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 1991, 67, 181. [Google Scholar] [CrossRef] [PubMed]
- Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 2009, 81, 1051. [Google Scholar] [CrossRef]
- Hamilton, P.; Jaffe, M.; Haslinger, P.; Simmons, Q.; Müller, H.; Khoury, J. Atom-interferometry constraints on dark energy. Science 2015, 349, 849. [Google Scholar] [CrossRef] [Green Version]
- Elder, B.; Khoury, J.; Haslinger, P.; Jaffe, M.; Müller, H.; Hamilton, P. Chameleon dark energy and atom interferometry. Phys. Rev. D 2016, 94, 044051. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Copeland, E.J.; Hinds, E.A. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 2015, 3, 042. [Google Scholar] [CrossRef]
- Burrage, C.; Copeland, E.J. Using atom interferometry to detect dark energy. Contemp. Phys. 2016, 57, 164. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Copeland, E.J.; Moss, A.; Stevenson, J.A. The shape dependence of chameleon screening. J. Cosmol. Astropart. Phys. 2018, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, M.; Haslinger, P.; Xu, V.; Hamilton, P.; Upadhye, A.; Elder, B.; Khoury, J.; Müller, H. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 2017, 13, 938. [Google Scholar] [CrossRef]
- Sabulsky, D.O.; Dutta, I.; Hinds, E.A.; Elder, B.; Burrage, C.; Copeland, E.J. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett. 2019, 123, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrage, C.; Kuribayashi-Coleman, A.; Stevenson, J.; Thrussell, B. Constraining symmetron fields with atom interferometry. J. Cosmol. Astropart. Phys. 2016, 12, 041. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Elder, B.; Millington, P. Particle level screening of scalar forces in 1+1 dimensions. Phys. Rev. D 2019, 99, 024045. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Elder, B.; Millington, P.; Saadeh, D.; Thrussell, B. Fifth-Force Screening around Extremely Compact Sources. J. Cosmol. Astropart. Phys. 2021, 8, 052. [Google Scholar] [CrossRef]
- Brax, P.; Burrage, C. Atomic precision tests and light scalar couplings. Phys. Rev. D 2011, D83, 035020. [Google Scholar] [CrossRef] [Green Version]
- Jaeckel, J.; Roy, S. Spectroscopy as a test of Coulomb’s law: A probe of the hidden sector. Phys. Rev. D 2010, 82, 125020. [Google Scholar] [CrossRef] [Green Version]
- Schwob, C.; Jozefowski, L.; de Beauvoir, B.; Hilico, L.; Nez, F.; Julien, L.; Biraben, F.; Acef, O.; Zondy, J.-J.; Clairon, A. Optical Frequency Measurement of the 2S–12D Transitions in Hydrogen and Deuterium: Rydberg Constant and Lamb Shift Determinations. Phys. Rev. Lett. 1999, 82, 4960. [Google Scholar] [CrossRef]
- Simon, G.G.; Schmitt, C.; Borkowski, F.; Ottermann, C.R.; Walther, V.H.; Bender, D.E.; Gunten, A.V. A high pressure gas target system for the determination of absolute electron scattering cross sections. Nucl. Instrum. Methods 1979, 158, 185. [Google Scholar] [CrossRef]
- Jenke, T.; Bosina, J.; Micko, J.; Pitschmann, M.; Sedmik, R.; Abele, H. Gravity resonance spectroscopy and dark energy symmetron fields: qBOUNCE experiments performed with Rabi and Ramsey spectroscopy. Eur. Phys. J. Spec. Top. 2021, 230, 1131. [Google Scholar] [CrossRef]
- Brax, P.; Burrage, C.; Davis, A.-C.; Seery, D.; Weltman, A. Collider constraints on interactions of dark energy with the Standard Model. J. High Energy Phys. 2009, 9, 128. [Google Scholar] [CrossRef]
- Brax, P.; Fichet, S. Quantum Chameleons. Phys. Rev. D 2019, 99, 104049. [Google Scholar] [CrossRef] [Green Version]
- Jegerlehner, F. Essentials of the Muon g−2. Acta Phys. Polon. B 2007, 38, 3021. [Google Scholar]
- Brax, P.; Davis, A.-C.; Elder, B.; Wong, L.K. Constraining screened fifth forces with the electron magnetic moment. Phys. Rev. D 2018, 97, 084050. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Davis, A.-C.; Elder, B. Muon g−2 and Screened Modified Gravity. arXiv 2021, arXiv:2111.01188. [Google Scholar]
- Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. Tenth-order electron anomalous magnetic moment: Contribution of diagrams without closed lepton loops. Phys. Rev. D 2015, 91, 033006, Erratum in Phys. Rev. D 2017, 96, 019901. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.W. et al. [Muon g-2]. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 2006, 73, 072003. [Google Scholar] [CrossRef] [Green Version]
- Abi, B. et al. [Muon g-2]. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. Complete Tenth-Order QED Contribution to the Muon g − 2. Phys. Rev. Lett. 2012, 109, 111808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoyama, T.; Kinoshita, T.; Nio, M. Theory of the Anomalous Magnetic Moment of the Electron. Atoms 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J.; Vainshtein, A. Refinements in electroweak contributions to the muon anomalous magnetic moment. Phys. Rev. 2003, D67, 073006, Erratum in Phys. Rev. 2006, D73, 119901.. [Google Scholar] [CrossRef] [Green Version]
- Gnendiger, C.; Stöckinger, D.; Stöckinger-Kim, H. The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement. Phys. Rev. 2013, D88, 053005. [Google Scholar]
- Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z. Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α() using newest hadronic cross-section data. Eur. Phys. J. 2017, C77, 827. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Nomura, D.; Teubner, T. Muon g − 2 and α(): A new data-based analysis. Phys. Rev. 2018, D97, 114025. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, G.; Hoferichter, M.; Stoffer, P. Two-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 2019, 2, 006. [Google Scholar] [CrossRef] [Green Version]
- Hoferichter, M.; Hoid, B.-L.; Kubis, B. Three-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z. A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(). Eur. Phys. J. 2020, C80, 241, Erratum in Eur. Phys. J. 2020 C80, 410. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Nomura, D.; Teubner, T. The g − 2 of charged leptons, α() and the hyperfine splitting of muonium. Phys. Rev. 2020, D101, 014029. [Google Scholar] [CrossRef] [Green Version]
- Kurz, A.; Liu, T.; Marquard, P.; Steinhauser, M. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order. Phys. Lett. 2014, B734, 144. [Google Scholar] [CrossRef]
- Melnikov, K.; Vainshtein, A. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited. Phys. Rev. 2004, D70, 113006. [Google Scholar]
- Masjuan, P.; Sánchez-Puertas, P. Pseudoscalar-pole contribution to the (gμ−2): A rational approach. Phys. Rev. 2017, D95, 054026. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, G.; Hoferichter, M.; Procura, M.; Stoffer, P. Dispersion relation for hadronic light-by-light scattering: Two-pion contributions. J. High Energy Phys. 2017, 4, 161. [Google Scholar] [CrossRef]
- Hoferichter, M.; Hoid, B.-L.; Kubis, B.; Leupold, S.; Schneider, S.P. Dispersion relation for hadronic light-by-light scattering: Pion pole. J. High Energy Phys. 2018, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Gérardin, A.; Meyer, H.B.; Nyffeler, A. Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks. Phys. Rev. 2019, D100, 034520. [Google Scholar] [CrossRef] [Green Version]
- Bijnens, J.; Hermansson-Truedsson, N.; Rodríguez-Sánchez, A. Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment. Phys. Lett. 2019, B798, 134994. [Google Scholar] [CrossRef]
- Colangelo, G.; Hagelstein, F.; Hoferichter, M.; Laub, L.; Stoffer, P. Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models. J. High Energy Phys. 2020, 3, 101. [Google Scholar] [CrossRef] [Green Version]
- Blum, T.; Christ, N.; Hayakawa, M.; Izubuchi, T.; Jin, L.; Jung, C.; Lehner, C. The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. Phys. Rev. Lett. 2020, 124, 132002. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, G.; Hoferichter, M.; Nyffeler, A.; Passera, M.; Stoffer, P. Remarks on higher-order hadronic corrections to the muon g − 2. Phys. Lett. 2014, B735, 90. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef] [Green Version]
- Buchdahl, H.A. Non-Linear Lagrangians and Cosmological Theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Cabre, A.; Vikram, V.; Zhao, G.-B.; Jain, B.; Koyama, K. Astrophysical Tests of Modified Gravity: A Screening Map of the Nearby Universe. J. Cosmol. Astropart. Phys. 2012, 1207, 034. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.-B.; Li, B.; Koyama, K. N-body Simulations for f(R) Gravity using a Self-adaptive Particle-Mesh Code. Phys. Rev. 2011, D83, 044007. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.-B.; Li, B.; Koyama, K. Testing Gravity Using the Environmental Dependence of Dark Matter Halos. Phys. Rev. Lett. 2011, 107, 071303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, S.; Li, B.; Cautun, M.; Wang, H.; Wang, J. Screening maps of the local Universe I – Methodology. arXiv 2019, arXiv:1907.02081. [Google Scholar] [CrossRef]
- Desmond, H.; Ferreira, P.G.; Lavaux, G.; Jasche, J. Reconstructing the gravitational field of the local universe. Mon. Not. R. Astron. Soc. 2018, 474, 3152. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.-C.; Lim, E.A.; Sakstein, J.; Shaw, D. Modified Gravity Makes Galaxies Brighter. Phys. Rev. 2012, D85, 123006. [Google Scholar] [CrossRef] [Green Version]
- Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 2011, 192, 3. [Google Scholar] [CrossRef]
- Paxton, B.; Cantiello, M.; Arras, P.; Bildsten, L.; Brown, E.F.; Dotter, A.; Mankovich, C.; Montgomery, M.H.; Stello, D.; Timmes, F.X.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. Astrophys. J. Suppl. 2013, 208, 4. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Hui, L. Stellar Structure and Tests of Modified Gravity. Astrophys. J. 2011, 732, 25. [Google Scholar] [CrossRef] [Green Version]
- Freedman, W.L.; Madore, B.F. The Hubble Constant. Ann. Rev. Astron. Astrophys. 2010, 48, 673. [Google Scholar] [CrossRef] [Green Version]
- Cox, J. The Theory of Stellar Pulsation; Princeton Series in Astrophysics; Princeton University Press: Princeton, NJ, USA, 1980; ISBN 9780691082523. [Google Scholar]
- Jain, B.; Vikram, V.; Sakstein, J. Astrophysical Tests of Modified Gravity: Constraints from Distance Indicators in the Nearby Universe. Astrophys. J. 2013, 779, 39. [Google Scholar] [CrossRef] [Green Version]
- Desmond, H.; Jain, B.; Sakstein, J. Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder. Phys. Rev. 2019, D100, 043537. [Google Scholar] [CrossRef] [Green Version]
- Desmond, H.; Sakstein, J.; Jain, B. Five percent measurement of the gravitational constant in the Large Magellanic Cloud. Phys. Rev. D 2021, 103, 024028. [Google Scholar] [CrossRef]
- Desmond, H.; Sakstein, J. Screened fifth forces lower the TRGB-calibrated Hubble constant too. Phys. Rev. D 2020, 102, 023007. [Google Scholar] [CrossRef]
- Sakstein, J.; Desmond, H.; Jain, B. Screened fifth forces mediated by dark matter-baryon interactions: Theory and astrophysical probes. Phys. Rev. 2019, D100, 104035. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J. Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity. Phys. Rev. Lett. 2015, 115, 201101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakstein, J. Testing Gravity Using Dwarf Stars. Phys. Rev. 2015, D92, 124045. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Kouvaris, C.; Nielsen, N.G. White Dwarf Critical Tests for Modified Gravity. Phys. Rev. Lett. 2016, 116, 151103. [Google Scholar] [CrossRef]
- Naik, A.P.; Puchwein, E.; Davis, A.-C.; Sijacki, D.; Desmond, H. Constraints on Chameleon f(R)-Gravity from Galaxy Rotation Curves of the SPARC Sample. Mon. Not. R. Astron. Soc. 2019, 489, 771. [Google Scholar] [CrossRef]
- De Blok, W.J.G. The Core-Cusp Problem. Adv. Astron. 2010, 2010, 789293. [Google Scholar] [CrossRef] [Green Version]
- Lombriser, L.; Peñarrubia, J. How chameleons core dwarfs with cusps. Phys. Rev. 2015, D91, 084022. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Copeland, E.J.; Millington, P. Radial acceleration relation from symmetron fifth forces. Phys. Rev. D 2017, 95, 064050. [Google Scholar] [CrossRef] [Green Version]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Nicolis, A.; Stubbs, C. Equivalence Principle Implications of Modified Gravity Models. Phys. Rev. 2009, D80, 104002. [Google Scholar] [CrossRef] [Green Version]
- Jain, B.; Van der Plas, J. Tests of modified gravity with dwarf galaxies. J. Cosmol. Astropart. Phys. 2011, 10, 032. [Google Scholar] [CrossRef] [Green Version]
- Vikram, V.; Sakstein, J.; Davis, C.; Neil, A. Astrophysical Tests of Modified Gravity: Stellar and Gaseous Rotation Curves in Dwarf Galaxies. Phys. Rev. 2018, D97, 104055. [Google Scholar] [CrossRef] [Green Version]
- Vikram, V.; Cabré, A.; Jain, B.; VanderPlas, J.T. Astrophysical tests of modified gravity: The morphology and kinematics of dwarf galaxies. J. Cosmol. Astropart. Phys. 2013, 8, 020. [Google Scholar] [CrossRef] [Green Version]
- Desmond, H.; Ferreira, P.G.; Lavaux, G.; Jasche, J. The Fifth Force in the Local Cosmic Web. Mon. Not. R. Astron. Soc. 2019, 483, L64. [Google Scholar] [CrossRef]
- Desmond, H.; Ferreira, P.G.; Lavaux, G.; Jasche, J. Fifth force constraints from the separation of galaxy mass components. Phys. Rev. D 2018, 98, 064015. [Google Scholar] [CrossRef] [Green Version]
- Desmond, H.; Ferreira, P.G.; Lavaux, G.; Jasche, J. Fifth force constraints from galaxy warps. Phys. Rev. D 2018, 98, 083010. [Google Scholar] [CrossRef] [Green Version]
- Desmond, H.; Ferreira, P.G. Galaxy morphology rules out astrophysically relevant Hu-Sawicki f (R ) gravity. Phys. Rev. D 2020, 102, 104060. [Google Scholar] [CrossRef]
- Bartlett, D.J.; Desmond, H.; Ferreira, P.G. Calibrating galaxy formation effects in galactic tests of fundamental physics. Phys. Rev. D 2021, 103, 123502. [Google Scholar] [CrossRef]
- Fang, W.; Wang, S.; Hu, W.; Haiman, Z.; Hui, L.; May, M. Challenges to the DGP Model from Horizon-Scale Growth and Geometry. Phys. Rev. 2008, D78, 103509. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Nicolis, A. No-Hair Theorem for the Galileon. Phys. Rev. Lett. 2013, 110, 241104. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F. Dynamical Masses in Modified Gravity. Phys. Rev. 2010, D81, 103002. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J.; Jain, B.; Heyl, J.S.; Hui, L. Tests of Gravity Theories Using Supermassive Black Holes. Astrophys. J. 2017, 844, L14. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.; Koyama, K.; Seahra, S.S.; Silva, F.P. Cosmological perturbations in the DGP braneworld: Numeric solution. Phys. Rev. 2008, D77, 083512. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.C.; Scoccimarro, R. Large-scale structure in brane-induced gravity. II. Numerical simulations. Phys. Rev. D 2009, 80, 104005. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, D.J.; Desmond, H.; Ferreira, P.G. Constraints on Galileons from the positions of supermassive black holes. Phys. Rev. D 2021, 103, 023523. [Google Scholar] [CrossRef]
- Martino, M.C.; Sheth, R.K. Density profiles and voids in modified gravity models. arXiv 2009, arXiv:0911.1829. [Google Scholar]
- Voivodic, R.; Lima, M.; Llinares, C.; Mota, D.F. Modeling void abundance in modified gravity. Phys. Rev. D 2017, 95, 024018. [Google Scholar] [CrossRef] [Green Version]
- Li, B. Voids in coupled scalar field cosmology. Mon. Not. R. Astron. Soc. 2011, 411, 2615. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y. Towards testing gravity with cosmic voids. Int. J. Mod. Phys. D 2018, 27, 1848007. [Google Scholar] [CrossRef]
- Barreira, A.; Cautun, M.; Li, B.; Baugh, C.M.; Pascoli, S. Weak lensing by voids in modified lensing potentials. J. Cosmol. Astropart. Phys. 2015, 8, 028. [Google Scholar] [CrossRef] [Green Version]
- Nadathur, S.; Carter, P.M.; Percival, W.J.; Winther, H.A.; Bautista, J.E. Beyond BAO: Improving cosmological constraints from BOSS data with measurement of the void-galaxy cross-correlation. Phys. Rev. D 2019, 100, 023504. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.-C.; Li, B.; Cole, S.; Frenk, C.S.; Neyrinck, M. The integrated Sachs-Wolfe effect in f(R) gravity. Mon. Not. R. Astron. Soc. 2014, 439, 2978. [Google Scholar] [CrossRef] [Green Version]
- Cautun, M.; Paillas, E.; Cai, Y.-C.; Bose, S.; Armijo, J.; Li, B.; Padilla, N. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests. Mon. Not. R. Astron. Soc. 2018, 476, 3195. [Google Scholar] [CrossRef]
- Lombriser, L.; Simpson, F.; Mead, A. Unscreening modified gravity in the matter power spectrum. Phys. Rev. Lett. 2015, 114, 251101. [Google Scholar] [CrossRef] [Green Version]
- Valogiannis, G.; Bean, R. Beyond δ: Tailoring marked statistics to reveal modified gravity. Phys. Rev. 2018, D97, 023535. [Google Scholar] [CrossRef] [Green Version]
- Hamaus, N.; Sutter, P.M.; Lavaux, G.; Wandelt, B.D. Probing cosmology and gravity with redshift-space distortions around voids. J. Cosmol. Astropart. Phys. 2015, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Parfrey, K.P. The Evolution of Bias: Generalized. Phys. Rev. 2008, D77, 043527. [Google Scholar]
- Schmidt, F.; Lima, M.V.; Oyaizu, H.; Hu, W. Non-linear Evolution of f(R) Cosmologies III: Halo Statistics. Phys. Rev. 2009, D79, 083518. [Google Scholar]
- Schmidt, F.; Vikhlinin, A.; Hu, W. Cluster Constraints on f(R) Gravity. Phys. Rev. 2009, D80, 083505. [Google Scholar]
- Ferraro, S.; Schmidt, F.; Hu, W. Cluster Abundance in f(R) Gravity Models. Phys.Rev. 2011, D83, 063503. [Google Scholar]
- Liu, X.; Li, B.; Zhao, G.B.; Chiu, M.C.; Fang, W.; Pan, C.; Wang, Q.; Du, W.; Yuan, S.; Fu, L.; et al. Constraining f(R) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawaii-Telescope Lensing Survey. Phys. Rev. Lett. 2016, 117, 051101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Lam, T. Excursion set theory for modified gravity: Eulerian versus Lagrangian environments. Mon. Not. R. Astron. Soc. 2012, 425, 730. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.; Li, B. Excursion set theory for modified gravity: Correlated steps, mass functions and halo bias. Mon. Not. R. Astron. Soc. 2012, 426, 3260. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, W. Chameleon halo modeling in f(R) gravity. Phys. Rev. 2011, D84, 084033. [Google Scholar]
- Borisov, A.; Jain, B.; Zhang, P. Spherical Collapse in f(R) Gravity. Phys. Rev. 2012, D85, 063518. [Google Scholar]
- Barreira, A.; Li, B.; Hellwing, W.A.; Lombriser, L.; Baugh, C.M.; Pascoli, S. Halo model and halo properties in Galileon gravity cosmologies. J. Cosmol. Astropart. Phys. 2014, 1404, 029. [Google Scholar] [CrossRef] [Green Version]
- Lombriser, L.; Koyama, K.; Zhao, G.-B.; Li, B. Chameleon f(R) gravity in the virialized cluster. Phys. Rev. 2012, D85, 124054. [Google Scholar]
- Shi, D.; Li, B.; Han, J.; Gao, L.; Hellwing, W.A. Exploring the liminality: Properties of haloes and subhaloes in borderline f(R) gravity. Mon. Not. R. Astron. Soc. 2015, 452, 3179. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.A.; Arnold, C.; He, J.-H.; Li, B. A general framework to test gravity using galaxy clusters – I. Modelling the dynamical mass of haloes in f(R) gravity. Mon. Not. R. Astron. Soc. 2019, 487, 1410. [Google Scholar] [CrossRef]
- More, S.; Diemer, B.; Kravtsov, A.V. The Splashback Radius as a Physical Halo Boundary and the Growth of Halo Mass. Astrophys. J. 2015, 810, 36. [Google Scholar] [CrossRef]
- Adhikari, S.; Sakstein, J.; Jain, B.; Dalal, N.; Li, B. Splashback in galaxy clusters as a probe of cosmic expansion and gravity. J. Cosmol. Astropart. Phys. 2018, 2018, 033. [Google Scholar] [CrossRef] [Green Version]
- More, S.; Miyatake, H.; Takada, M.; Diemer, B.; Kravtsov, A.V.; Dalal, N.K.; More, A.; Murata, R.; Mandelbaum, R.; Rozo, E.; et al. Detection of the Splashback Radius and Halo Assembly Bias of Massive Galaxy Clusters. Astrophys. J. 2016, 825, 39. [Google Scholar] [CrossRef] [Green Version]
- Zürcher, D.; More, S. The Splashback Radius of Planck SZ Clusters. Astrophys. J. 2019, 874, 184. [Google Scholar] [CrossRef] [Green Version]
- Murata, R.; Sunayama, T.; Oguri, M.; More, S.; Nishizawa, A.J.; Nishimichi, T.; Osato, K. The splashback radius of optically selected clusters with Subaru HSC Second Public Data Release. Publ. Astron. Soc. Jpn. 2020, 72, 64. [Google Scholar] [CrossRef]
- Zu, Y.; Weinberg, D.; Jennings, E.; Li, B.; Wyman, M. Galaxy Infall Kinematics as a Test of Modified Gravity. Mon. Not. R. Astron. Soc. 2013, 445, 1885. [Google Scholar] [CrossRef] [Green Version]
- Collett, T.E.; Oldham, L.J.; Smith, R.J.; Auger, M.W.; Westfall, K.B.; Bacon, D.; Nichol, R.C.; Masters, K.L.; Koyama, K.; van den Bosch, R. A precise extragalactic test of General Relativity. Science 2018, 360, 1342. [Google Scholar] [CrossRef] [Green Version]
- Schwab, J.; Bolton, A.S.; Rappaport, S.A. Galaxy-Scale Strong Lensing Tests of Gravity and Geometric Cosmology: Constraints and Systematic Limitations. Astrophys. J. 2010, 708, 750. [Google Scholar] [CrossRef]
- Lombriser, L. Constraining chameleon models with cosmology. Annalen Phys. 2014, 526, 259. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.A.; He, J.-H.; Arnold, C.; Li, B. A general framework to test gravity using galaxy clusters – I. Modelling the dynamical mass of haloes in f(R) gravity. Mon. Not. R. Astron. Soc. 2018, 477, 1133. [Google Scholar] [CrossRef] [Green Version]
- Pizzuti, L.; Sartoris, B.; Borgani, S.; Amendola, L.; Umetsu, K.; Biviano, A.N.D.R.E.A.; Girardi, M.; Rosati, P.; Balestra, I.; Caminha, G.B.; et al. CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles. J. Cosmol. Astropart. Phys. 2016, 1604, 023. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.Y.; Nishimichi, T.; Schmidt, F.; Takada, M. Testing Gravity with the Stacked Phase Space around Galaxy Clusters. Phys. Rev. Lett. 2012, 109, 051301. [Google Scholar] [CrossRef] [Green Version]
- Terukina, A.; Lombriser, L.; Yamamoto, K.; Bacon, D.; Koyama, K.; Nichol, R.C. Testing chameleon gravity with the Coma cluster. J. Cosmol. Astropart. Phys. 2014, 1404, 013. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, H.; Bacon, D.; Nichol, R.C.; Rooney, P.J.; Terukina, A.; Romer, A.K.; Koyama, K.; Zhao, G.B.; Hood, R.; Mann, R.G.; et al. The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters. Mon. Not. R. Astron. Soc. 2015, 452, 1171. [Google Scholar] [CrossRef] [Green Version]
- Terukina, A.; Yamamoto, K.; Okabe, N.; Matsushita, K.; Sasaki, T. Testing a generalized cubic Galileon gravity model with the Coma Cluster. J. Cosmol. Astropart. Phys. 2015, 1510, 064. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; He, J.-H.; Gao, L. Cluster gas fraction as a test of gravity. Mon. Not. R. Astron. Soc. 2016, 456, 146. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Valageas, P. Structure Formation in Modified Gravity Scenarios. Phys. Rev. D 2012, 86, 063512. [Google Scholar] [CrossRef] [Green Version]
- Aviles, A.; Cervantes-Cota, J.L. Lagrangian perturbation theory for modified gravity. Phys. Rev. D 2017, 96, 123526. [Google Scholar] [CrossRef] [Green Version]
- Aviles, A.; Cervantes-Cota, J.L.; Mota, D.F. Screenings in Modified Gravity: A perturbative approach. Astron. Astrophys. 2019, 622, A62. [Google Scholar] [CrossRef] [Green Version]
- Winther, H.A.; Koyama, K.; Manera, M.; Wright, B.S.; Zhao, G.-B. COLA with scale-dependent growth: Applications to screened modified gravity models. J. Cosmol. Astropart. Phys. 2017, 8, 006. [Google Scholar] [CrossRef] [Green Version]
- Aviles, A.; Valogiannis, G.; Rodriguez-Meza, M.A.; Cervantes-Cota, J.L.; Li, B.; Bean, R. Redshift space power spectrum beyond Einstein-de Sitter kernels. J. Cosmol. Astropart. Phys. 2021, 4, 039. [Google Scholar] [CrossRef]
- Wright, B.S.; Koyama, K.; Winther, H.A.; Zhao, G.-B. Investigating the degeneracy between modified gravity and massive neutrinos with redshift-space distortions. J. Cosmol. Astropart. Phys. 2019, 6, 040. [Google Scholar] [CrossRef] [Green Version]
- Astier, P. et al. [SNLS]. The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 2006, 447, 31. [Google Scholar] [CrossRef] [Green Version]
- Tsiapi, P.; Basilakos, S.; Plionis, M.; Terlevich, R.; Terlevich, E.; Gonzalez Moran, A.L.; Chavez, R.; Bresolin, F.; Fernandez Arenas, D.; Telles, E. Cosmological constraints using the newest VLT-KMOS H II galaxies and the full Planck CMB spectrum. Mon. Not. R. Astron. Soc. 2021, 506, 5039. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the early and late Universe. Nat. Astron. 2019, 3, 891–895. [Google Scholar] [CrossRef]
- Schöneberg, N.; Abellán, G.F.; Sánchez, A.P.; Witte, S.J.; Poulin, V.; Lesgourgues, J. The H0 Olympics: A fair ranking of proposed models. arXiv 2021, arXiv:2107.10291. [Google Scholar]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, Z.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M. Ballardini, M.; Basilakos, S.; Battistelli, E.; et al. Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension. Astropart. Phys. 2021, 131, 102605. [Google Scholar] [CrossRef]
- Sachs, R.K.; Wolfe, A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophys. J. 1967, 147, 73. [Google Scholar] [CrossRef]
- Kofman, L.A.; Starobinskii, A.A. Effect of the Cosmological Constant on Largescale Anisotropies in the Microwave Background. Sov. Astron. Lett. 1985, 11, 271. [Google Scholar]
- Ade, P.A.R. et al. [Planck]. Planck 2015 results. XXI. The integrated Sachs-Wolfe effect. Astron. Astrophys. 2016, 594, A21. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, A.; Schneider, J. Gravitational lensing effect on the fluctuations of the cosmic background radiation. Astron. Astrophys. 1987, 184, 1. [Google Scholar]
- Zaldarriaga, M.; Seljak, U. Gravitational lensing effect on cosmic microwave background polarization. Phys. Rev. D 1998, 58, 023003. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys. J. Suppl. 2013, 208, 19. [Google Scholar] [CrossRef] [Green Version]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017. [Google Scholar] [CrossRef]
- Kitaura, F.S.; Rodríguez-Torres, S.; Chuang, C.H.; Zhao, C.; Prada, F.; Gil-Marín, H.; Guo, H.; Yepes, G.; Klypin, A.; Scóccola, C.G.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Mock galaxy catalogues for the BOSS Final Data Release. Mon. Not. R. Astron. Soc. 2016, 456, 4156. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z=0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835. [Google Scholar] [CrossRef] [Green Version]
- Renk, J.; Zumalacárregui, M.; Montanari, F.; Barreira, A. Galileon gravity in light of ISW, CMB, BAO and H0 data. J. Cosmol. Astropart. Phys. 2017, 10, 020. [Google Scholar] [CrossRef] [Green Version]
- Ade, P. et al. [Simons Observatory]. The Simons Observatory: Science goals and forecasts. J. Cosmol. Astropart. Phys. 2019, 2, 056. [Google Scholar]
- Peirone, S.; Benevento, G.; Frusciante, N.; Tsujikawa, S. Cosmological constraints and phenomenology of a beyond-Horndeski model. Phys. Rev. D 2019, 100, 063509. [Google Scholar] [CrossRef] [Green Version]
- Pogosian, L.; Silvestri, A.; Koyama, K.; Zhao, G.-B. How to optimally parametrize deviations from General Relativity in the evolution of cosmological perturbations? Phys. Rev. D 2010, 81, 104023. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Green, A.M. Small scale structure formation in chameleon cosmology. Phys. Lett. 2006, B633, 441. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K. Cosmological Tests of Modified Gravity. Rept. Prog. Phys. 2016, 79, 046902. [Google Scholar] [CrossRef] [Green Version]
- Joudaki, S.; Ferreira, P.G.; Lima, N.A.; Winther, H.A. Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke Theory. arXiv 2020, arXiv:2010.15278. [Google Scholar]
- Bellini, E.; Sawicki, I. Maximal freedom at minimum cost: Linear large-scale structure in general modifications of gravity. J. Cosmol. Astropart. Phys. 2014, 7, 050. [Google Scholar] [CrossRef]
- Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Essential Building Blocks of Dark Energy. arXiv 2013, arXiv:1304.4840. [Google Scholar] [CrossRef] [Green Version]
- Creminelli, P.; Gleyzes, J.; Hui, L.; Simonović, M.; Vernizzi, F. Single-field consistency relations of large scale structure part III: Test of the equivalence principle. J. Cosmol. Astropart. Phys. 2014, 2014, 009. [Google Scholar] [CrossRef] [Green Version]
- Pogosian, L.; Silvestri, A. What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and μ. Phys. Rev. D 2016, 94, 104014. [Google Scholar] [CrossRef] [Green Version]
- Deffayet, C. On brane world cosmological perturbations. Phys. Rev. D 2002, 66, 103504. [Google Scholar] [CrossRef] [Green Version]
- Desi Collaboration, D.; Aghamousa, A.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.E.; Prieto, C.A.; Annis, J.; Bailey, S.; Balland, C.; et al. The DESI experiment part I: Science, targeting, and survey design. arXiv 2018, arXiv:1611.00036. [Google Scholar]
- Amendola, L.; Appleby, S.; Avgoustidis, A.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 2018, 21, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Augueres, J.-L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid definition study report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv 2015, arXiv:1503.03757. [Google Scholar]
- Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 1987, 227, 1. [Google Scholar] [CrossRef]
- Blanchard, A. et al. [Euclid]. Euclid preparation: VII. Forecast validation for Euclid cosmological probes. Astron. Astrophys. 2020, 642, A191. [Google Scholar] [CrossRef]
- Bonvin, C.; Hui, L.; Gaztañaga, E. Asymmetric galaxy correlation functions. Phys. Rev. D 2014, 89, 083535. [Google Scholar] [CrossRef] [Green Version]
- Bonvin, C.; Fleury, P. Testing the equivalence principle on cosmological scales. J. Cosmol. Astropart. Phys. 2018, 2018, 061. [Google Scholar] [CrossRef] [Green Version]
- Gaztanaga, E.; Bonvin, C.; Hui, L. Measurement of the dipole in the cross-correlation function of galaxies. J. Cosmol. Astropart. Phys. 2017, 2017, 032. [Google Scholar] [CrossRef] [Green Version]
- Kodwani, D.; Desmond, H. Screened fifth forces in parity-breaking correlation functions. Phys. Rev. D 2019, 100, 064030. [Google Scholar] [CrossRef] [Green Version]
- Bartelmann, M.; Schneider, P. Weak gravitational lensing. Phys. Rep. 2001, 340, 291. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Valageas, P. The effective field theory of K-mouflage. J. Cosmol. Astropart. Phys. 2016, 1, 020. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Challinor, A. Camb: Code for anisotropies in the microwave background. Astrophys. Source Code Libr. 2011, ascl-1102. [Google Scholar]
- Lesgourgues, J. The cosmic linear anisotropy solving system (CLASS) I: Overview. arXiv 2011, arXiv:1104.2932. [Google Scholar]
- Blas, D.; Lesgourgues, J.; Tram, T. The cosmic linear anisotropy solving system (CLASS). Part II: Approximation schemes. J. Cosmol. Astropart. Phys. 2011, 2011, 034. [Google Scholar] [CrossRef] [Green Version]
- Dossett, J.N.; Ishak, M.; Moldenhauer, J. Testing general relativity at cosmological scales: Implementation and parameter correlations. Phys. Rev. D 2011, 84, 123001. [Google Scholar] [CrossRef] [Green Version]
- Dossett, J.N.; Ishak, M. Spatial curvature and cosmological tests of general relativity. Phys. Rev. D 2012, 86, 103008. [Google Scholar] [CrossRef] [Green Version]
- Hojjati, A.; Zhao, G.-B.; Pogosian, L.; Silvestri, A. MGCAMB: Modification of Growth with CAMB. Astrophys. Source Code Libr. 2011, ascl-1106. [Google Scholar]
- Zucca, A.; Pogosian, L.; Silvestri, A.; Zhao, G.-B. MGCAMB with massive neutrinos and dynamical dark energy. J. Cosmol. Astropart. Phys. 2019, 2019, 001. [Google Scholar] [CrossRef] [Green Version]
- Pace, F.; Battye, R.A.; Bellini, E.; Lombriser, L.; Vernizzi, F.; Bolliet, B. Comparison of different approaches to the quasi-static approximation in Horndeski models. J. Cosmol. Astropart. Phys. 2021, 2021, 017. [Google Scholar] [CrossRef]
- Zumalacárregui, M.; Bellini, E.; Sawicki, I.; Lesgourgues, J.; Ferreira, P.G. Hi_class: Horndeski in the cosmic linear anisotropy solving system. J. Cosmol. Astropart. Phys. 2017, 2017, 019. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Raveri, M.; Silvestri, A.; Frusciante, N. EFTCAMB/EFTCosmoMC: Massive neutrinos in dark cosmologies. arXiv 2014, arXiv:1410.5807. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Raveri, M.; Frusciante, N.; Silvestri, A. EFTCAMB/EFTCosmoMC: Numerical Notes v3.0. arXiv 2014, arXiv:1405.3590. [Google Scholar]
- Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R. Large-scale structure of the Universe and cosmological perturbation theory. Phys. Rep. 2002, 367, 1. [Google Scholar] [CrossRef] [Green Version]
- Vlah, Z.; Seljak, U.; Baldauf, T. Lagrangian perturbation theory at one loop order: Successes, failures, and improvements. Phys. Rev. D 2015, 91, 023508. [Google Scholar] [CrossRef] [Green Version]
- Pietroni, M. Flowing with time: A new approach to non-linear cosmological perturbations. J. Cosmol. Astropart. Phys. 2008, 10, 36. [Google Scholar] [CrossRef]
- Scoccimarro, R.; Sheth, R.K.; Hui, L.; Jain, B. How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering. Astroph. J. 2001, 546, 20. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, J.J.M.; Hertzberg, M.P.; Senatore, L. The effective field theory of cosmological large scale structures. J. High Energy Phys. 2012, 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Taruya, A. Constructing perturbation theory kernels for large-scale structure in generalized cosmologies. Phys. Rev. D 2016, 94, 023504. [Google Scholar] [CrossRef] [Green Version]
- Taruya, A.; Nishimichi, T.; Jeong, D. Grid-based calculation for perturbation theory of large-scale structure. Phys. Rev. D 2018, 98, 103532. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Taruya, A.; Hiramatsu, T. Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity. Phys. Rev. D 2009, 79, 123512. [Google Scholar] [CrossRef] [Green Version]
- Brax, P. Lectures on Screened Modified Gravity. arXiv 2012, arXiv:1211.5237. [Google Scholar]
- Llinares, C.; Mota, D.F. Cosmological simulations of screened modified gravity out of the static approximation: Effects on matter distribution. Phys. Rev. D 2014, 89, 084023. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhao, G.-B.; Teyssier, R.; Koyama, K. ECOSMOG: An efficient code for simulating modified gravity. J. Cosmol. Astropart. Phys. 2012, 2012, 51. [Google Scholar] [CrossRef]
- Hassani, F.; Lombriser, L. N-body simulations for parametrized modified gravity. Mon. Not. R. Astron. Soc. 2020, 497, 1885. [Google Scholar] [CrossRef]
- Braden, J.; Burrage, C.; Elder, B.; Saadeh, D. φenics: Vainshtein screening with the finite element method. J. Cosmol. Astropart. Phys. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Puchwein, E.; Baldi, M.; Springel, V. Modified-Gravity-GADGET: A new code for cosmological hydrodynamical simulations of modified gravity models. Mon. Not. R. Astron. Soc. 2013, 436, 348. [Google Scholar] [CrossRef] [Green Version]
- Reverberi, L.; Daverio, D.; fRevolution—relativistic cosmological simulations in f (R) gravity. Part I. Methodology. J. Cosmol. Astropart. Phys. 2019, 2019, 35. [Google Scholar] [CrossRef] [Green Version]
- Baldi, M.; Villaescusa-Navarro, F.; Viel, M.; Puchwein, E.; Springel, V.; Moscardini, L. Cosmic degeneracies–I. Joint N-body simulations of modified gravity and massive neutrinos. Mon. Not. R. Astron. Soc. 2014, 440, 75. [Google Scholar] [CrossRef] [Green Version]
- Valogiannis, G.; Bean, R. Efficient simulations of large scale structure in modified gravity cosmologies with comoving Lagrangian acceleration. Phys. Rev. D 2017, 95, 103515. [Google Scholar] [CrossRef] [Green Version]
- Winther, H.; Casas, S.; Baldi, M.; Koyama, K.; Li, B.; Lombriser, L.; Zhao, G.-B. Emulators for the nonlinear matter power spectrum beyond ΛCDM. Phys. Rev. D 2019, 100, 123540. [Google Scholar] [CrossRef] [Green Version]
- Arnold, C.; Li, B.; Giblin, B.; Harnois-Déraps, J.; Cai, Y.-C. FORGE–the f (R) gravity cosmic emulator project I: Introduction and matter power spectrum emulator. arXiv 2021, arXiv:2109.04984. [Google Scholar]
- Ramachandra, N. et al. [LSST Dark Energy Science]. Matter Power Spectrum Emulator for f(R) Modified Gravity Cosmologies. Phys. Rev. D 2021, 103, 123525. [Google Scholar] [CrossRef]
- Bose, B.; Cataneo, M.; Tröster, T.; Xia, Q.; Heymans, C.; Lombriser, L. On the road to per cent accuracy IV: ReACT— computing the non-linear power spectrum beyond Λ CDM. Mon. Not. R. Astron. Soc. 2020, 498, 4650–4662. [Google Scholar] [CrossRef]
- Cataneo, M.; Lombriser, L.; Heymans, C.; Mead, A.; Barreira, A.; Bose, S.; Li, B. On the road to percent accuracy: Non-linear reaction of the matter power spectrum to dark energy and modified gravity. Mon. Not. R. Astron. Soc. 2019, 488, 2121. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Barreiro, R.; Bartolo, N.; Battaner, E.; et al. Planck 2015 results-xiv. dark energy and modified gravity. Astron. Astrophys. 2016, 594, A14. [Google Scholar]
- Giannantonio, T.; Martinelli, M.; Silvestri, A.; Melchiorri, A. New constraints on parametrised modified gravity from correlations of the CMB with large scale structure. J. Cosmol. Astropart. Phys. 2010, 2010, 30. [Google Scholar] [CrossRef] [Green Version]
- Hinshaw, G. et al. [WMAP]. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results. Astrophys. J. Suppl. 2009, 180, 225. [Google Scholar] [CrossRef] [Green Version]
- Dossett, J.; Hu, B.; Parkinson, D. Constraining models of f (R) gravity with Planck and WiggleZ power spectrum data. J. Cosmol. Astropart. Phys. 2014, 2014, 46. [Google Scholar] [CrossRef] [Green Version]
- Battye, R.A.; Bolliet, B.; Pace, F. Do cosmological data rule out f (R) with w≠- 1? Phys. Rev. D 2018, 97, 104070. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Li, B.; Zhao, G.-B. New probe of departures from general relativity using Minkowski functionals. Phys. Rev. Lett. 2017, 118, 181301. [Google Scholar] [CrossRef] [Green Version]
- Lombriser, L.; Hu, W.; Fang, W.; Seljak, U. Cosmological constraints on DGP braneworld gravity with brane tension. Phys. Rev. D 2009, 80, 063536. [Google Scholar] [CrossRef] [Green Version]
- Barreira, A.; Sánchez, A.G.; Schmidt, F. Validating estimates of the growth rate of structure with modified gravity simulations. Phys. Rev. D 2016, 94, 084022. [Google Scholar] [CrossRef] [Green Version]
- Gil-Marín, H.; Percival, W.J.; Verde, L.; Brownstein, J.R.; Chuang, C.-H.; Kitaura, F.-S.; Rodríguez-Torres, S.A.; Olmstead, M.D. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies. Mon. Not. R. Astron. Soc. 2016, 2, stw2679. [Google Scholar] [CrossRef]
- Bose, B.; Koyama, K.; Lewandowski, M.; Vernizzi, F.; Winther, H.A. Towards precision constraints on gravity with the effective field theory of large-scale structure. J. Cosmol. Astropart. Phys. 2018, 2018, 63. [Google Scholar] [CrossRef] [Green Version]
- Hellwing, W.A.; Koyama, K.; Bose, B.; Zhao, G.-B. Revealing modified gravity signals in matter and halo hierarchical clustering. Phys. Rev. D 2017, 96, 023515. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilez, A.; Skordis, C. Cosmological constraints on Brans-Dicke theory. Phys. Rev. Lett. 2014, 113, 011101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austermann, J.E.; Aird, K.; Beall, J.; Becker, D.; Bender, A.; Benson, B.; Bleem, L.; Britton, J.; Carlstrom, J.; Chang, C.; et al. SPTpol: An instrument for CMB polarization measurements with the South Pole Telescope. In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8452, p. 84521E. [Google Scholar]
- Das, S.; Louis, T.; Nolta, M.R.; Addison, G.E.; Battistelli, E.S.; Bond, J.R.; Calabrese, E.; Crichton, D.; Devlin, M.J.; Dicker, S.; et al. The Atacama Cosmology Telescope: Temperature and gravitational lensing power spectrum measurements from three seasons of data. J. Cosmol. Astropart. Phys. 2014, 2014, 014. [Google Scholar] [CrossRef] [Green Version]
- Peirone, S.; Koyama, K.; Pogosian, L.; Raveri, M.; Silvestri, A. Large-scale structure phenomenology of viable Horndeski theories. Phys. Rev. D 2018, 97, 043519. [Google Scholar] [CrossRef] [Green Version]
- Crisostomi, M.; Hull, M.; Koyama, K.; Tasinato, G. Horndeski: Beyond, or not beyond? J. Cosmol. Astropart. Phys. 2016, 1603, 038. [Google Scholar] [CrossRef]
- Crisostomi, M.; Koyama, K. Vainshtein mechanism after GW170817. Phys. Rev. D 2018, 97, 021301. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J.; Babichev, E.; Koyama, K.; Langlois, D.; Saito, R. Towards Strong Field Tests of Beyond Horndeski Gravity Theories. Phys. Rev. D 2017, 95, 064013. [Google Scholar] [CrossRef] [Green Version]
- Kreisch, C.; Komatsu, E. Cosmological constraints on Horndeski gravity in light of GW170817. J. Cosmol. Astropart. Phys. 2018, 2018, 030. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [BICEP2, Keck Array]. BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. Phys. Rev. Lett. 2018, 121, 221301. [Google Scholar] [CrossRef] [Green Version]
- Battelier, B.; Bergé, J.; Bertoldi, A.; Blanchet, L.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Calonico, D.; Fayet, P.; Gaaloul, N.; et al. Exploring the foundations of the physical universe with space tests of the equivalence principle. Exper. Astron. 2021, 51, 1695. [Google Scholar] [CrossRef]
- Pernot-Borràs, M.; Bergé, J.; Brax, P.; Uzan, J.-P. Fifth force induced by a chameleon field on nested cylinders. Phys. Rev. D 2020, 101, 124056. [Google Scholar] [CrossRef]
- Pernot-Borràs, M.; Bergé, J.; Brax, P.; Uzan, J.-P. General study of chameleon fifth force in gravity space experiments. Phys. Rev. D 2019, 100, 084006. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brax, P.; Casas, S.; Desmond, H.; Elder, B. Testing Screened Modified Gravity. Universe 2022, 8, 11. https://doi.org/10.3390/universe8010011
Brax P, Casas S, Desmond H, Elder B. Testing Screened Modified Gravity. Universe. 2022; 8(1):11. https://doi.org/10.3390/universe8010011
Chicago/Turabian StyleBrax, Philippe, Santiago Casas, Harry Desmond, and Benjamin Elder. 2022. "Testing Screened Modified Gravity" Universe 8, no. 1: 11. https://doi.org/10.3390/universe8010011
APA StyleBrax, P., Casas, S., Desmond, H., & Elder, B. (2022). Testing Screened Modified Gravity. Universe, 8(1), 11. https://doi.org/10.3390/universe8010011