Jordan and Einstein Frames Hamiltonian Analysis for FLRW Brans-Dicke Theory
Abstract
:1. Introduction
2. Constraint Analysis and Equations of Motion in the Jordan Frame
2.1. Case
2.2. Case
3. Anti-Gravity Transformations
3.1. Case
3.2. Case
4. Transformations from Jordan Frame to the Einstein Frame
4.1. Case
4.2. Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Dyer, E.; Hinterbichler, K. Boundary Terms, Variational Principles and Higher Derivative Modified Gravity. Phys. Rev. 2009, D79, 024028. [Google Scholar] [CrossRef] [Green Version]
- Gionti S.J., G. Canonical analysis of Brans-Dicke theory addresses Hamiltonian inequivalence between the Jordan and Einstein frames. Phys. Rev. D 2021, 103, 024022. [Google Scholar] [CrossRef]
- Galaverni, M.; Gionti S.J., G. Jordan and Einstein Frames from the perspective of ω = −3/2 Hamiltonian Brans-Dicke theory. arXiv 2021, arXiv:2110.12222. [Google Scholar]
- Arnol’d, V.I. Mathematical Methods of Classical Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 60. [Google Scholar]
- Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163–2167. [Google Scholar] [CrossRef]
- Faraoni, V.; Nadeau, S. The (pseudo)issue of the conformal frame revisited. Phys. Rev. 2007, D75, 023501. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Sanchis-Alepuz, H. Hamiltonian Formulation of Palatini f(R) theories a la Brans-Dicke. Phys. Rev. 2011, D83, 104036. [Google Scholar] [CrossRef] [Green Version]
- Niedermaier, M. Anti-Newtonian Expansions and the Functional Renormalization Group. Universe 2019, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Niedermaier, M. Nonstandard Action of Diffeomorphisms and Gravity’s Anti-Newtonian Limit. Symmetry 2020, 12, 752. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y. Nonperturbative Loop Quantization of Scalar-Tensor Theories of Gravity. Phys. Rev. D 2011, 84, 104045. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Guo, H.; Han, Y.; Ma, Y. Action principle for the connection dynamics of scalar-tensor theories. Phys. Rev. D 2013, 87, 087502. [Google Scholar] [CrossRef]
- Bonanno, A.; Gionti S.J., G.; Platania, A. Bouncing and emergent cosmologies from Arnowitt Deser Misner RG flows. Class. Quant. Grav. 2018, 35, 065004. [Google Scholar] [CrossRef] [Green Version]
- Arnowitt, R.; Deser, S.; Misner, C.W. Canonical Variables for General Relativity. Phys. Rev. 1960, 117, 1595–1602. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. Lectures on Quantum Field Theory; Yeshiva University: New York, NY, USA, 1966. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. 1. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G. Quantum gravity, quantum cosmology and Lorentzian geometries. Lect. Notes Phys. Monogr. 1992, 12, 1–326. [Google Scholar] [CrossRef]
- Gielen, S.; de Leon Ardon, R.; Percacci, R. Gravity with more or less gauging. Class. Quant. Grav. 2018, 35, 195009. [Google Scholar] [CrossRef] [Green Version]
- Deruelle, N.; Sendouda, Y.; Youssef, A. Various Hamiltonian formulations of f(R) gravity and their canonical relationships. Phys. Rev. 2009, D80, 084032. [Google Scholar] [CrossRef]
- Deruelle, N.; Sasaki, M. Conformal equivalence in classical gravity: The example of ’Veiled’ General Relativity. Springer Proc. Phys. 2011, 137, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Francfort, J.; Ghosh, B.; Durrer, R. Cosmological Number Counts in Einstein and Jordan frames. JCAP 2019, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Frion, E.; Almeida, C.R. Affine quantization of the Brans-Dicke theory: Smooth bouncing and the equivalence between the Einstein and Jordan frames. Phys. Rev. D 2019, 99, 023524. [Google Scholar] [CrossRef] [Green Version]
- Bombacigno, F.; Boudet, S.; Montani, G. Generalized Ashtekar variables for Palatini f(R) models. Nucl. Phys. B 2021, 963, 115281. [Google Scholar] [CrossRef]
- Capozziello, S.; Martin-Moruno, P.; Rubano, C. Physical non-equivalence of the Jordan and Einstein frames. Phys. Lett. B 2010, 689, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Carloni, S.; Elizalde, E.; Odintsov, S. Conformal Transformations in Cosmology of Modified Gravity: The Covariant Approach Perspective. Gen. Rel. Grav. 2010, 42, 1667–1705. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaverni, M.; Gionti S. J., G. Jordan and Einstein Frames Hamiltonian Analysis for FLRW Brans-Dicke Theory. Universe 2022, 8, 14. https://doi.org/10.3390/universe8010014
Galaverni M, Gionti S. J. G. Jordan and Einstein Frames Hamiltonian Analysis for FLRW Brans-Dicke Theory. Universe. 2022; 8(1):14. https://doi.org/10.3390/universe8010014
Chicago/Turabian StyleGalaverni, Matteo, and Gabriele Gionti S. J. 2022. "Jordan and Einstein Frames Hamiltonian Analysis for FLRW Brans-Dicke Theory" Universe 8, no. 1: 14. https://doi.org/10.3390/universe8010014
APA StyleGalaverni, M., & Gionti S. J., G. (2022). Jordan and Einstein Frames Hamiltonian Analysis for FLRW Brans-Dicke Theory. Universe, 8(1), 14. https://doi.org/10.3390/universe8010014