Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Prediction Results
3.2. Comparison with Other Models
4. Discussion, Conclusions, and Future Work
- (1)
- The prediction accuracy of the LSTM model did not change significantly with the leading time of the short-term forecast (i.e., 1-day, 2-day, and 3-day forecasts). This shows the prediction stability of the LSTM model.
- (2)
- The forecast error had the solar cycle effect (i.e., larger error at the solar maximum), but even in the solar maximum year, the prediction error was still acceptable (for example, the RMSE for the 1-day forecast in 2001 was 10.19 sfu).
- (3)
- The prediction accuracy of our LSTM method was as good as those of the BP and AR models.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, J.M., Jr.; Lennon, T.J.; Corell, R.W.; Ostenso, N.A.; Huntress, W.T., Jr.; Devine, J.F.; Crowley, P.; Harrison, J.B. The National Space Weather Program: The Strategic Plan; Office of the Federal Coordinator for Meteorological Services and Supporting Research, FCM-P30-1995: Washington, DC, USA, 1995; 18p. [Google Scholar]
- Daglis, I.A.; Chang, L.C.; Dasso, S.; Gopalswamy, N.; Khabarova, O.V.; Kilpua, E.; Lopez, R.; Marsh, D.; Matthes, K.; Nandy, D.; et al. Predictability of variable solar–terrestrial coupling. Ann. Geophys. 2021, 39, 1013–1035. [Google Scholar] [CrossRef]
- Tapping, K.F. Recent solar radio astronomy at centimeter wavelengths: The variability of the 10.7 cm flux. J. Geophys. Res. Atmos. 1987, 92, 829–838. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Hedin, A.E. The atmospheric model in the region 90 to 2000 km. Adv. Space Res. 1988, 8, 9–25. [Google Scholar] [CrossRef]
- Knowles, S.H.; Picone, J.M.S.; Thonnard, E.; Nicholas, A.C. The effect of atmospheric drag on satellite orbits during the bastille day event. Solar Phys. 2001, 204, 387–397. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, SIA 15-1–SIA 15-16. [Google Scholar] [CrossRef]
- Selhorst, C.L.; Costa, J.E.; de Castro, C.G.G.; Valio, A.; Pacini, A.A.; Shibasaki, K. The 17 GHz active region number. Astrophys. J. 2014, 790, 134. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Zhong, Q.; Liu, S. Modeling Research of 10.7 cm Solar Radio Flux 27-day Forecast of (II). Chin. J. Space Sci. 2010, 30, 198–204. [Google Scholar]
- Henney, C.J.; Toussaint, W.A.; White, S.M.; Arge, C.N. Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather 2012, 10. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, X.; Chen, T.; Li, H. Predicting short-term F10.7 with transport models. Astrophys. Space Sci. 2018, 363, 266. [Google Scholar] [CrossRef]
- Yeates, A.R.; Mackay, D.H.; van Ballegooijen, A.A. Modelling the Global Solar Corona: Filament Chirality Observations and Surface Simulations. Solar Phys. 2007, 245, 87–107. [Google Scholar] [CrossRef] [Green Version]
- Worden, J.; Harvey, J. An Evolving Synoptic Magnetic Flux map and Implications for the Distribution of Photospheric Magnetic Flux. Solar Phys. 2000, 195, 247–268. [Google Scholar] [CrossRef]
- Ye, Q.; Song, Q.; Xue, B. F10.7 index forecasting method based on area statistics of solar active regions (in Chinese). Chin. J. Space Sci. 2019, 39, 582–590. [Google Scholar]
- Miao, J.; Liu, S.; Xue, B.; Gong, J. Primary research on predication method of 10.7cm solar radio flux. Chin. J. Space Sci. 2003, 1, 50–54. [Google Scholar]
- Zhong, Q.; Liu, S.; He, X.; Gong, J. Application of singular spectrum analysis to solar 10.7 cm radio flux 27-day forecast. Chin. J. Space Sci. 2005, 25, 199–204. [Google Scholar]
- Liu, S.; Zhong, Q.; Wen, J.; Duo, X. Modeling Research of the 27-day Forecast of 10.7 cm Solar Radio Flux (I). Chin. Astron. Astrophys. 2010, 34, 305–315. [Google Scholar]
- Wang, H.; Xiong, J.; Zhao, C. The Mid-term Forecast Method of Solar Radiation Index F10.7. Acta Astron. Sinica 2014, 55, 302–312. [Google Scholar]
- Lei, L.; Zhong, Q.; Wang, J.; Shi, L.; Liu, S. The Mid-Term Forecast Method of F10.7 Based on Extreme Ultraviolet Images. Adv. Astron. 2019, 2019, 5604092. [Google Scholar] [CrossRef] [Green Version]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 211–229. [Google Scholar] [CrossRef]
- Huang, C.; Liu, D. Forecast daily indices of solar activity, F10.7, using support vector regression method. Res. Astron. Astrophys. 2009, 9, 694–702. [Google Scholar] [CrossRef] [Green Version]
- Warren, H.P.; Emmert, J.T.; Crump, N.A. Linear forecasting of the F10.7 proxy for solar activity. Space Weather 2017, 15, 1039–1051. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Q.; Zhong, Q.; Wang, Y. Linear multistep F10.7 forecasting based on task correlation and heteroscedasticity. Earth Space Sci. 2018, 5, 863–874. [Google Scholar] [CrossRef]
- Chatterjee, T.N. On the application of information theory to the optimum state-space reconstruction of the short-term solar radio flux (10.7 cm), and its prediction via a neural network. MNRAS 2001, 323, 101–108. [Google Scholar] [CrossRef]
- Xiao, C.; Cheng, G.; Zhang, H.; Rong, Z.; Shen, C.; Zhang, B.; Hu, H. Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7. Chin. J. Space Sci. 2017, 37, 1–7. [Google Scholar]
- Wang, X. Deep learning for mid-term forecast of daily index of solar 10.7 cm radio flux. J. Spacecr. TT C Technol. 2017, 36, 118–122. [Google Scholar]
- Luo, J.; Zhu, H.; Yu, J.; Yang, J.; Yu, H. The 10.7-cm radio flux multistep forecasting based on empirical mode decomposition and back propagation neural network. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 584–592. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Y.; Yang, S.; Wang, X.; Zhong, Q. Application of LSTM neural network in F10.7 solar radio flux mid-term forecast (in Chinese). Chin. J. Space Sci. 2020, 40, 176–185. [Google Scholar]
- Luo, J.; Zhu, L.; Zhu, H.; Chien, W.; Liang, J. A New Approach for the 10.7-cm Solar Radio Flux Forecasting: Based on Empirical Mode Decomposition and LSTM. Int. J. Comput. Intell. Syst. 2021, 14, 1742–1752. [Google Scholar] [CrossRef]
- Tanaka, H.; Castelli, J.P.; Covington, A.E. Absolute calibration of solar radio flux density in the microwave region. Solar Physics 1973, 29, 243–262. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Singh, P.; Manure, A. Introduction to TensorFlow 2.0. In Learn TensorFlow 2.0; Springer Apress: Berkeley, CA, USA, 2020; Chapter 1; pp. 1–24. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980v9. [Google Scholar]
- Jadid, M.N.; Fairbairn, D.R. The application of neural network techniques to structural analysis by implementing an adaptive finite-element mesh generation. Artif. Intell. Eng. Design Anal. Manuf. 1994, 8, 177–191. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X. A new method to determine hidden note number in neural network. J. Jishou Univ. (Nat. Sci. Ed.) 2002, 23, 89–91. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 404–407. [Google Scholar]
- Du, Z. Forecasting the Daily 10.7 cm Solar Radio Flux Using an Autoregressive Model. Sol. Phys. 2020, 295, 125. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Mavromichalaki, H.; Tritakis, V. Possible Estimation of the Solar Cycle characteristic parameters by the 10.7 cm Solar Radio Flux. Sol. Phys. 2016, 291, 989–1002. [Google Scholar] [CrossRef]
Learning Rate | Hidden Neuron | Epochs |
---|---|---|
0.001 | 50 | 100 |
Year | 1 Day in Advance | 2 Day in Advance | 3 Day in Advance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (sfu) | MAPE (%) | NMSE | R | RMSE (sfu) | MAPE (%) | NMSE | R | RMSE (sfu) | MAPE (%) | NMSE | R | |
1996 | 2.06 | 1.73 | 0.12 | 0.9447 | 1.72 | 1.47 | 0.08 | 0.9575 | 1.72 | 1.49 | 0.08 | 0.958 |
1998 | 5.79 | 3.54 | 0.07 | 0.9648 | 5.77 | 3.53 | 0.07 | 0.9651 | 5.72 | 3.45 | 0.07 | 0.9662 |
2001 | 10.19 | 3.96 | 0.07 | 0.9672 | 10.56 | 3.96 | 0.07 | 0.9649 | 10.02 | 3.89 | 0.06 | 0.9694 |
2004 | 5.52 | 3.58 | 0.10 | 0.9531 | 5.27 | 3.29 | 0.09 | 0.9575 | 5.14 | 3.22 | 0.08 | 0.9603 |
2008 | 1.16 | 1.04 | 0.16 | 0.9231 | 1.21 | 1.16 | 0.18 | 0.9167 | 1.22 | 1.2 | 0.18 | 0.9200 |
2011 | 5.52 | 3.24 | 0.05 | 0.9744 | 5.3 | 2.95 | 0.05 | 0.9761 | 5.36 | 2.99 | 0.05 | 0.9757 |
2014 | 9.40 | 4.64 | 0.12 | 0.9381 | 9.11 | 4.33 | 0.12 | 0.9429 | 8.65 | 4.14 | 0.11 | 0.9497 |
2016 | 3.23 | 2.54 | 0.08 | 0.9619 | 3.06 | 2.41 | 0.07 | 0.9646 | 3.05 | 2.38 | 0.07 | 0.9644 |
2019 | 1.36 | 1.43 | 0.22 | 0.8966 | 1.35 | 1.41 | 0.22 | 0.8906 | 1.33 | 1.41 | 0.21 | 0.8969 |
Total | 6.35 | 2.92 | 0.02 | 0.9884 | 6.21 | 2.79 | 0.02 | 0.9883 | 6.20 | 2.70 | 0.02 | 0.9889 |
Year | 1-Day (BP/LSTM) | 2-Day (BP/LSTM) | 3-Day (BP/LSTM) | |||
---|---|---|---|---|---|---|
RMSE (sfu) | MAPE (%) | RMSE (sfu) | MAPE (%) | RMSE (sfu) | MAPE (%) | |
2003 | 6.58/8.35 | 3.73/4.38 | 10.42/7.35 | 5.69/3.77 | 14.82/7.04 | 8.15/3.70 |
2004 | 4.89/5.52 | 3.24/3.58 | 7.32/5.27 | 5.08/3.29 | 9.74/5.14 | 7.05/3.22 |
2008 | 1.18/1.16 | 1.11/1.04 | 1.83/1.21 | 1.86/1.16 | 2.15/1.22 | 2.11/1.20 |
2009 | 1.07/1.20 | 1.08/1.21 | 1.65/1.04 | 1.77/1.04 | 1.84/1.05 | 1.91/1.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhao, X.; Feng, X.; Liu, C.; Xiang, N.; Li, Z.; Lu, W. Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method. Universe 2022, 8, 30. https://doi.org/10.3390/universe8010030
Zhang W, Zhao X, Feng X, Liu C, Xiang N, Li Z, Lu W. Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method. Universe. 2022; 8(1):30. https://doi.org/10.3390/universe8010030
Chicago/Turabian StyleZhang, Wanting, Xinhua Zhao, Xueshang Feng, Cheng’ao Liu, Nanbin Xiang, Zheng Li, and Wei Lu. 2022. "Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method" Universe 8, no. 1: 30. https://doi.org/10.3390/universe8010030
APA StyleZhang, W., Zhao, X., Feng, X., Liu, C., Xiang, N., Li, Z., & Lu, W. (2022). Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method. Universe, 8(1), 30. https://doi.org/10.3390/universe8010030