E6 GUT and Baryon Asymmetry Generation in the E6CHM
Abstract
:1. Introduction
2. Composite Higgs Models and ECHM
2.1. Composite Higgs Models—A Brief Review
2.2. ECHM
3. From Orbifold GUT to the ECHM
3.1. The Symmetry Breaking to
3.2. The Breakdown of to
4. Generation of Matter–Antimatter Asymmetry in the ECHM
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgi, H.; Glashow, S.L. Unity Of All Elementary Particle Forces. Phys. Rev. Lett. 1974, 32, 438. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, P. μ→eγ at a Rate of One Out of 109 Muon Decays? Phys. Lett. B 1977, 67, 421. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanovic, G. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett. 1980, 44, 912. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Dynamical Breaking of Supersymmetry. Nucl. Phys. B 1981, 188, 513. [Google Scholar] [CrossRef]
- Sakai, N. Naturalness in Supersymmetric GUTs. Z. Phys. C 1981, 11, 153. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Georgi, H. Softly Broken Supersymmetry and SU(5). Nucl. Phys. B 1981, 193, 150. [Google Scholar] [CrossRef] [Green Version]
- Kaul, R.K.; Majumdar, P. Cancellation of Quadratically Divergent Mass Corrections in Globally Supersymmetric Spontaneously Broken Gauge Theories. Nucl. Phys. B 1982, 199, 36. [Google Scholar] [CrossRef]
- Gildener, E.; Weinberg, S. Symmetry Breaking and Scalar Bosons. Phys. Rev. D 1976, 13, 3333. [Google Scholar] [CrossRef]
- Gildener, E. Gauge Symmetry Hierarchies. Phys. Rev. D 1976, 14, 1667. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Everett, L.L.; Kane, G.L.; King, S.F.; Lykken, J.; Wang, L.T. The soft supersymmetry-breaking Lagrangian: Theory and applications. Phys. Rept. 2005, 407, 1. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.R.; Kelley, S.; Nanopoulos, D.V. Probing the desert using gauge coupling unification. Phys. Lett. B 1991, 260, 131. [Google Scholar] [CrossRef] [Green Version]
- Langacker, P.; Luo, M.X. Implications of precision electroweak experiments for Mt, ρ0, sin2θW and grand unification. Phys. Rev. D 1991, 44, 817. [Google Scholar] [CrossRef] [PubMed]
- Amaldi, U.; de Boer, W.; Furstenau, H. Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 1991, 260, 447. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, F.; Cifarelli, L.; Peterman, A.; Zichichi, A. The Effective experimental constraints on M(susy) and M(gut). Nuovo Cim. A 1991, 104, 1817. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 1998, 436, 257. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690. [Google Scholar] [CrossRef] [Green Version]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Extra space-time dimensions and unification. Phys. Lett. B 1998, 436, 55. [Google Scholar] [CrossRef] [Green Version]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Grand unification at intermediate mass scales through extra dimensions. Nucl. Phys. B 1999, 537, 47. [Google Scholar] [CrossRef] [Green Version]
- Bellazzini, B.; Csáki, C.; Serra, J. Composite Higgses. Eur. Phys. J. C 2014, 74, 2766. [Google Scholar] [CrossRef] [Green Version]
- Terazawa, H.; Akama, K.; Chikashige, Y. Unified Model of the Nambu-Jona-Lasinio Type for All Elementary Particle Forces. Phys. Rev. D 1977, 15, 480. [Google Scholar] [CrossRef]
- Terazawa, H. Subquark Model of Leptons and Quarks. Phys. Rev. D 1980, 22, 184. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Preskill, J. Massless Composites With Massive Constituents. Nucl. Phys. B 1982, 199, 206. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.B.; Georgi, H. SU(2) × U(1) Breaking by Vacuum Misalignment. Phys. Lett. B 1984, 136, 183. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Georgi, H.; Dimopoulos, S. Composite Higgs Scalars. Phys. Lett. B 1984, 136, 187. [Google Scholar] [CrossRef]
- Georgi, H.; Kaplan, D.B.; Galison, P. Calculation of the Composite Higgs Mass. Phys. Lett. B 1984, 143, 152. [Google Scholar] [CrossRef]
- Banks, T. Constraints on SU(2) × U(1) Breaking by Vacuum Misalignment. Nucl. Phys. B 1984, 243, 125. [Google Scholar] [CrossRef]
- Georgi, H.; Kaplan, D.B. Composite Higgs and Custodial SU(2). Phys. Lett. B 1984, 145, 216. [Google Scholar] [CrossRef]
- Dugan, M.J.; Georgi, H.; Kaplan, D.B. Anatomy of a Composite Higgs Model. Nucl. Phys. B 1985, 254, 299. [Google Scholar] [CrossRef]
- Georgi, H. A Tool Kit for Builders of Composite Models. Nucl. Phys. B 1986, 266, 274. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. E6 inspired composite Higgs model. Phys. Rev. D 2015, 92, 075007. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Thomas, A.W. LHC signatures of neutral pseudo-Goldstone boson in the E6CHM. J. Phys. G 2017, 44, 075003. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Thomas, A.W. E6 inspired composite Higgs model and 750 GeV diphoton excess. EPJ Web Conf. 2016, 125, 02021. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. Baryon asymmetry generation in the E6CHM. Phys. Lett. B 2017, 774, 123. [Google Scholar] [CrossRef]
- Nevzorov, R.; Thomas, A.W. Generation of baryon asymmetry in the E6CHM. EPJ Web Conf. 2018, 191, 02004. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Thomas, A.W. E6 Inspired Composite Higgs Model and Baryon Asymmetry Generation. Phys. Part. Nucl. 2020, 51, 709. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Shibaev, K.I. New physics from superstring phenomenology. Grav. Cosmol. Suppl. 2002, 8, 45. [Google Scholar]
- Khlopov, M.Y. What comes after the Standard model? Prog. Part. Nucl. Phys. 2021, 116, 103824. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Lett. 1967, 5, 24. [Google Scholar]
- Ignatiev, A.Y.; Krasnikov, N.V.; Kuzmin, V.A.; Tavkhelidze, A.N. Universal CP Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe. Phys. Lett. B 1978, 76, 436. [Google Scholar] [CrossRef]
- Yoshimura, M. Unified Gauge Theories and the Baryon Number of the Universe. Phys. Rev. Lett. 1978, 41, 281. [Google Scholar] [CrossRef]
- Toussaint, D.; Treiman, S.B.; Wilczek, F.; Zee, A. Matter - Antimatter Accounting, Thermodynamics, and Black Hole Radiation. Phys. Rev. D 1979, 19, 1036. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmological production of baryons. Phys. Rev. Lett. 1979, 42, 850. [Google Scholar] [CrossRef]
- Yoshimura, M. Origin of Cosmological Baryon Asymmetry. Phys. Lett. B 1979, 88, 294. [Google Scholar] [CrossRef]
- Barr, S.M.; Segre, G.; Weldon, H.A. The Magnitude of the Cosmological Baryon Asymmetry. Phys. Rev. D 1979, 20, 2494. [Google Scholar] [CrossRef]
- Nanopoulos, D.V.; Weinberg, S. Mechanisms for Cosmological Baryon Production. Phys. Rev. D 1979, 20, 2484. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Baryogenesis Without Grand Unification. Phys. Lett. B 1986, 174, 45. [Google Scholar] [CrossRef]
- Affleck, I.; Dine, M. A New Mechanism for Baryogenesis. Nucl. Phys. B 1985, 249, 361. [Google Scholar] [CrossRef]
- Dine, M.; Randall, L.; Thomas, S.D. Baryogenesis from flat directions of the supersymmetric standard model. Nucl. Phys. B 1996, 458, 291. [Google Scholar] [CrossRef] [Green Version]
- Riotto, A.; Trodden, M. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 1999, 49, 35. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Contino, R.; Pomarol, A. The Minimal composite Higgs model. Nucl. Phys. B 2005, 719, 165. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Nomura, Y.; Pomarol, A. Higgs as a holographic pseudoGoldstone boson. Nucl. Phys. B 2003, 671, 148. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Delgado, A.; May, M.J.; Sundrum, R. RS1, custodial isospin and precision tests. J. High Energy Phys. 2003, 308, 50. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Kramer, T.; Son, M.; Sundrum, R. Warped/composite phenomenology simplified. J. High Energy Phys. 2007, 705, 74. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.B. Flavor at SSC energies: A New mechanism for dynamically generated fermion masses. Nucl. Phys. B 1991, 365, 259. [Google Scholar] [CrossRef]
- Frigerio, M.; Serra, J.; Varagnolo, A. Composite GUTs: Models and expectations at the LHC. J. High Energy Phys. 2011, 1106, 29. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Contino, R. The Minimal composite Higgs model and electroweak precision tests. Nucl. Phys. B 2006, 742, 59. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Contino, R.; Da Rold, L.; Pomarol, A. A Custodial symmetry for Zb. Phys. Lett. B 2006, 641, 62. [Google Scholar] [CrossRef] [Green Version]
- Giudice, G.F.; Grojean, C.; Pomarol, A.; Rattazzi, R. The Strongly-Interacting Light Higgs. J. High Energy Phys. 2007, 706, 45. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Bellazzini, B.; Rychkov, V.S.; Varagnolo, A. The Higgs boson from an extended symmetry. Phys. Rev. D 2007, 76, 115008. [Google Scholar] [CrossRef] [Green Version]
- Lodone, P. Vector-like quarks in a ‘composite’ Higgs model. J. High Energy Phys. 2008, 0812, 029. [Google Scholar] [CrossRef]
- Gillioz, M. A Light composite Higgs boson facing electroweak precision tests. Phys. Rev. D 2009, 80, 055003. [Google Scholar] [CrossRef] [Green Version]
- Anastasiou, C.; Furlan, E.; Santiago, J. Realistic Composite Higgs Models. Phys. Rev. D 2009, 79, 075003. [Google Scholar] [CrossRef] [Green Version]
- Panico, G.; Wulzer, A. The Discrete Composite Higgs Model. J. High Energy Phys. 2011, 1109, 135. [Google Scholar] [CrossRef] [Green Version]
- De Curtis, S.; Redi, M.; Tesi, A. The 4D Composite Higgs. J. High Energy Phys. 2012, 1204, 42. [Google Scholar] [CrossRef] [Green Version]
- Marzocca, D.; Serone, M.; Shu, J. General Composite Higgs Models. J. High Energy Phys. 2012, 1208, 013. [Google Scholar] [CrossRef] [Green Version]
- Orgogozo, A.; Rychkov, S. The S parameter for a Light Composite Higgs: A Dispersion Relation Approach. J. High Energy Phys. 2013, 1306, 14. [Google Scholar] [CrossRef] [Green Version]
- Grojean, C.; Matsedonskyi, O.; Giuliano, P. Light top partners and precision physics. J. High Energy Phys. 2013, 1310, 160. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Ponton, E.; Santiago, J.; Wagner, C.E.M. Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2). Nucl. Phys. B 2006, 759, 202. [Google Scholar] [CrossRef] [Green Version]
- Pomarol, A.; Serra, J. Top Quark Compositeness: Feasibility and Implications. Phys. Rev. D 2008, 78, 074026. [Google Scholar] [CrossRef] [Green Version]
- Pappadopulo, D.; Thamm, A.; Torre, R. A minimally tuned composite Higgs model from an extra dimension. J. High Energy Phys. 2013, 1307, 58. [Google Scholar] [CrossRef] [Green Version]
- Bellazzini, B.; Csaki, C.; Hubisz, J.; Serra, J.; Terning, J. Composite Higgs Sketch. J. High Energy Phys. 2012, 1211, 3. [Google Scholar] [CrossRef] [Green Version]
- Gillioz, M.; Grober, R.; Grojean, C.; Muhlleitner, M.; Salvioni, E. Higgs Low-Energy Theorem (and its corrections) in Composite Models. J. High Energy Phys. 2012, 1210, 4. [Google Scholar] [CrossRef] [Green Version]
- Azatov, A.; Galloway, J. Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders. Int. J. Mod. Phys. A 2013, 28, 1330004. [Google Scholar] [CrossRef] [Green Version]
- Falkowski, A.; Riva, F.; Urbano, A. Higgs at last. J. High Energy Phys. 2013, 1311, 111. [Google Scholar] [CrossRef] [Green Version]
- Azatov, A.; Contino, R.; Di Iura, A.; Galloway, J. New Prospects for Higgs Compositeness in h→Zγ. Phys. Rev. D 2013, 88, 075019. [Google Scholar] [CrossRef] [Green Version]
- Gillioz, M.; Gröber, R.; Kapuvari, A.; Mühlleitner, M. Vector-like Bottom Quarks in Composite Higgs Models. J. High Energy Phys. 2014, 1403, 37. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Isidori, G.; Pappadopulo, D. Composite fermions in Electroweak Symmetry Breaking. J. High Energy Phys. 2009, 902, 29. [Google Scholar] [CrossRef] [Green Version]
- Matsedonskyi, O. On Flavour and Naturalness of Composite Higgs Models. J. High Energy Phys. 2015, 1502, 154. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Buttazzo, D.; Sala, F.; Straub, D.M.; Tesi, A. A 125 GeV composite Higgs boson versus flavour and electroweak precision tests. J. High Energy Phys. 2013, 1305, 69. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Falkowski, A.; Weiler, A. The Flavor of the Composite Pseudo-Goldstone Higgs. J. High Energy Phys. 2008, 809, 8. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Azatov, A.; Zhu, L. Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach. Phys. Rev. D 2009, 79, 056006. [Google Scholar] [CrossRef] [Green Version]
- Vignaroli, N. Δ F=1 constraints on composite Higgs models with LR parity. Phys. Rev. D 2012, 86, 115011. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P.; Susskind, L.; Voloshin, M.B.; Zakharov, V.I. Isospin Breaking in Technicolor Models. Nucl. Phys. B 1980, 173, 189. [Google Scholar] [CrossRef]
- Peskin, M.E.; Takeuchi, T. Estimation of oblique electroweak corrections. Phys. Rev. D 1992, 46, 381. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Perez, G.; Soni, A. Flavor structure of warped extra dimension models. Phys. Rev. D 2005, 71, 016002. [Google Scholar] [CrossRef] [Green Version]
- Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285. [Google Scholar] [CrossRef]
- Redi, M.; Weiler, A. Flavor and CP Invariant Composite Higgs Models. J. High Energy Phys. 2011, 1111, 108. [Google Scholar] [CrossRef] [Green Version]
- Blanke, M.; Buras, A.J.; Duling, B.; Gori, S.; Weiler, A. Δ F = 2 Observables and Fine-Tuning in a Warped Extra Dimension with Custodial Protection. J. High Energy Phys. 2009, 903, 1. [Google Scholar] [CrossRef] [Green Version]
- Gedalia, O.; Isidori, G.; Perez, G. Combining Direct & Indirect Kaon CP Violation to Constrain the Warped KK Scale. Phys. Lett. B 2009, 682, 200. [Google Scholar]
- Barbieri, R.; Buttazzo, D.; Sala, F.; Straub, D.M. Flavour physics from an approximate U(2)3 symmetry. J. High Energy Phys. 2012, 1207, 181. [Google Scholar] [CrossRef] [Green Version]
- Redi, M. Leptons in Composite MFV. J. High Energy Phys. 2013, 1309, 60. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Blechman, A.E.; Petriello, F. Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation. Phys. Rev. D 2006, 74, 053011. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Grossman, Y.; Tanedo, P.; Tsai, Y. Warped penguin diagrams. Phys. Rev. D 2011, 83, 073002. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Delaunay, C.; Grojean, C.; Grossman, Y. A Model of Lepton Masses from a Warped Extra Dimension. J. High Energy Phys. 2008, 0810, 055. [Google Scholar] [CrossRef] [Green Version]
- del Aguila, F.; Carmona, A.; Santiago, J. Neutrino Masses from an A4 Symmetry in Holographic Composite Higgs Models. J. High Energy Phys. 2010, 1008, 127. [Google Scholar] [CrossRef] [Green Version]
- Cacciapaglia, G.; Csaki, C.; Galloway, J.; Marandella, G.; Terning, J.; Weiler, A. A GIM Mechanism from Extra Dimensions. J. High Energy Phys. 2008, 804, 6. [Google Scholar] [CrossRef] [Green Version]
- Redi, M. Composite MFV and Beyond. Eur. Phys. J. C 2012, 72, 2030. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Neubert, M.; Straub, D.M. Dipole operator constraints on composite Higgs models. Eur. Phys. J. C 2014, 74, 2945. [Google Scholar] [CrossRef] [Green Version]
- Gripaios, B.; Pomarol, A.; Riva, F.; Serra, J. Beyond the Minimal Composite Higgs Model. J. High Energy Phys. 2009, 904, 70. [Google Scholar] [CrossRef] [Green Version]
- Mrazek, J.; Pomarol, A.; Rattazzi, R.; Redi, M.; Serra, J.; Wulzer, A. The Other Natural Two Higgs Doublet Model. Nucl. Phys. B 2011, 853, 1. [Google Scholar] [CrossRef] [Green Version]
- Redi, M.; Tesi, A. Implications of a Light Higgs in Composite Models. J. High Energy Phys. 2012, 1210, 166. [Google Scholar] [CrossRef] [Green Version]
- Bertuzzo, E.; Ray, T.S.; de Sandes, H.; Savoy, C.A. On Composite Two Higgs Doublet Models. J. High Energy Phys. 2013, 1305, 153. [Google Scholar] [CrossRef] [Green Version]
- Montull, M.; Riva, F. Higgs discovery: The beginning or the end of natural EWSB? J. High Energy Phys. 2012, 1211, 18. [Google Scholar] [CrossRef] [Green Version]
- Chala, M. h→γγ excess and Dark Matter from Composite Higgs Models. J. High Energy Phys. 2013, 1301, 122. [Google Scholar] [CrossRef] [Green Version]
- Frigerio, M.; Pomarol, A.; Riva, F.; Urbano, A. Composite Scalar Dark Matter. J. High Energy Phys. 2012, 1207, 15. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Grojean, C.; Moretti, M.; Piccinini, F.; Rattazzi, R. Strong Double Higgs Production at the LHC. J. High Energy Phys. 2010, 1005, 89. [Google Scholar] [CrossRef] [Green Version]
- Low, I.; Vichi, A. On the production of a composite Higgs boson. Phys. Rev. D 2011, 84, 045019. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Marzocca, D.; Pappadopulo, D.; Rattazzi, R. On the effect of resonances in composite Higgs phenomenology. J. High Energy Phys. 2011, 1110, 81. [Google Scholar] [CrossRef] [Green Version]
- Azatov, A.; Galloway, J. Light Custodians and Higgs Physics in Composite Models. Phys. Rev. D 2012, 85, 055013. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Ghezzi, M.; Moretti, M.; Panico, G.; Piccinini, F.; Wulzer, A. Anomalous Couplings in Double Higgs Production. J. High Energy Phys. 2012, 1208, 154. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Ghezzi, M.; Grojean, C.; Muhlleitner, M.; Spira, M. Effective Lagrangian for a light Higgs-like scalar. J. High Energy Phys. 2013, 1307, 35. [Google Scholar] [CrossRef] [Green Version]
- Delaunay, C.; Grojean, C.; Perez, G. Modified Higgs Physics from Composite Light Flavors. J. High Energy Phys. 2013, 1309, 90. [Google Scholar] [CrossRef] [Green Version]
- Banfi, A.; Martin, A.; Sanz, V. Probing top-partners in Higgs+jets. J. High Energy Phys. 2014, 1408, 53. [Google Scholar] [CrossRef] [Green Version]
- Montull, M.; Riva, F.; Salvioni, E.; Torre, R. Higgs Couplings in Composite Models. Phys. Rev. D 2013, 88, 095006. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Grojean, C.; Pappadopulo, D.; Rattazzi, R.; Thamm, A. Strong Higgs Interactions at a Linear Collider. J. High Energy Phys. 2014, 1402, 6. [Google Scholar] [CrossRef] [Green Version]
- Flacke, T.; Kim, J.H.; Lee, S.J.; Lim, S.H. Constraints on composite quark partners from Higgs searches. J. High Energy Phys. 2014, 1405, 123. [Google Scholar] [CrossRef] [Green Version]
- Grojean, C.; Salvioni, E.; Schlaffer, M.; Weiler, A. Very boosted Higgs in gluon fusion. J. High Energy Phys. 2014, 1405, 22. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Da Rold, L.; Pontón, E. Minimal Composite Higgs Models at the LHC. J. High Energy Phys. 2014, 1406, 159. [Google Scholar] [CrossRef] [Green Version]
- Carmona, A.; Goertz, F. A naturally light Higgs without light Top Partners. J. High Energy Phys. 2015, 1505, 2. [Google Scholar] [CrossRef] [Green Version]
- Buchalla, G.; Cata, O.; Krause, C. A Systematic Approach to the SILH Lagrangian. Nucl. Phys. B 2015, 894, 602. [Google Scholar] [CrossRef] [Green Version]
- Pomarol, A.; Riva, F. The Composite Higgs and Light Resonance Connection. J. High Energy Phys. 2012, 1208, 135. [Google Scholar] [CrossRef] [Green Version]
- Matsedonskyi, O.; Panico, G.; Wulzer, A. Light Top Partners for a Light Composite Higgs. J. High Energy Phys. 2013, 1301, 164. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Delgado, A.; Sundrum, R. Grand unification in RS1. Ann. Phys. 2003, 304, 145. [Google Scholar] [CrossRef] [Green Version]
- Gherghetta, T. Partly supersymmetric grand unification. Phys. Rev. D 2005, 71, 065001. [Google Scholar] [CrossRef] [Green Version]
- Barnard, J.; Gherghetta, T.; Ray, T.S.; Spray, A. The Unnatural Composite Higgs. J. High Energy Phys. 2015, 1501, 67. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Kitano, R. Partially Composite Dark Matter. J. High Energy Phys. 2014, 1409, 171. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J. LHC Signals from Warped Extra Dimensions. Phys. Rev. D 2008, 77, 015003. [Google Scholar] [CrossRef] [Green Version]
- Lillie, B.; Randall, L.; Wang, L.T. The Bulk RS KK-gluon at the LHC. J. High Energy Phys. 2007, 0709, 074. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Davoudiasl, H.; Gopalakrishna, S.; Han, T.; Huang, G.Y.; Perez, G.; Si, Z.G.; Soni, A. LHC Signals for Warped Electroweak Neutral Gauge Bosons. Phys. Rev. D 2007, 76, 115015. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.; Medina, A.D.; Panes, B.; Shah, N.R.; Wagner, C.E.M. Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions. Phys. Rev. D 2008, 77, 076003. [Google Scholar] [CrossRef] [Green Version]
- Contino, R.; Servant, G. Discovering the top partners at the LHC using same-sign dilepton final states. J. High Energy Phys. 2008, 0806, 026. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Gopalakrishna, S.; Han, T.; Huang, G.Y.; Soni, A. LHC Signals for Warped Electroweak Charged Gauge Bosons. Phys. Rev. D 2009, 80, 075007. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Saavedra, J.A. Identifying top partners at LHC. J. High Energy Phys. 2009, 0911, 030. [Google Scholar] [CrossRef] [Green Version]
- Mrazek, J.; Wulzer, A. A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons. Phys. Rev. D 2010, 81, 075006. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Azatov, A.; Han, T.; Li, Y.; Si, Z.G.; Zhu, L. LHC Signals for Coset Electroweak Gauge Bosons in Warped/Composite PGB Higgs Models. Phys. Rev. D 2010, 81, 096002. [Google Scholar] [CrossRef] [Green Version]
- Dissertori, G.; Furlan, E.; Moortgat, F.; Nef, P. Discovery potential of top-partners in a realistic composite Higgs model with early LHC data. J. High Energy Phys. 2010, 1009, 19. [Google Scholar] [CrossRef] [Green Version]
- Vignaroli, N. Early discovery of top partners and test of the Higgs nature. Phys. Rev. D 2012, 86, 075017. [Google Scholar] [CrossRef] [Green Version]
- Cacciapaglia, G.; Deandrea, A.; Panizzi, L.; Perries, S.; Sordini, V. Heavy Vector-like quark with charge 5/3 at the LHC. J. High Energy Phys. 2013, 1303, 4. [Google Scholar] [CrossRef] [Green Version]
- De Simone, A.; Matsedonskyi, O.; Rattazzi, R.; Wulzer, A. A First Top Partner Hunter’s Guide. J. High Energy Phys. 2013, 1304, 4. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, D.; Shu, J. Towards the fate of natural composite Higgs model through single t′ search at the 8 TeV LHC. J. High Energy Phys. 2013, 1311, 47. [Google Scholar] [CrossRef] [Green Version]
- Redi, M.; Sanz, V.; de Vries, M.; Weiler, A. Strong Signatures of Right-Handed Compositeness. J. High Energy Phys. 2013, 1308, 8. [Google Scholar] [CrossRef] [Green Version]
- Delaunay, C.; Flacke, T.; Gonzalez-Fraile, J.; Lee, S.J.; Panico, G.; Perez, G. Light Non-degenerate Composite Partners at the LHC. J. High Energy Phys. 2014, 1402, 55. [Google Scholar] [CrossRef] [Green Version]
- Matsedonskyi, O.; Riva, F.; Vantalon, T. Composite Charge 8/3 Resonances at the LHC. J. High Energy Phys. 2014, 1404, 59. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.C.; Gu, J. Top seesaw with a custodial symmetry, and the 126 GeV Higgs. J. High Energy Phys. 2014, 1410, 2. [Google Scholar] [CrossRef] [Green Version]
- Gripaios, B.; Müller, T.; Parker, M.A.; Sutherland, D. Search Strategies for Top Partners in Composite Higgs models. J. High Energy Phys. 2014, 1408, 171. [Google Scholar] [CrossRef] [Green Version]
- Azatov, A.; Panico, G.; Perez, G.; Soreq, Y. On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation. J. High Energy Phys. 2014, 1412, 82. [Google Scholar]
- Backović, M.; Flacke, T.; Kim, J.H.; Lee, S.J. Boosted Event Topologies from TeV Scale Light Quark Composite Partners. J. High Energy Phys. 2015, 1504, 82. [Google Scholar] [CrossRef] [Green Version]
- Kanemura, S.; Kaneta, K.; Machida, N.; Shindou, T. New resonance scale and fingerprint identification in minimal composite Higgs models. Phys. Rev. D 2015, 91, 115016. [Google Scholar] [CrossRef] [Green Version]
- Thamm, A.; Torre, R.; Wulzer, A. Future tests of Higgs compositeness: Direct vs indirect. J. High Energy Phys. 2015, 1507, 100. [Google Scholar] [CrossRef] [Green Version]
- Azatov, A.; Chowdhury, D.; Ghosh, D.; Ray, T.S. Same sign di-lepton candles of the composite gluons. J. High Energy Phys. 2015, 1508, 140. [Google Scholar] [CrossRef] [Green Version]
- Serra, J. Beyond the Minimal Top Partner Decay. J. High Energy Phys. 2015, 1509, 176. [Google Scholar] [CrossRef] [Green Version]
- Barnard, J.; Gherghetta, T.; Ray, T.S. UV descriptions of composite Higgs models without elementary scalars. J. High Energy Phys. 2014, 1402, 2, [arXiv:1311.6562 [hep-ph]]. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, G.; Karateev, D. Fermionic UV completions of Composite Higgs models. J. High Energy Phys. 2014, 1403, 077. [Google Scholar] [CrossRef] [Green Version]
- Cacciapaglia, G.; Sannino, F. Fundamental Composite (Goldstone) Higgs Dynamics. J. High Energy Phys. 2014, 1404, 111. [Google Scholar] [CrossRef] [Green Version]
- Hietanen, A.; Lewis, R.; Pica, C.; Sannino, F. Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors. J. High Energy Phys. 2014, 1407, 116. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, G. UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group. J. High Energy Phys. 2014, 1406, 142. [Google Scholar] [CrossRef] [Green Version]
- Parolini, A. Phenomenological aspects of supersymmetric composite Higgs models. Phys. Rev. D 2014, 90, 115026. [Google Scholar] [CrossRef] [Green Version]
- Geller, M.; Telem, O. Holographic Twin Higgs Model. Phys. Rev. Lett. 2015, 114, 191801. [Google Scholar] [CrossRef] [Green Version]
- Gripaios, B.; Nardecchia, M.; Renner, S.A. Composite leptoquarks and anomalies in B-meson decays. J. High Energy Phys. 2015, 1505, 6. [Google Scholar] [CrossRef] [Green Version]
- Low, M.; Tesi, A.; Wang, L.T. Twin Higgs mechanism and a composite Higgs boson. Phys. Rev. D 2015, 91, 095012. [Google Scholar] [CrossRef] [Green Version]
- Golterman, M.; Shamir, Y. Top quark induced effective potential in a composite Higgs model. Phys. Rev. D 2015, 91, 094506. [Google Scholar] [CrossRef] [Green Version]
- Agashe, K.; Contino, R.; Sundrum, R. Top compositeness and precision unification. Phys. Rev. Lett. 2005, 95, 171804. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, Y. Triplet doublet splitting, proton stability and extra dimension. Prog. Theor. Phys. 2001, 105, 999. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Feruglio, F. SU(5) grand unification in extra dimensions and proton decay. Phys. Lett. B 2001, 511, 257. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; March-Russell, J. A Minimal S1/(Z2 × ) orbifold GUT. Nucl. Phys. B 2001, 613, 3. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Hall, L.J.; Nomura, Y. Softly broken supersymmetric desert from orbifold compactification. Phys. Rev. D 2002, 66, 045025. [Google Scholar] [CrossRef] [Green Version]
- Haba, N.; Shimizu, Y.; Suzuki, T.; Ukai, K. Fermion mass hierarchy in the grand unified theory on S1/(Z2 × ) orbifold. Prog. Theor. Phys. 2002, 107, 151. [Google Scholar] [CrossRef] [Green Version]
- Barr, S.M.; Dorsner, I. Unifying flipped SU(5) in five-dimensions. Phys. Rev. D 2002, 66, 065013. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; March-Russell, J. The Flavor hierarchy and seesaw neutrinos from bulk masses in 5-d orbifold GUTs. Phys. Lett. B 2002, 541, 338. [Google Scholar] [CrossRef] [Green Version]
- Paccetti Correia, F.; Schmidt, M.G.; Tavartkiladze, Z. 5-D SUSY orbifold SU(6) GUT and pseudoGoldstone Higgs doublets. Phys. Lett. B 2002, 545, 153. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; March-Russell, J.; Yanagida, T. Higher dimensional origin of heavy sneutrino domination and low scale leptogenesis. Phys. Lett. B 2003, 552, 229. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Raby, S. Neutrinos in 5-D SO(10) unification. J. High Energy Phys. 2003, 0307, 14. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, G.; Branco, G.C.; Silva-Marcos, J.I. CP Violation and Flavour Mixings in Orbifold GUTs. Phys. Rev. D 2008, 77, 011901. [Google Scholar] [CrossRef] [Green Version]
- Kobakhidze, A.B. Proton stability in TeV scale GUTs. Phys. Lett. B 2001, 514, 131. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; March-Russell, J. Proton decay signatures of orbifold GUTs. Phys. Lett. B 2002, 539, 119. [Google Scholar] [CrossRef] [Green Version]
- Shafi, Q.; Tavartkiladze, Z. Neutrino democracy and other phenomenology from 5-D SO(10). Nucl. Phys. B 2003, 665, 469. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Nomura, Y. Gauge unification in higher dimensions. Phys. Rev. D 2001, 64, 055003. [Google Scholar] [CrossRef] [Green Version]
- Nomura, Y. Strongly coupled grand unification in higher dimensions. Phys. Rev. D 2002, 65, 085036. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Nomura, Y. Gauge coupling unification from unified theories in higher dimensions. Phys. Rev. D 2002, 65, 125012. [Google Scholar] [CrossRef] [Green Version]
- Dermisek, R.; Mafi, A. SO(10) grand unification in five-dimensions: Proton decay and the mu problem. Phys. Rev. D 2002, 65, 055002. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Nomura, Y. A Complete theory of grand unification in five-dimensions. Phys. Rev. D 2002, 66, 075004. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Raby, S. Unification in 5-D SO(10). J. High Energy Phys. 2003, 0301, 56. [Google Scholar] [CrossRef] [Green Version]
- Dorsner, I. Flipping SU(5) towards five-dimensional unification. Phys. Rev. D 2004, 69, 056003. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-D.; Kim, J.E.; Lee, H.M. Top - bottom mass hierarchy, s - mu puzzle and gauge coupling unification with split multiplets. Eur. Phys. J. C 2002, 24, 159. [Google Scholar] [CrossRef] [Green Version]
- Correia, F.P.; Schmidt, M.G.; Tavartkiladze, Z. Gauge coupling unification and phenomenology of selected orbifold 5-D N=1 SUSY models. Nucl. Phys. B 2003, 649, 39. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Nomura, Y.; Tucker-Smith, D. Gauge Higgs unification in higher dimensions. Nucl. Phys. B 2002, 639, 307. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; March-Russell, J.; Okui, T.; Tucker-Smith, D. Towards a theory of flavor from orbifold GUTs. J. High Energy Phys. 2004, 0409, 26. [Google Scholar] [CrossRef]
- Babu, K.S.; Barr, S.M.; Kyae, B.-S. Family unification in five-dimensions and six-dimensions. Phys. Rev. D 2002, 65, 115008. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Raby, S.; Schradin, L. Quark and lepton masses in 5-D SO(10). J. High Energy Phys. 2005, 0505, 36. [Google Scholar] [CrossRef]
- Forste, S.; Nilles, H.P.; Wingerter, A. Geometry of rank reduction. Phys. Rev. D 2005, 72, 026001. [Google Scholar] [CrossRef] [Green Version]
- Braam, F.; Knochel, A.; Reuter, J. An Exceptional SSM from E6 Orbifold GUTs with intermediate LR symmetry. J. High Energy Phys. 2010, 1006, 13. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-J. GUT breaking on M4 × T2/(Z2 × Z2′). Phys. Lett. B 2001, 520, 377. [Google Scholar] [CrossRef] [Green Version]
- Asaka, T.; Buchmuller, W.; Covi, L. Gauge unification in six-dimensions. Phys. Lett. B 2001, 523, 199. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-J. N=2 supersymmetric GUT breaking on T2 orbifolds. Nucl. Phys. B 2001, 619, 75. [Google Scholar] [CrossRef] [Green Version]
- Haba, N.; Kondo, T.; Shimizu, Y. Fermion mass hierarchy in six-dimensional SO(10) grand unified theory on a T2/Z2 orbifold. Phys. Lett. B 2002, 531, 245. [Google Scholar] [CrossRef] [Green Version]
- Watari, T.; Yanagida, T. Higher dimensional supersymmetry as an origin of the three families for quarks and leptons. Phys. Lett. B 2002, 532, 252. [Google Scholar] [CrossRef] [Green Version]
- Haba, N.; Kondo, T.; Shimizu, Y. Fermion mass hierarchy in six- dimensional SO(10) SUSY GUT. Phys. Lett. B 2002, 535, 271. [Google Scholar] [CrossRef] [Green Version]
- Watari, T.; Yanagida, T. Geometric origin of large lepton mixing in a higher dimensional space-time. Phys. Lett. B 2002, 544, 167. [Google Scholar] [CrossRef] [Green Version]
- Asaka, T.; Buchmuller, W.; Covi, L. Exceptional coset spaces and unification in six-dimensions. Phys. Lett. B 2002, 540, 295. [Google Scholar] [CrossRef] [Green Version]
- Hebecker, A.; Ratz, M. Group theoretical aspects of orbifold and conifold GUTs. Nucl. Phys. B 2003, 670, 3. [Google Scholar] [CrossRef] [Green Version]
- Asaka, T.; Buchmuller, W.; Covi, L. Quarks and leptons between branes and bulk. Phys. Lett. B 2003, 563, 209. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Kersten, J.; Schmidt-Hoberg, K. Squarks and sleptons between branes and bulk. J. High Energy Phys. 2006, 0602, 69. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S. CP Violation and Neutrino Masses and Mixings from Quark Mass Hierarchies. J. High Energy Phys. 2007, 0712, 30. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Nomura, Y.; Okui, T.; Tucker-Smith, D. SO(10) unified theories in six-dimensions. Phys. Rev. D 2002, 65, 035008. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.M. Gauge coupling unification in six dimensions. Phys. Rev. D 2007, 75, 065009. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S. Flavour structure and proton decay in 6D orbifold GUTs. J. High Energy Phys. 2004, 0409, 4. [Google Scholar] [CrossRef]
- Candelas, P.; Horowitz, G.T.; Strominger, A.; Witten, E. Vacuum Configurations for Superstrings. Nucl. Phys. B 1985, 258, 46. [Google Scholar] [CrossRef]
- Witten, E. Symmetry Breaking Patterns in Superstring Models. Nucl. Phys. B 1985, 258, 75. [Google Scholar] [CrossRef]
- Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E. Strings on Orbifolds. Nucl. Phys. B 1985, 261, 678. [Google Scholar] [CrossRef]
- Breit, J.D.; Ovrut, B.A.; Segre, G.C. E6 Symmetry Breaking in the Superstring Theory. Phys. Lett. B 1985, 158, 33. [Google Scholar] [CrossRef]
- Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E. Strings on Orbifolds 2. Nucl. Phys. B 1986, 274, 285. [Google Scholar] [CrossRef]
- Sen, A. Naturally Light Higgs Doublet in Supersymmetric E6 Grand Unified Theory. Phys. Rev. Lett. 1985, 55, 33. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, L.E.; Kim, J.E.; Nilles, H.P.; Quevedo, F. Orbifold Compactifications with Three Families of SU(3) × SU(2) × U(1)n. Phys. Lett. B 1987, 191, 282. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Raby, S.; Zhang, R.-J. Constructing 5-D orbifold grand unified theories from heterotic strings. Phys. Lett. B 2004, 593, 262. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Raby, S.; Zhang, R.-J. Searching for realistic 4d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold. Nucl. Phys. B 2005, 704, 3. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M. Supersymmetric standard model from the heterotic string. Phys. Rev. Lett. 2006, 96, 121602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, O.; Nilles, H.P.; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S.; Wingerter, A. A Mini-landscape of exact MSSM spectra in heterotic orbifolds. Phys. Lett. B 2007, 645, 88. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M. Supersymmetric Standard Model from the Heterotic String (II). Nucl. Phys. B 2007, 785, 149. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Ludeling, C.; Schmidt, J. Local SU(5) Unification from the Heterotic String. J. High Energy Phys. 2007, 0709, 113. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, O.; Nilles, H.P.; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S.; Wingerter, A. The Heterotic Road to the MSSM with R parity. Phys. Rev. D 2008, 77, 046013. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Chkareuli, J.L.; Kobakhidze, A. Composite quarks and leptons in higher space-time dimensions. Phys. Rev. D 2002, 66, 095013. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Neutrino masses in an extended gauge model with E6 particle content. Phys. Lett. B 1996, 380, 286. [Google Scholar] [CrossRef] [Green Version]
- Keith, E.; Ma, E. Generic consequences of a supersymmetric U(1) gauge factor at the TeV scale. Phys. Rev. D 1997, 56, 7155. [Google Scholar] [CrossRef] [Green Version]
- Suematsu, D. Neutralino decay in the μ problem solvable extra U(1) models. Phys. Rev. D 1998, 57, 1738. [Google Scholar] [CrossRef] [Green Version]
- Daikoku, Y.; Suematsu, D. Mass bound of the lightest neutral Higgs scalar in the extra U(1) models. Phys. Rev. D 2000, 62, 095006. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Theory and phenomenology of an exceptional supersymmetric standard model. Phys. Rev. D 2006, 73, 035009. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Exceptional supersymmetric standard model. Phys. Lett. B 2006, 634, 278. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Gauge coupling unification in the exceptional supersymmetric standard model. Phys. Lett. B 2007, 650, 57. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. E6SSM. AIP Conf. Proc. 2007, 881, 138. [Google Scholar]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Predictions of the Constrained Exceptional Supersymmetric Standard Model. Phys. Lett. B 2009, 681, 448. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. The Constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2009, 80, 035009. [Google Scholar] [CrossRef]
- Athron, P.; Hall, J.P.; Howl, R.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Aspects of the exceptional supersymmetric standard model. Nucl. Phys. Proc. Suppl. 2010, 200–202, 120. [Google Scholar] [CrossRef]
- Hall, J.P.; King, S.F.; Nevzorov, R.; Pakvasa, S.; Sher, M. Novel Higgs Decays and Dark Matter in the E6SSM. Phys. Rev. D 2011, 83, 075013. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. LHC Signatures of the Constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2011, 84, 055006. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV. Phys. Rev. D 2012, 86, 095003. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. E6 inspired supersymmetric models with exact custodial symmetry. Phys. Rev. D 2013, 87, 015029. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Quasifixed point scenarios and the Higgs mass in the E6 inspired supersymmetric models. Phys. Rev. D 2014, 89, 055010. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Pakvasa, S. Exotic Higgs decays in the E6 inspired SUSY models. Phys. Lett. B 2014, 728, 210. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Mühlleitner, M.; Nevzorov, R.; Williams, A.G. Non-Standard Higgs Decays in U(1) Extensions of the MSSM. J. High Energy Phys. 2015, 1501, 153. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. E6 Inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs. Phys. Lett. B 2016, 760, 19. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Pakvasa, S. Nonstandard Higgs decays in the E6 inspired SUSY models. Nucl. Part. Phys. Proc. 2016, 273-275, 690. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Nevzorov, R. 750 GeV Diphoton Resonance from Singlets in an Exceptional Supersymmetric Standard Model. J. High Energy Phys. 2016, 1603, 139. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. Dark matter in a constrained E6 inspired SUSY model. J. High Energy Phys. 2016, 1612, 128. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models. Phys. Lett. B 2018, 779, 223. [Google Scholar] [CrossRef]
- Nevzorov, R. E6 inspired SUSY models with custodial symmetry. Int. J. Mod. Phys. A 2018, 33, 1844007. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. A Review of the Exceptional Supersymmetric Standard Model. Symmetry 2020, 12, 557. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Higgs Boson with Mass around 125 GeV in SUSY Extensions of the SM. Phys. Atom. Nucl. 2020, 83, 338. [Google Scholar] [CrossRef]
- King, S.F.; Luo, R.; Miller, D.J.; Nevzorov, R. Leptogenesis in the Exceptional Supersymmetric Standard Model: Flavour dependent lepton asymmetries. J. High Energy Phys. 2008, 0812, 042. [Google Scholar] [CrossRef]
- Asaka, T.; Buchmuller, W.; Covi, L. Bulk and brane anomalies in six-dimensions. Nucl. Phys. B 2003, 648, 231. [Google Scholar] [CrossRef] [Green Version]
- von Gersdorff, G.; Quiros, M. Localized anomalies in orbifold gauge theories. Phys. Rev. D 2003, 68, 105002. [Google Scholar] [CrossRef] [Green Version]
- Scrucca, C.A.; Serone, M. Anomalies in field theories with extra dimensions. Int. J. Mod. Phys. A 2004, 19, 2579. [Google Scholar] [CrossRef] [Green Version]
- Borghini, N.; Gouverneur, Y.; Tytgat, M.H.G. Anomalies and fermion content of grand unified theories in extra dimensions. Phys. Rev. D 2002, 65, 025017. [Google Scholar] [CrossRef] [Green Version]
- von Gersdorff, G. Anomalies on Six Dimensional Orbifolds. J. High Energy Phys. 2007, 703, 83. [Google Scholar] [CrossRef]
- Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426. [Google Scholar] [CrossRef]
- Adler, S.L.; Bardeen, W.A. Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 1969, 182, 1517. [Google Scholar] [CrossRef]
- Bell, J.S.; Jackiw, R. A PCAC puzzle: Pi0 –> gamma gamma in the sigma model. Nuovo Cim. A 1969, 60, 47. [Google Scholar] [CrossRef] [Green Version]
- Green, M.B.; Schwarz, J.H. Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory. Phys. Lett. B 1984, 149, 117. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cohen, A.G.; Georgi, H. Anomalies on orbifolds. Phys. Lett. B 2001, 516, 395. [Google Scholar] [CrossRef] [Green Version]
- Scrucca, C.A.; Serone, M.; Silvestrini, L.; Zwirner, F. Anomalies in orbifold field theories. Phys. Lett. B 2002, 525, 169. [Google Scholar] [CrossRef]
- Barbieri, R.; Contino, R.; Creminelli, P.; Rattazzi, R.; Scrucca, C.A. Anomalies, Fayet-Iliopoulos terms and the consistency of orbifold field theories. Phys. Rev. D 2002, 66, 024025. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.G., II; Snow, W.M.; Babu, K.; Banerjee, S.; Baxter, D.V.; Berezhiani, Z.; Bergevin, M.; Bhattacharya, S.; Brooijmans, G.; Castellanos, L. Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects. Phys. Rept. 2016, 612, 1. [Google Scholar] [CrossRef] [Green Version]
- Kronfeld, A.S.; Tschirhart, R.S.; Al-Binni, U.; Altmannshofer, W.; Ankenbrandt, C.; Babu, K.; Banerjee, S.; Bass, M.; Batell, B.; Baxter, D.V. Project X: Physics Opportunities. arXiv 2013, arXiv:1306.5009. [Google Scholar]
- The ATLAS collaboration. A search for pair-produced resonances in four-jet final states at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2018, 78, 250. [Google Scholar]
- Cline, J.M.; Raby, S. Gravitino induced baryogenesis: A Problem made a virtue. Phys. Rev. D 1991, 43, 1781. [Google Scholar] [CrossRef]
- Scherrer, R.J.; Cline, J.M.; Raby, S.; Seckel, D. Gravitino induced baryogenesis, primordial nucleosynthesis, and the Tremaine-Gunn limit. Phys. Rev. D 1991, 44, 3760. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.; Raidal, M. Three active and two sterile neutrinos in an E6 model of diquark baryogenesis. J. Phys. G 2002, 28, 95. [Google Scholar] [CrossRef]
- Ma, E. Multiplicative conservation of baryon number and baryogenesis. Phys. Lett. B 2008, 661, 273. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Common Origin of (−)L, (−)3B, and Strong CP Conservation. Phys. Rev. D 2008, 78, 047701. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Axionic Extensions of the Supersymmetric Standard Model. Mod. Phys. Lett. A 2009, 24, 1335. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Mazumdar, A.; Sahu, N. Inflation, baryogenesis and gravitino dark matter at ultra low reheat temperatures. Phys. Rev. D 2009, 80, 103504. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Sundrum, R. Baryogenesis for weakly interacting massive particles. Phys. Rev. D 2013, 87, 116013. [Google Scholar] [CrossRef] [Green Version]
- Krauss, L.M.; Long, A.J.; Sabharwal, S. Gravitino Leptogenesis. Phys. Rev. D 2014, 89, 043503. [Google Scholar] [CrossRef] [Green Version]
- Rompineve, F. Weak Scale Baryogenesis in a Supersymmetric Scenario with R-parity violation. J. High Energy Phys. 2014, 1408, 014. [Google Scholar] [CrossRef] [Green Version]
- Boucenna, S.M.; Morisi, S. Theories relating baryon asymmetry and dark matter: A mini review. Front. Phys. 2014, 1, 33. [Google Scholar] [CrossRef] [Green Version]
- Ishiwata, K.; Jeong, K.S.; Takahashi, F. Moduli-induced Baryogenesis. J. High Energy Phys. 2014, 1402, 62. [Google Scholar] [CrossRef] [Green Version]
- Dhuria, M.; Hati, C.; Sarkar, U. Explaining the CMS excesses, baryogenesis and neutrino masses in E6 motivated U(1)N model. Phys. Rev. D 2016, 93, 015001. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y. A Review of WIMP Baryogenesis Mechanisms. Mod. Phys. Lett. A 2015, 30, 1530028. [Google Scholar] [CrossRef] [Green Version]
- Farina, M.; Monteux, A.; Shin, C.S. Twin mechanism for baryon and dark matter asymmetries. Phys. Rev. D 2016, 94, 035017. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Okui, T.; Yunesi, A. LHC Signatures of WIMP-triggered Baryogenesis. Phys. Rev. D 2016, 94, 115022. [Google Scholar] [CrossRef] [Green Version]
- Luty, M.A. Baryogenesis Via Leptogenesis. Phys. Rev. D 1992, 45, 455. [Google Scholar] [CrossRef] [PubMed]
- Flanz, M.; Paschos, E.A.; Sarkar, U. Baryogenesis from a lepton asymmetric universe. Phys. Lett. B 1995, 345, 248. [Google Scholar] [CrossRef] [Green Version]
- Plumacher, M. Baryogenesis and lepton number violation. Z. Phys. C 1997, 74, 549. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Plumacher, M. CP asymmetry in Majorana neutrino decays. Phys. Lett. B 1998, 431, 354. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.; Nardi, E.; Nir, Y. Leptogenesis. Phys. Rept. 2008, 466, 105. [Google Scholar] [CrossRef]
q | ℓ | h | s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
+ | − | + | − | + | − | + | − | + | − | − | |
− | + | + | − | + | + | − | − | + | + | + | |
− | − | + | + | + | − | − | + | + | − | − | |
+ | + | + | + | + | + | + | + | + | + | + |
q | ℓ | h | s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 4 | 1 | 1 | 1 | 1 | |||||
1 | 2 | 0 | 0 | 3 | 0 | 3 | |||||
1 | 2 | 1 | 2 | 1 | 0 | 5 | |||||
1 | 0 | 0 |
, , | , , | , | , , | , | , , | , , | , | , , | , | |
, | , | |||||||||
, | , | , , | , | , | , | , , | , | |||
, | , | |||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevzorov, R. E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe 2022, 8, 33. https://doi.org/10.3390/universe8010033
Nevzorov R. E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe. 2022; 8(1):33. https://doi.org/10.3390/universe8010033
Chicago/Turabian StyleNevzorov, Roman. 2022. "E6 GUT and Baryon Asymmetry Generation in the E6CHM" Universe 8, no. 1: 33. https://doi.org/10.3390/universe8010033
APA StyleNevzorov, R. (2022). E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe, 8(1), 33. https://doi.org/10.3390/universe8010033