Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review
Abstract
:1. Introduction
2. Search for UHE Photons
3. Blazar Jets Possible Source of UHE Photons
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active galactic nuclei |
BLR | Broad-line region |
CR | Cosmic rays |
CREDO | The Cosmic Ray Extremely Distributed Observatory |
EBL | Extra-galactic background light |
HESS | High Energy Stereoscopic System |
LPM | Landau–Pomeranchuk–Migdal |
MAGIC | Major Atmospheric Gamma Imaging Cherenkov Telescope |
MC | Monte Carlo |
Probability density function | |
PSD | Power spectral density |
UHE | Ultra-high energy |
UHECR | Ultra-high-energy cosmic rays |
1 | https://fermi.gsfc.nasa.gov/ (accessed on 30 August 2022). |
2 | https://www.mpp.mpg.de/en/research/astroparticle-physics-and-cosmology/magic-and-cta-gamma-ray-telescopes/magic (accessed on 30 August 2022). |
3 | https://www.mpi-hd.mpg.de/hfm/HESS/ (accessed on 30 August 2022). |
4 | https://icecube.wisc.edu/ (accessed on 30 August 2022). |
5 | https://www.phys.hawaii.edu/~anita/ (accessed on 30 August 2022). |
References
- Sarazin, F.; Anchordoqui, L.; Beatty, J.; Bergman, D.; Covault, C.; Farrar, G.; Krizmanic, J.; Nitz, D.; Olinto, A.; Unger, M.; et al. What is the nature and origin of the highest-energy particles in the universe? Bull. Am. Astron. Soc. 2019, 51, 93. [Google Scholar]
- Greisen, K. End to the Cosmic-Ray Spectrum? Phys. Rev. Lett. 1966, 16, 748–750. [Google Scholar] [CrossRef]
- Zatsepin, G.T.; Kuz’min, V.A. Upper Limit of the Spectrum of Cosmic Rays. Sov. J. Exp. Theor. Phys. Lett. 1966, 4, 78. [Google Scholar]
- Gelmini, G.B.; Kalashev, O.E.; Semikoz, D.V. GZK photons as ultra-high-energy cosmic rays. J. Exp. Theor. Phys. 2008, 106, 1061–1082. [Google Scholar] [CrossRef]
- Ellis, J.; Mayes, V.E.; Nanopoulos, D.V. Ultrahigh-energy cosmic rays particle spectra from crypton decays. Phys. Rev. D 2006, 74, 115003. [Google Scholar] [CrossRef] [Green Version]
- Birkel, M.; Sarkar, S. Extremely high energy cosmic rays from relic particle decays. Astropart. Phys. 1998, 9, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Blasi, P.; Dick, R.; Kolb, E.W. Ultra-high energy cosmic rays from annihilation of superheavy dark matter. Astropart. Phys. 2002, 18, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Murase, K. Ultrahigh-Energy Photons as a Probe of Nearby Transient Ultrahigh-Energy Cosmic-Ray Sources and Possible Lorentz-Invariance Violation. PhRvL 2009, 103, 081102. [Google Scholar] [CrossRef] [Green Version]
- Murase, K. High-energy Emission Induced by Ultra-high-energy Photons as a Probe of Ultra-high-energy Cosmic-Ray Accelerators Embedded in the Cosmic Web. ApJL 2012, 745, L16. [Google Scholar] [CrossRef]
- Amenomori, M.; Bao, Y.W.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Chen, X.; Chen, Y.; Cui, S.W.; Ding, L.K.; et al. [Tibet ASγ Collaboration]. First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source. Phys. Rev. Lett. 2019, 123, 051101. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Aharonian, F.A.; An, Q.; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef]
- Risse, M.; Homola, P. Search for Ultra-High Energy Photons Using Air Showers. Mod. Phys. Lett. A 2007, 22, 749–766. [Google Scholar] [CrossRef] [Green Version]
- Akharonian, F.A.; Kanevskii, B.L.; Vardanian, V.V. Interaction of Ultra-High Energy Cosmic-Rays with Microwave Background Radiation. Astrophys. Space Sci. 1990, 167, 93–110. [Google Scholar] [CrossRef]
- Lee, S.; Olinto, A.V.; Sigl, G. Extragalactic Magnetic Field and the Highest Energy Cosmic Rays. Astrophys. J. 1995, 455, L21. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2017, 2017, 009. [Google Scholar] [CrossRef] [Green Version]
- Migdal, A.B. Bremsstrahlung and Pair Production in Condensed Media at High Energies. Phys. Rev. 1956, 103, 1811–1820. [Google Scholar] [CrossRef]
- Wada, Y.; Inoue, N.; Miyazawa, K.; Vankov, H.P. Simulation Study on Identifiability of UHE Gamma-ray Air Showers. Nucl. Phys. B-Proc. Suppl. 2008, 175, 253–256. [Google Scholar] [CrossRef]
- Apel, W.D.; Arteaga-Velázquez, J.C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; et al. [KASCADE-Grande Collaboration]. KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV. Astrophys. J. 2017, 848, 1. [Google Scholar] [CrossRef] [Green Version]
- Fomin, Y.A.; Kalmykov, N.N.; Karpikov, I.S.; Kulikov, G.V.; Kuznetsov, M.Y.; Rubtsov, G.I.; Sulakov, V.P.; Troitsky, S.V. Constraints on the flux of ∼2×1015–2×1017.5 eV cosmic photons from the EAS-MSU muon data. Phys. Rev. D 2017, 95, 123011. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almeida Cheminant, K.; Almela, A.; Alvarez-Muniz, J.; Alves Batista, R.; Ammerman Yebra, J.; Anastasi, G.A.; et al. [Pierre Auger Collaboration]. A Search for Photons with Energies Above 2×1017 eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory. Astrophys. J. 2022, 933, 125. [Google Scholar] [CrossRef]
- Homola, P.; Góra, D.; Heck, D.; Klages, H.; Pȩkala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H. Simulation of ultra-high energy photon propagation in the geomagnetic field. Comput. Phys. Commun. 2005, 173, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Homola, P.; Engel, R.; Wilczyński, H. Angular Distribution of Cherenkov Photons from Air Showers Initiated by Protons, Iron Nuclei Or Photons of Energies from 10 TeV to 10 EeV in the Presence of the Geomagnetic Field. In Proceedings of the International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2–9 July 2013; Volume 33, p. 591. [Google Scholar]
- Dhital, N.; Homola, P.; Alvarez-Castillo, D.; GÓra, D.; WilczyĔski, H.; Almeida Cheminant, K.; Poncyljusz, B.; Mędrala, J.; Opiła, G.; Bhatt, A.; et al. [The CREDO Collaboration]. Cosmic ray ensembles as signatures of ultra-high energy photons interacting with the solar magnetic field. J. Cosmol. Astropart. Phys. 2022, 2022, 038. [Google Scholar] [CrossRef]
- Alvarez-Castillo, D.E.; Sushchov, O.; Homola, P.; Beznosko, D.; Budnev, N.; GÓra, D.; Gupta, A.C.; Hnatyk, B.; Kasztelan, M.; Kovacs, P.; et al. [The CREDO Collaboration]. Simulations of Cosmic Ray Ensembles originated nearby the Sun. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 457. [Google Scholar]
- Cheminant, K.A.; Góra, D.; Castillo, D.E.A.; Ćwikła, A.; Dhital, N.; Duffy, A.R.; Homola, P.; Kopański, K.; Kasztelan, M.; Kovacs, P.; et al. Search for ultra-high energy photons through preshower effect with gamma-ray telescopes: Study of CTA-North efficiency. Astropart. Phys. 2020, 123, 102489. [Google Scholar] [CrossRef]
- Poncyljusz, B.; Bulik, T.; Dhital, N.; Sushchov, O.; Stuglik, S.; Homola, P.; Alvarez-Castillo, D.; Piekarczyk, M.; Wibig, T.; Stasielak, J.; et al. Simulation of the isotropic ultra-high energy photons flux in the solar magnetic field. arXiv 2022, arXiv:2205.14266. [Google Scholar] [CrossRef]
- Clay, R.; Singh, J.; Homola, P.; Bar, O.; Beznosko, D.; Bhatt, A.; Bhatta, G.; Bibrzycki, Ł.; Budnev, N.; Alvarez-Castillo, D.E.; et al. A Search for Cosmic Ray Bursts at 0.1 PeV with a Small Air Shower Array. Symmetry 2022, 14, 501. [Google Scholar] [CrossRef]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. Cosmic-Ray Extremely Distributed Observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. R. Astron. Soc. 1998, 299, 433–448. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Gamma-ray Light Curves and Variability of Bright Fermi-detected Blazars. Astrophys. J. 2010, 722, 520–542. [Google Scholar] [CrossRef] [Green Version]
- Tursunov, A.; Stuchlík, Z.; Kološ, M.; Dadhich, N.; Ahmedov, B. Supermassive Black Holes as Possible Sources of Ultrahigh-energy Cosmic Rays. Astrophys. J. 2020, 895, 14. [Google Scholar] [CrossRef]
- Rodrigues, X.; Heinze, J.; Palladino, A.; van Vliet, A.; Winter, W. Active Galactic Nuclei Jets as the Origin of Ultrahigh-Energy Cosmic Rays and Perspectives for the Detection of Astrophysical Source Neutrinos at EeV Energies. Phys. Rev. Lett. 2021, 126, 191101. [Google Scholar] [CrossRef]
- IceCube Collaboration; Fermi-LAT; MAGIC; AGILE; ASAS-SN; HAWC; H.E.S.S.; INTEGRAL; Kanata; Kiso; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. [IceCube Collaboration]. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar]
- Dermer, C.D.; Murase, K.; Inoue, Y. Photopion production in black-hole jets and flat-spectrum radio quasars as PeV neutrino sources. J. High Energy Astrophys. 2014, 3, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Petropoulou, M.; Coenders, S.; Dimitrakoudis, S. Time-dependent neutrino emission from Mrk 421 during flares and predictions for IceCube. Astropart. Phys. 2016, 80, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Atoyan, A.; Dermer, C.D. High-Energy Neutrinos from Photomeson Processes in Blazars. Phys. Rev. Lett. 2001, 87, 221102. [Google Scholar] [CrossRef] [Green Version]
- Kreter, M.; Kadler, M.; Krauß, F.; Mannheim, K.; Buson, S.; Ojha, R.; Wilms, J.; Böttcher, M. On the Detection Potential of Blazar Flares for Current Neutrino Telescopes. Astrophys. J. 2020, 902, 133. [Google Scholar] [CrossRef]
- Bednarek, W.; Protheroe, R.J. Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. R. Astron. Soc. 1999, 302, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Schuster, C.; Pohl, M.; Schlickeiser, R. Neutrinos from a channelled blast wave in jets of AGN. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; Volume 7, p. 2709. [Google Scholar]
- Mannheim, K. High-energy neutrinos from extragalactic jets. Astropart. Phys. 1995, 3, 295–302. [Google Scholar] [CrossRef]
- Dermer, C.D.; Menon, G. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Dermer, C.D.; Razzaque, S.; Finke, J.D.; Atoyan, A. Ultra-high-energy cosmic rays from black hole jets of radio galaxies. New J. Phys. 2009, 11, 065016. [Google Scholar] [CrossRef]
- Dermer, C.D.; Murase, K.; Takami, H. Variable Gamma-Ray Emission Induced by Ultra-high Energy Neutral Beams: Application to 4C +21.35. Astrophys. J. 2012, 755, 147. [Google Scholar] [CrossRef] [Green Version]
- Halzen, F.; Kheirandish, A.; Weisgarber, T.; Wakely, S.P. On the Neutrino Flares from the Direction of TXS 0506+056. Astrophys. J. Lett. 2019, 874, L9. [Google Scholar] [CrossRef] [Green Version]
- Kirk, J.G.; Rieger, F.M.; Mastichiadis, A. Particle acceleration and synchrotron emission in blazar jets. Astron. Astrophys. 1998, 333, 452–458. [Google Scholar]
- Mannheim, K. γ rays and neutrinos from a powerful cosmic accelerator. Phys. Rev. D 1993, 48, 2408–2414. [Google Scholar] [CrossRef]
- Bell, A.R.; Araudo, A.T.; Matthews, J.H.; Blundell, K.M. Cosmic-ray acceleration by relativistic shocks: Limits and estimates. Mon. Not. R. Astron. Soc. 2018, 473, 2364–2371. [Google Scholar] [CrossRef]
- Mbarek, R.; Caprioli, D. Bottom-up Acceleration of Ultra-high-energy Cosmic Rays in the Jets of Active Galactic Nuclei. Astrophys. J. 2019, 886, 8. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, G.; Dhital, N. The Nature of γ-Ray Variability in Blazars. Astrophys. J. 2020, 891, 120. [Google Scholar] [CrossRef] [Green Version]
- De Gouveia Dal Pino, E.; Medina-Torrejon, T.E.; Kadowaki, L.H.S.; Kowal, G.; Rodriguez-Ramirez, J.C. Ultra-high-energy cosmic ray acceleration by magnetic reconnection in relativistic jets and the origin of very high energy emission. arXiv 2022, arXiv:2204.09100. [Google Scholar]
- Drake, J.F.; Swisdak, M.; Che, H.; Shay, M.A. Electron acceleration from contracting magnetic islands during reconnection. Nature 2006, 443, 553–556. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304. Astrophys. J. Lett. 2007, 664, L71–L74. [Google Scholar] [CrossRef]
- Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, G. Characterizing Long-term Optical Variability Properties of γ-Ray-bright Blazars. Astrophys. J. 2021, 923, 7. [Google Scholar] [CrossRef]
- Mbarek, R.; Caprioli, D. Espresso and Stochastic Acceleration of Ultra-high-energy Cosmic Rays in Relativistic Jets. Astrophys. J. 2021, 921, 85. [Google Scholar] [CrossRef]
- Asano, K.; Takahara, F.; Kusunose, M.; Toma, K.; Kakuwa, J. Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration. Astrophys. J. 2014, 780, 64. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars. Astrophys. J. 2014, 780, 87. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatta, G. Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review. Universe 2022, 8, 513. https://doi.org/10.3390/universe8100513
Bhatta G. Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review. Universe. 2022; 8(10):513. https://doi.org/10.3390/universe8100513
Chicago/Turabian StyleBhatta, Gopal. 2022. "Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review" Universe 8, no. 10: 513. https://doi.org/10.3390/universe8100513
APA StyleBhatta, G. (2022). Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review. Universe, 8(10), 513. https://doi.org/10.3390/universe8100513