Software and Techniques for VLBI Data Processing and Analysis
Abstract
:1. Introduction
2. Correlation
2.1. Software Correlators
2.2. Station Clock Model
2.3. Processing at the Correlator
2.4. Correlator Delay Model
2.5. Correlator Parameters
2.6. Correlator Output
3. Signal Stabilization
3.1. AIPS
ParselTongue
3.2. CASA
3.2.1. rPICARD
3.2.2. VPIPE
3.2.3. The e-MERLIN CASA Pipeline
3.2.4. JIVE EVN Continuum Jupyter Notebooks
3.3. EHT-HOPS
3.4. PIMA
4. Flux Density Calibration
4.1. Software Implementations
4.2. Advanced Methods Based on Array Redundancy and a Priori Source Assumptions
- A network calibration [73,111] can be employed if the unresolved flux density on large scales seen by short baselines in the VLBI array is known. The method only works for telescope sites that are close enough (almost co-located or in “walking distance”) to effectively form a zero-baseline interferometer. The flux density measurement used to calibrate the gains can be obtained from (quasi-)simultaneous single-dish or connected-element-interferometry observations and allows for an absolute amplitude calibration. A least-squares approach with all baselines to pairs of redundant sites are used to robustly constrain the gains of the two neighboring antennas. A convenient implementation of the network calibration method can be found in the eht-imaging software (Section 5.1.5).
- Cross-track calibration [118] is based on the fact that redundant baselines anywhere in the space should measure the same source properties’ modulo intrinsic source variability. A threshold can be set for how close two baselines should be to be considered identical, given how “quickly” the source structure varies in the Fourier space. Baselines might cross within a small region or stay closely parallel for long -tracks. Network calibration is a special case of the cross-track calibration, where a known total flux density can be used for an absolute gain calibration. Generally, we have no a priori knowledge about the resolved source structure at larger -spacings. Here, the least-squares solver can be used for all redundant baselines to tighten the gains of the involved stations by constraining the amplitude ratio of crossing-track baselines to unity. In the absence of accurate and independent flux density information, the product of the solved gains are enforced to be unity to only solve for relative gains without adjusting the total flux density. Within AIPS, the UVCRS task can be used as a diagnostic tool to identify anomalous gains of stations that are involved in crossing -tracks. The only real cross-track calibration method implementation that the authors are aware of is the UVCROSS Caltech VLBI Analysis Program [119] 30.
- Second-moment source size calibration [120] can be employed under the assumption that the short baselines in the array sample a simple large-scale source structure such as a Gaussian. From the assumed large-scale image, model amplitudes can be computed and gains from the stations connected by short baselines can be obtained by self-calibration (Section 5). For a single baseline, a common application is to keep the gains fixed for the station that has the more accurate SEFD-based a priori flux density calibration. This method can be employed by all imaging software packages’ self-calibration routines. A convenient implementation can be found in eht-imaging.
5. Imaging and Geometric Model-Fitting
5.1. Software Implementations
5.1.1. AIPS
5.1.2. CASA
5.1.3. Difmap
5.1.4. WSClean
5.1.5. eht-Imaging
5.1.6. SMILI
5.1.7. UVMULTIFIT
5.1.8. Comrade and DPI
6. Advanced Scientific Applications
6.1. Polarization Calibration
6.1.1. Additional Polarization Signal Stabilization Steps
6.1.2. Solving for Polarization Leakage Effects
6.1.3. Circular Polarization
6.2. Spectral Line Observations
6.2.1. Spectral Line Signal Stabilization
6.2.2. Template Spectrum Flux Density Calibration
6.2.3. Spectral Line Imaging
6.3. Wide-Field VLBI
6.3.1. Wide-Field Correlation
6.3.2. Wide-Field Signal Stabilization
6.3.3. Wide-Field Imaging: Primary Beam Correction, the W Term, and Multi-Source Phase Self Calibration
- Faceting [162] performs a 2D Fourier-transform for a number of different phase centers across the FOV. The resultant pieces of image facets are small enough that the 2D FFT approximation works. The facets are stitched together and deconvolved.
- w-projection [163] uses the fact that the visibility as a function of w can be calculated from at through a convolution operation: . Here, is the Fourier transform of . This method is faster than faceting because the visibilities need to be gridded only once.
- w-stacking [108] uses a w-dependent grid that is FFT’ed for each gridded w value and phase-shifted by . For imaging, all grids are summed with appropriate scaling factors (see [108], for details). Compared to w-projection, w-stacking is faster when the visibility gridding is computationally more expensive than the FFT computations.
7. Synthetic Data
8. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active galactic nuclei |
ALMA | Atacama Large Millimeter/submillimeter Array |
ASCII | American Standard Code for Information Interchange |
ASIC | Application-specific integrated circuit |
CLEAN | Imaging algorithm for an incomplete Fourier coverage |
EHT | Event Horizon Telescope |
EVN | European VLBI Network |
EVPA | Electric vector polarization angle |
EOP | Earth orientation parameter |
FFT | Fast Fourier transform |
FPGA | Field-programmable gate array |
FOV | Field of view |
FPT | Frequency-phase-transfer |
Gbps | Gigabit per second |
GMVA | Global mm-VLBI array |
GPS | Global Positioning System |
GPU | Graphics processing unit |
GRMHD | General relativistic magnetohydrodynamics |
HPC | High-performance computing |
IDG | Image-domain gridder |
IERS | International Earth Rotation and Reference Systems Service |
JIVE | Joint Institute for Very Long Baseline Interferometry European Research Infrastructure Consortium |
KVN | Korean VLBI Network |
LCP | Left circularly polarized |
LOFAR | Low Frequency Array |
MAD | Magnetically arrested accretion disc |
MERLIN | Multi-Element Radio Linked Interferometer Network |
MFS | Multi-frequency synthesis |
MPI | Message Passing Interface |
MSC | Multi-scale CLEAN |
MSSC | Multi-source self-calibration |
MS-MFS | Multi-scale multi-frequency synthesis (combines MSC with MT-MFS) |
MT-MFS | Multi-term multi-frequency synthesis |
ngEHT | Next-generation Event Horizon Telescope |
ngVLA | Next-generation Very Large Array |
NRAO | National Radio Astronomy Observatory |
RCP | Right circularly polarized |
RML | Regularized maximum likelihood |
PI | Principal investigator |
PSF | Point spread function |
RF | Radio frequency |
RFI | Radio frequency interference |
SANE | Standard and normal evolution accretion state |
SEFD | System equivalent flux density |
SFPR | Source frequency phase referencing |
SKA | Square Kilometre Array |
Signal-to-noise ratio | |
TCP | Transmission Control Protocol |
TEC | Total electron content |
UDP | User Datagram Protocol |
UT | Universal Time |
VERA | VLBI Exploration of Radio Astrometry |
VGOS | VLBI Global Observing System |
VLA | Very Large Array |
VLBA | Very-Long Baseline-Array |
VLBI | Very-long-baseline interferometry |
Appendix A. Telescope Baseband Data Transport to the VLBI Correlator
Appendix B. Data Flagging
1 | The sched user manual (Available online: http://www.aoc.nrao.edu/software/sched (accessed on 30 July 2022)). See also pySCHED ( Available online: https://github.com/jive-vlbi/sched (accessed on 30 July 2022)) and the EVN Observation Planner (Available online: https://planobs.jive.eu (accessed on 30 July 2022)). |
2 | DiFX. Available online: https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/documentation, accessed on 30 July 2022. |
3 | SFXC. Available online: https://www.jive.eu/jivewiki/doku.php?id=sfxc, accessed on 30 July 2022). |
4 | GPU Acceleration of the DiFX Software Correlator. Available online: https://adacs.org.au/project/gpu-acceleration-of-the-difx-software-correlator, accessed on 30 July 2022. |
5 | VEX definition. Available online: https://vlbi.org/wp-content/uploads/2019/03/vex-definition-15b1.pdf, accessed on 30 July 2022. |
6 | FITS-IDI definition. Available online: https://fits.gsfc.nasa.gov/registry/fitsidi/AIPSMEM114.PDF, accessed on 30 July 2022. |
7 | MS definition version 2.0. Available online: https://casa.nrao.edu/Memos/229.html, accessed on 30 July 2022. |
8 | Mk4 File Format Definitions. Available online: https://www.haystack.mit.edu/wp-content/uploads/2020/07/docs_hops_002_mk4_files.txt, accessed on 30 July 2022. |
9 | vgosDB NetCDF. Available online: https://vievswiki.geo.tuwien.ac.at/VLBI-Analysis/Input-data, accessed on 30 July 2022.) visibility data formats. |
10 | PolConvert. Available online: https://github.com/marti-vidal-i/PolConvert, accessed on 30 July 2022. |
11 | Astronomical Image Processing System. Available online: http://www.aips.nrao.edu, accessed on 30 July 2022. |
12 | The UVFITS format is following AIPS conventions. AIPS Memo 117 revised. Available online: ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEM117.PS, accessed on 30 July 2022. The AIPS FITS format can sometimes change. The format is therefore not well defined and different software packages use slightly different conventions |
13 | AIPS cookbook. Available online: http://www.aips.nrao.edu/cook.html, accessed on 30 July 2022. |
14 | The Parseltongue Wiki: https://www.jive.eu/jivewiki/doku.php?id=parseltongue:parseltongue, accessed on 30 July 2022. |
15 | CASA. Available online: https://casa.nrao.edu, accessed on 30 July 2022. |
16 | ngCASA. Available online: https://pypi.org/project/ngcasa, accessed on 30 July 2022. |
17 | rPICARD pipeline. Available online: https://bitbucket.org/M_Janssen/picard, accessed on 30 July 2022. |
18 | Generic VLBI pipeline. Available online: https://github.com/jradcliffe5/VLBI_pipeline, accessed on 30 July 2022. |
19 | eMERLIN CASA pipeline. Available online: https://github.com/e-merlin/eMERLIN_CASA_pipeline, accessed on 30 July 2022. |
20 | AOFlagger. Available online: https://gitlab.com/aroffringa/aoflagger, accessed on 30 July 2022. |
21 | WSCLEAN. Available online: https://gitlab.com/aroffringa/wsclean, accessed on 30 July 2022. |
22 | EVN_CASA_pipeline. Available online: https://code.jive.eu/bemmel/EVN_CASA_pipeline, accessed on 30 July 2022. See also the EVN data reduction guide. Available online: https://www.evlbi.org/evn-data-reduction-guide, accessed on 30 July 2022. |
23 | Haystack Observatory Postprocessing System. Available online: https://www.haystack.mit.edu/haystack-observatory-postprocessing-system-hops, accessed on 30 July 2022. |
24 | The Event Horizon Telescope Analysis Toolkit. Available online: https://github.com/sao-eht/eat, accessed on 30 July 2022. |
25 | VLBI processing software PIMA. Available online: http://astrogeo.org/pima, accessed on 30 July 2022. |
26 | ANTAB format. Available online: http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?ANTAB, accessed on 30 July 2022. |
27 | Opacity Correction for High Frequency VLBI Observations. Available online: https://library.nrao.edu/public/memos/vlba/sci/VLBAS_01.pdf, accessed on 30 July 2022. |
28 | CASA-VLBI Scripts. Available online: https://github.com/jive-vlbi/casa-vlbi, accessed on 30 July 2022. |
29 | https://github.com/sao-eht/eat, accessed on 30 July 2022. |
30 | The Caltech VLBI Programs. Available online:https://sites.astro.caltech.edu/~tjp/citvlb, accessed on 30 July 2022, have been discontinued and are therefore not considered further in this work |
31 | Difmap. Available online: ftp://ftp.astro.caltech.edu/pub/difmap/difmap.html, accessed on 30 July 2022. |
32 | WSCLEAN. Available online: https://gitlab.com/aroffringa/wsclean, accessed on 30 July 2022. |
33 | ehtim. Available online: https://github.com/achael/eht-imaging, accessed on 30 July 2022. |
34 | SMILI. Available online: https://github.com/astrosmili/smili, accessed on 30 July 2022. |
35 | UVMultiFit’s Documentation. Available online: http://mural.uv.es/imarvi/docums/uvmultifit, accessed on 30 July 2022. |
36 | Note that the telescope focus and mount configuration information are not always correctly specified in the visibility data files produced by the correlators. For all software packages described here, there are methods to overwrite this information manually. |
37 | See Strom [158] for the primary beam of a heterogeneous interferometer array. |
38 | We note that this is not strictly the case outside the main primary beam lobe, especially for non-equatorial mounts, where the different parallactic angles at each antenna result in different side-lobe structure |
39 | MeqTrees. Available online: http://meqtrees.net, accessed on 30 July 2022. |
40 | SYMBA. Available online: https://bitbucket.org/M_Janssen/symba |
41 | MeqSilhouete. Available online: https://github.com/rdeane/MeqSilhouette, accessed on 30 July 2022. |
42 | VNSIM. Available online: https://github.com/ZhenZHAO/VNSIM, accessed on 30 July 2022. |
43 | KERN. Available online: https://kernsuite.info, accessed on 30 July 2022. |
44 | JIVE FlexBuff RAID/JBOD recorders, Gbps, scalable, stationary. Available online: https://www.jive.eu/technical-operations-rd-group, accessed on 30 July 2022. |
45 | Conduant/MIT Haystack Mark 6, max. 32 Gbps, shippable. Available online: https://www.haystack.mit.edu/mark-6-vlbi-data-system/, accessed on 30 July 2022. |
46 | Elecs/NAOJ Octadisk2, max. 32 Gbps, shippable. Available online: https://www.elecs.co.jp/product/removable_storage.html, accessed on 30 July 2022. |
47 | Available online: https://github.com/jive-vlbi/jive5ab accessed on 30 July 2022. |
48 | Available online: https://github.com/jive-vlbi/etransfer, accessed on 30 July 2022. |
49 | Available online: https://tsunami-udp.sourceforge.net, accessed on 30 July 2022. |
50 | Available online: https://www.globus.org/, accessed on 30 July 2022. |
51 | RFI affects autocorrelation-based calibration steps and strong RFI can also affect the cross-correlations. |
References
- Gaylard, M.J.; Bietenholz, M.F.; Combrinck, L.; Booth, R.S.; Buchner, S.J.; Fanaroff, B.L.; MacLeod, G.C.; Nicolson, G.D.; Quick, J.F.H.; Stronkhorst, P.; et al. An African VLBI Network of radio telescopes. arXiv 2014, arXiv:1405.7214. [Google Scholar]
- Deane, R. Extragalactic VLBI surveys in the MeerKAT era. In Proceedings of the MeerKAT Science: On the Pathway to the SKA, Stellenbosch, South Africa, 25–27 May 2016; p. 17. [Google Scholar]
- Matthews, L.D.; Crew, G.B.; Doeleman, S.S.; Lacasse, R.; Saez, A.F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J.M.; Barkats, D.A.; et al. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths. Publ. Astron. Soc. Pac. 2018, 130, 015002. [Google Scholar] [CrossRef] [Green Version]
- Venturi, T.; Paragi, Z.; Lindqvist, M.; Bartkiewicz, A.; Beswick, R.; Bogdanović, T.; Brisken, W.; Charlot, P.; Colomer, F.; Conway, J.; et al. VLBI20-30: A scientific roadmap for the next decade—The future of the European VLBI Network. arXiv 2020, arXiv:2007.02347. [Google Scholar]
- Barbosa, D.; Coelho, B.; Antón, S.; Bergano, M.; Boekholt, T.; Correia, A.C.M.; Maia, D.; Pandeirada, J.; Ribeiro, V.; Adams, J.; et al. Radio astronomy and Space science in Azores: Enhancing the Atlantic VLBI infrastructure cluster. Adv. Space Res. 2021, 68, 3064–3078. [Google Scholar] [CrossRef]
- Whitney, A.R.; Beaudoin, C.J.; Cappallo, R.J.; Corey, B.E.; Crew, G.B.; Doeleman, S.S.; Lapsley, D.E.; Hinton, A.A.; McWhirter, S.R.; Niell, A.E.; et al. Demonstration of a 16 Gbps Station-1 Broadband-RF VLBI System. Publ. Astron. Soc. Pac. 2013, 125, 196. [Google Scholar] [CrossRef]
- Vertatschitsch, L.; Primiani, R.; Young, A.; Weintroub, J.; Crew, G.B.; McWhirter, S.R.; Beaudoin, C.; Doeleman, S.; Blackburn, L. R2DBE: A Wideband Digital Backend for the Event Horizon Telescope. Publ. Astron. Soc. Pac. 2015, 127, 1226. [Google Scholar] [CrossRef]
- Han, S.T.; Lee, J.W.; Kang, J.; Je, D.H.; Chung, M.H.; Wi, S.O.; Sasao, T.; Wylde, R. Millimeter-wave Receiver Optics for Korean VLBI Network. Int. J. Infrared Millim. Waves 2008, 29, 69–78. [Google Scholar] [CrossRef]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. A&A Rev. 2017, 25, 4. [Google Scholar] [CrossRef] [Green Version]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Selina, R.J.; Murphy, E.J.; McKinnon, M.; Beasley, A.; Butler, B.; Carilli, C.; Clark, B.; Durand, S.; Erickson, A.; Grammer, W.; et al. Science with an ngVLA: The ngVLA Reference Design. arXiv 2018, arXiv:astro-ph.IM/1810.08197. [Google Scholar]
- Murphy, E.J.; Bolatto, A.; Chatterjee, S.; Casey, C.M.; Chomiuk, L.; Dale, D.; de Pater, I.; Dickinson, M.; Francesco, J.D.; Hallinan, G.; et al. Science with an ngVLA: The ngVLA Science Case and Associated Science Requirements. arXiv 2018, arXiv:astro-ph.IM/1810.07524. [Google Scholar]
- Dewdney, P.E.; Hall, P.J.; Schilizzi, R.T.; Lazio, T.J.L.W. The Square Kilometre Array. IEEE Proc. 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- Paragi, Z.; Godfrey, L.; Reynolds, C.; Rioja, M.; Deller, A.; Zhang, B.; Gurvits, L.; Bietenholz, M.; Szomoru, A.; Bignall, H.; et al. Very Long Baseline Interferometry with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14). arXiv 2015, arXiv:astro-ph.IM/1412.5971. [Google Scholar]
- Doeleman, S.; Blackburn, L.; Dexter, J.; Gomez, J.L.; Johnson, M.D.; Palumbo, D.C.; Weintroub, J.; Farah, J.R.; Fish, V.; Loinard, L.; et al. Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull. Am. Astron. Soc. 2019, 51, 256. [Google Scholar]
- Kardashev, N.S.; Novikov, I.D.; Lukash, V.N.; Pilipenko, S.V.; Mikheeva, E.V.; Bisikalo, D.V.; Wiebe, D.S.; Doroshkevich, A.G.; Zasov, A.V.; Zinchenko, I.I.; et al. Review of scientific topics for the Millimetron space observatory. Phys. Uspekhi 2014, 57, 1199–1228. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Haworth, K.; Pesce, D.W.; Palumbo, D.C.M.; Blackburn, L.; Akiyama, K.; Boroson, D.; Bouman, K.L.; Farah, J.R.; Fish, V.L.; et al. Studying black holes on horizon scales with space-VLBI. Bull. Am. Astron. Soc. 2019, 51, 235. [Google Scholar]
- Fish, V.L.; Shea, M.; Akiyama, K. Imaging black holes and jets with a VLBI array including multiple space-based telescopes. Adv. Space Res. 2020, 65, 821–830. [Google Scholar] [CrossRef]
- Gurvits, L.I.; Paragi, Z.; Casasola, V.; Conway, J.; Davelaar, J.; Falcke, H.; Fender, R.; Frey, S.; Fromm, C.M.; Miró, C.G.; et al. THEZA: TeraHertz Exploration and Zooming-in for Astrophysics. Exp. Astron. 2021, 51, 559–594. [Google Scholar] [CrossRef]
- Marcote, B.; Paragi, Z.; Hessels, J.W.T.; Keimpema, A.; van Langevelde, H.J.; Huang, Y.; Bassa, C.G.; Bogdanov, S.; Bower, G.C.; Burke-Spolaor, S.; et al. The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. Astrophys. J. Lett. 2017, 834, L8. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Gabuzda, D. Evidence for Helical Magnetic Fields Associated with AGN Jets and the Action of a Cosmic Battery. Galaxies 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Gabuzda, D.C. Polarization VLBI observations of AGN jets now and into the future. Adv. Space Res. 2020, 65, 731–738. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett. 2021, 910, L12. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett. 2021, 910, L13. [Google Scholar] [CrossRef]
- Gabuzda, D.C. Inherent and Local Magnetic Field Structures in Jets from Active Galactic Nuclei. Galaxies 2021, 9, 58. [Google Scholar] [CrossRef]
- Habing, H.J. Circumstellar envelopes and Asymptotic Giant Branch stars. Astron. Astrophys. Rev. 1996, 7, 97–207. [Google Scholar] [CrossRef]
- Momjian, E.; Romney, J.D.; Carilli, C.L.; Troland, T.H. Sensitive VLBI Continuum and H I Absorption Observations of NGC 7674: First Scientific Observations with the Combined Array VLBA, VLA, and Arecibo. Astrophys. J. 2003, 597, 809–822. [Google Scholar] [CrossRef]
- Goddi, C.; Moscadelli, L.; Alef, W.; Tarchi, A.; Brand, J.; Pani, M. Kinematics of H2O masers in high-mass star forming regions. Astron. Astrophys. 2005, 432, 161–173. [Google Scholar] [CrossRef]
- Hachisuka, K.; Brunthaler, A.; Menten, K.M.; Reid, M.J.; Imai, H.; Hagiwara, Y.; Miyoshi, M.; Horiuchi, S.; Sasao, T. Water Maser Motions in W3(OH) and a Determination of Its Distance. Astrophys. J. 2006, 645, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.; Braatz, J.A.; Condon, J.J.; Greenhill, L.J.; Henkel, C.; Lo, K.Y. The Megamaser Cosmology Project. I. Very Long Baseline Interferometric Observations of UGC 3789. Astrophys. J. 2009, 695, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Brunthaler, A.; Reid, M.J.; Menten, K.M.; Zheng, X.W.; Bartkiewicz, A.; Choi, Y.K.; Dame, T.; Hachisuka, K.; Immer, K.; Moellenbrock, G.; et al. The Bar and Spiral Structure Legacy (BeSSeL) survey: Mapping the Milky Way with VLBI astrometry. Astron. Nachrichten 2011, 332, 461. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Moscadelli, L.; Sanna, A. Infall and outflow within 400 AU from a high-mass protostar. 3D velocity fields from methanol and water masers in AFLG 5142. Astron. Astrophys. 2011, 535, L8. [Google Scholar] [CrossRef]
- Reid, M.J.; Braatz, J.A.; Condon, J.J.; Lo, K.Y.; Kuo, C.Y.; Impellizzeri, C.M.V.; Henkel, C. The Megamaser Cosmology Project. IV. A Direct Measurement of the Hubble Constant from UGC 3789. Astrophys. J. 2013, 767, 154. [Google Scholar] [CrossRef]
- Goddi, C.; Surcis, G.; Moscadelli, L.; Imai, H.; Vlemmings, W.H.T.; van Langevelde, H.J.; Sanna, A. Measuring magnetic fields from water masers in the synchrotron protostellar jet in W3(H2O). Astron. Astrophys. 2017, 597, A43. [Google Scholar] [CrossRef] [Green Version]
- Moscadelli, L.; Sanna, A.; Goddi, C.; Krishnan, V.; Massi, F.; Bacciotti, F. Protostellar Outflows at the EarliesT Stages (POETS). III. H2O masers tracing disk-winds and jets near luminous YSOs. Astron. Astrophys. 2019, 631, A74. [Google Scholar] [CrossRef] [Green Version]
- Garrett, M.A.; Muxlow, T.W.B.; Garrington, S.T.; Alef, W.; Alberdi, A.; van Langevelde, H.J.; Venturi, T.; Polatidis, A.G.; Kellermann, K.I.; Baan, W.A.; et al. AGN and starbursts at high redshift: High resolution EVN radio observations of the Hubble Deep Field. Astron. Astrophys. 2001, 366, L5–L8. [Google Scholar] [CrossRef]
- Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R.P.; Best, P.N.; Brisken, W.; Schinnerer, E.; Smolčić, V.; Delvecchio, I.; Momjian, E.; et al. The faint radio sky: VLBA observations of the COSMOS field. Astron. Astrophys. 2017, 607, A132. [Google Scholar] [CrossRef]
- Radcliffe, J.F.; Garrett, M.A.; Muxlow, T.W.B.; Beswick, R.J.; Barthel, P.D.; Deller, A.T.; Keimpema, A.; Campbell, R.M.; Wrigley, N. Nowhere to Hide: Radio-faint AGN in GOODS-N field. I. Initial catalogue and radio properties. Astron. Astrophys. 2018, 619, A48. [Google Scholar] [CrossRef] [Green Version]
- Spingola, C.; Mckean, J.P.; Deller, A.; Moldon, J. Gravitational lensing at milliarcsecond angular resolution with VLBI observations. In Proceedings of the 14th European VLBI Network Symposium & Users Meeting (EVN 2018), Granada, Spain, 8–11 October 2018; p. 33. [Google Scholar]
- Spingola, C.; McKean, J.P.; Lee, M.; Deller, A.; Moldon, J. A novel search for gravitationally lensed radio sources in wide-field VLBI imaging from the mJIVE-20 survey. Mon. Not. R. Astron. Soc. 2019, 483, 2125–2153. [Google Scholar] [CrossRef]
- Deller, A.T.; Goss, W.M.; Brisken, W.F.; Chatterjee, S.; Cordes, J.M.; Janssen, G.H.; Kovalev, Y.Y.; Lazio, T.J.W.; Petrov, L.; Stappers, B.W.; et al. Microarcsecond VLBI Pulsar Astrometry with PSRπ II. Parallax Distances for 57 Pulsars. Astrophys. J. 2019, 875, 100. [Google Scholar] [CrossRef] [Green Version]
- Duev, D.A.; Molera Calvés, G.; Pogrebenko, S.V.; Gurvits, L.I.; Cimó, G.; Bocanegra Bahamon, T. Spacecraft VLBI and Doppler tracking: Algorithms and implementation. Astron. Astrophys. 2012, 541, A43. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.R.; Moran, J.M.; Swenson, G.W., Jr. Interferometry and Synthesis in Radio Astronomy, 3rd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef] [Green Version]
- Morabito, L.K.; Jackson, N.J.; Mooney, S.; Sweijen, F.; Badole, S.; Kukreti, P.; Venkattu, D.; Groeneveld, C.; Kappes, A.; Bonnassieux, E.; et al. Sub-arcsecond imaging with the International LOFAR Telescope. I. Foundational calibration strategy and pipeline. Astron. Astrophys. 2022, 658, A1. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. IEEE Proc. 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Primiani, R.A.; Young, K.H.; Young, A.; Patel, N.; Wilson, R.W.; Vertatschitsch, L.; Chitwood, B.B.; Srinivasan, R.; MacMahon, D.; Weintroub, J. SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array. J. Astron. Instrum. 2016, 5, 1641006–1641810. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.G.; Han, S.T.; Sohn, B.W.; Oh, S.J.; Je, D.H.; Wi, S.O.; Song, M.G. Construction of the Korean VLBI Network (KVN). In Proceedings of the European VLBI Network on New Developments in VLBI Science and Technology, Toledo, Spain, 12–15 October 2004; pp. 281–284. [Google Scholar]
- Lee, S.S.; Byun, D.Y.; Oh, C.S.; Han, S.T.; Je, D.H.; Kim, K.T.; Wi, S.O.; Cho, S.H.; Sohn, B.W.; Kim, J.; et al. Single-Dish Performance of KVN 21 m Radio Telescopes: Simultaneous Observations at 22 and 43 GHz. Publ. Astron. Soc. Pac. 2011, 123, 1398. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Petrov, L.; Byun, D.Y.; Kim, J.; Jung, T.; Song, M.G.; Oh, C.S.; Roh, D.G.; Je, D.H.; Wi, S.O.; et al. Early Science with the Korean VLBI Network: Evaluation of System Performance. Astron. J. 2014, 147, 77. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sasao, T.; Kawaguchi, N.; Manabe, S.; Omodaka, T.; Kameya, O.; Shibata, K.M.; Miyaji, T.; Honma, M.; Tamura, Y.; et al. VERA: A New VLBI Instrument Free from the Atmosphere. Astron. Soc. Pac. Conf. Ser. 2003, 306, 367. [Google Scholar]
- Lee, S.S.; Oh, C.S.; Roh, D.G.; Oh, S.J.; Kim, J.; Yeom, J.H.; Kim, H.R.; Jung, D.G.; Byun, D.Y.; Jung, T.; et al. A New Hardware Correlator in Korea: Performance Evaluation Using KVN Observations. J. Korean Astron. Soc. 2015, 48, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Deller, A.T.; Tingay, S.J.; Bailes, M.; West, C. DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments. Publ. Astron. Soc. Pac. 2007, 119, 318–336. [Google Scholar] [CrossRef] [Green Version]
- Deller, A.T.; Brisken, W.F.; Phillips, C.J.; Morgan, J.; Alef, W.; Cappallo, R.; Middelberg, E.; Romney, J.; Rottmann, H.; Tingay, S.J.; et al. DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator. Publ. Astron. Soc. Pac. 2011, 123, 275. [Google Scholar] [CrossRef] [Green Version]
- Keimpema, A.; Kettenis, M.M.; Pogrebenko, S.V.; Campbell, R.M.; Cimó, G.; Duev, D.A.; Eldering, B.; Kruithof, N.; van Langevelde, H.J.; Marchal, D.; et al. The SFXC software correlator for very long baseline interferometry: Algorithms and implementation. Exp. Astron. 2015, 39, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Napier, P.J.; Bagri, D.S.; Clark, B.G.; Rogers, A.E.E.; Romney, J.D.; Thompson, A.R.; Walker, R.C. The Very Long Baseline Array. IEEE Proc. 1994, 82, 658–672. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett. 2019, 875, L2. [Google Scholar] [CrossRef]
- Porcas, R. A history of the EVN. In Proceedings of the 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the New Generation of Radio Arrays, Manchester, UK, 20–24 September 2010; Volume 10, p. 11. [Google Scholar]
- Surkis, I.; Ken, V.; Kurdubova, Y.; Mishina, N.; Mishin, V.; Shantyr, V.; Zhuravov, D.; Zimovsky, V. The RASFX VGOS GPU Based Software Correlator. Trans. Inst. Appl. Astron. Ras 2017, 41, 123–126. [Google Scholar]
- Shuygina, N.; Ivanov, D.; Ipatov, A.; Gayazov, I.; Marshalov, D.; Melnikov, A.; Kurdubov, S.; Vasilyev, M.; Ilin, G.; Skurikhina, E.; et al. Russian VLBI network “Quasar”: Current status and outlook. Geod. Geodyn. 2019, 10, 150–156. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, C.; Han, S.; Ma, F.; Xiang, D. GPU-Based Parallel Implementation of VLBI Correlator for Deep Space Exploration System. Remote Sens. 2021, 13, 1226. [Google Scholar] [CrossRef]
- Rioja, M.; Dodson, R.; Asaki, Y.; Hartnett, J.; Tingay, S. The Impact of Frequency Standards on Coherence in VLBI at the Highest Frequencies. Astrophys. J. 2012, 144, 121. [Google Scholar] [CrossRef] [Green Version]
- Clivati, C.; Aiello, R.; Bianco, G.; Bortolotti, C.; De Natale, P.; Di Sarno, V.; Maddaloni, P.; Maccaferri, G.; Mura, A.; Negusini, M.; et al. Common-clock very long baseline interferometry using a coherent optical fiber link. Optica 2020, 7, 1031–1037. [Google Scholar] [CrossRef]
- Krehlik, P.; Buczek, Ł.; Kołodziej, J.; Lipiński, M.; Śliwczyński, .; Nawrocki, J.; Nogaś, P.; Marecki, A.; Pazderski, E.; Ablewski, P.; et al. Fibre-optic delivery of time and frequency to VLBI station. Astron. Astrophys. 2017, 603, A48. [Google Scholar] [CrossRef] [Green Version]
- Likhachev, S.F.; Kostenko, V.I.; Girin, I.A.; Andrianov, A.S.; Rudnitskiy, A.G.; Zharov, V.E. Software Correlator for Radioastron Mission. J. Astron. Instrum. 2017, 6, 1750004–1750131. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D. CALC: The Next Upgrade. In Proceedings of the IVS 2004 General Meeting Proceedings, Ottawa, ON, Canada, 9–11 February 2004; pp. 265–266. [Google Scholar]
- Sekido, M.; Fukushima, T. A VLBI Delay Model for Radio Sources at a Finite Distance. J. Geod. 2006, 80, 137–149. [Google Scholar] [CrossRef]
- Wootten, A.; Thompson, A.R. The Atacama Large Millimeter/Submillimeter Array. IEEE Proc. 2009, 97, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Martí-Vidal, I.; Roy, A.; Conway, J.; Zensus, A.J. Calibration of mixed-polarization interferometric observations. Tools for the reduction of interferometric data from elements with linear and circular polarization receivers. Astron. Astrophys. 2016, 587, A143. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Martí-Vidal, I.; Messias, H.; Crew, G.B.; Herrero-Illana, R.; Impellizzeri, V.; Rottmann, H.; Wagner, J.; Fomalont, E.; Matthews, L.D.; et al. Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign. Publ. Astron. Soc. Pac. 2019, 131, 075003. [Google Scholar] [CrossRef] [Green Version]
- Alef, W.; Porcas, R.W. VLBI fringe-fitting with antenna-based residuals. Astron. Astrophys. 1986, 168, 365–368. [Google Scholar]
- Schwab, F.R.; Cotton, W.D. Global fringe search techniques for VLBI. AJ 1983, 88, 688–694. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett. 2019, 875, L3. [Google Scholar] [CrossRef]
- Natarajan, I.; Deane, R.; van Bemmel, I.; van Langevelde, H.J.; Small, D.; Kettenis, M.; Paragi, Z.; Smirnov, O.; Szomoru, A. A probabilistic approach to phase calibration - I. Effects of source structure on fringe-fitting. Mon. Not. R. Astron. Soc. 2020, 496, 801–813. [Google Scholar] [CrossRef]
- Doi, A.; Fujisawa, K.; Habe, A.; Honma, M.; Kawaguchi, N.; Kobayashi, H.; Murata, Y.; Omodaka, T.; Sudou, H.; Takaba, H. Bigradient Phase Referencing. Publ. Astron. Soc. Jpn. 2006, 58, 777–785. [Google Scholar] [CrossRef]
- Fomalont, E.B.; Kopeikin, S. Phase Referencing Using Several Calibrator Sources. In Proceedings of the 6th EVN Symposium, Bonn, Germany, 25–28 June 2002; p. 53. [Google Scholar]
- Rioja, M.J.; Dodson, R.; Orosz, G.; Imai, H.; Frey, S. MultiView High Precision VLBI Astrometry at Low Frequencies. AJ 2017, 153, 105. [Google Scholar] [CrossRef] [Green Version]
- Hyland, L.J.; Reid, M.J.; Ellingsen, S.P.; Rioja, M.J.; Dodson, R.; Orosz, G.; Masson, C.R.; McCallum, J.M. Inverse Multiview. I. Multicalibrator Inverse Phase Referencing for Microarcsecond Very Long Baseline Interferometry Astrometry. Astrophys. J. 2022, 932, 52. [Google Scholar] [CrossRef]
- Reid, M.; Honma, M. Microarcsecond Radio Astrometry. Annu. Rev. Astron. Astrophys. 2014, 52, 339–372. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.E.E.; Doeleman, S.S.; Moran, J.M. Fringe Detection Methods for Very Long Baseline Arrays. AJ 1995, 109, 1391. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R.; Kamohara, R.; Colomer, F.; Bujarrabal, V.; Kobayashi, H. Relative Astrometry of the J = 1–˃0, v = 1 and v = 2 SiO Masers toward R Leonis Minoris Using VERA. Publ. Astron. Soc. Jpn. 2008, 60, 1031. [Google Scholar] [CrossRef] [Green Version]
- Rioja, M.; Dodson, R. High-precision Astrometric Millimeter Very Long Baseline Interferometry Using a New Method for Atmospheric Calibration. AJ 2011, 141, 114. [Google Scholar] [CrossRef] [Green Version]
- Rioja, M.J.; Dodson, R.; Jung, T.; Sohn, B.W.; Byun, D.Y.; Agudo, I.; Cho, S.H.; Lee, S.S.; Kim, J.; Kim, K.T.; et al. Verification of the Astrometric Performance of the Korean VLBI Network, Using Comparative SFPR Studies with the VLBA at 14/7 mm. AJ 2014, 148, 84. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R.; Jung, T.; Sohn, B.W. The Power of Simultaneous Multifrequency Observations for mm-VLBI: Astrometry up to 130 GHz with the KVN. Astron. J. 2015, 150, 202. [Google Scholar] [CrossRef] [Green Version]
- Rioja, M.J.; Dodson, R. Precise radio astrometry and new developments for the next-generation of instruments. Astron. Astrophys. Rev. 2020, 28, 6. [Google Scholar] [CrossRef]
- Greisen, E.W. AIPS; VLA; VLBA. In Information Handling in Astronomy—Historical Vistas; Heck, A., Ed.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2003; Volume 285, p. 109. [Google Scholar] [CrossRef]
- Kettenis, M.; van Langevelde, H.J.; Reynolds, C.; Cotton, B. ParselTongue: AIPS Talking Python. In Astronomical Data Analysis Software and Systems XV; Gabriel, C., Arviset, C., Ponz, D., Enrique, S., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2006; Volume 351, p. 497. [Google Scholar]
- McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA Architecture and Applications. In Astronomical Data Analysis Software and Systems XVI; Shaw, R.A., Hill, F., Bell, D.J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 376, p. 127. [Google Scholar]
- Bean, B.; Bhatnagar, S.; Castro, S.; Donovan Meyer, J.; Emonts, B.; Garcia, E.; Garwood, R.; Golap, K.; Gonzalez Villalba, J.; Harris, P.; et al. CASA, the Common Astronomy Software Applications for Radio Astronomy. Publ. Astron. Soc. Pac. 2022, in press. Available online: https://arxiv.org/abs/2210.02276 (accessed on 30 July 2022).
- Thompson, A.R.; Clark, B.G.; Wade, C.M.; Napier, P.J. The Very Large Array. ApJS 1980, 44, 151–167. [Google Scholar] [CrossRef]
- van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.T.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J.R.J.; Deane, R.; De Laurentis, M.; Desvignes, G.; et al. BlackHoleCam: Fundamental physics of the galactic center. Int. J. Mod. Phys. D 2017, 26, 17300014. [Google Scholar] [CrossRef]
- Van Bemmel, I.M.; Kettenis, M.; Small, D.; Janssen, M.; Moellenbrock, G.A.; Petry, D.; Goddi, C.; Linford, J.D.; Rygl, K.L.J.; Liuzzo, E.; et al. CASA on the fringe – Development of VLBI processing capabilities for CASA. Publ. Astron. Soc. Pac. 2022, in press. Available online: https://arxiv.org/abs/2210.02275 (accessed on 30 July 2022).
- Hamaker, J.P.; Bregman, J.D.; Sault, R.J. Understanding radio polarimetry. I. Mathematical foundations. A&AS 1996, 117, 137–147. [Google Scholar]
- Smirnov, O.M. Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism. Astron. Astrophys. 2011, 527, A106. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, O.M. Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects. Astron. Astrophys. 2011, 527, A107. [Google Scholar] [CrossRef]
- Smirnov, O.M. Revisiting the radio interferometer measurement equation. III. Addressing direction-dependent effects in 21 cm WSRT observations of 3C 147. Astron. Astrophys. 2011, 527, A108. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, O.M. Revisiting the radio interferometer measurement equation. IV. A generalized tensor formalism. Astron. Astrophys. 2011, 531, A159. [Google Scholar] [CrossRef] [Green Version]
- Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; pp. 126–132. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, S.; Hamman, J. xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Janssen, M.; Goddi, C.; Falcke, H.; van Rossum, D.; van Bemmel, I.; Kettenis, M.; Small, D.; Marti-Vidal, I. RPICARD: A CASA-based Calibration Pipeline for VLBI Data. In Proceedings of the 14th European VLBI Network Symposium & Users Meeting (EVN 2018), Granada, Spain, 8–11 October 2018; p. 80. [Google Scholar]
- Janssen, M.; Goddi, C.; van Bemmel, I.M.; Kettenis, M.; Small, D.; Liuzzo, E.; Rygl, K.; Martí-Vidal, I.; Blackburn, L.; Wielgus, M.; et al. rPICARD: A CASA-based calibration pipeline for VLBI data. Calibration and imaging of 7 mm VLBA observations of the AGN jet in M 87. Astron. Astrophys. 2019, 626, A75. [Google Scholar] [CrossRef]
- Blecher, T.; Deane, R.; Bernardi, G.; Smirnov, O. MEQSILHOUETTE: A mm-VLBI observation and signal corruption simulator. Mon. Not. R. Astron. Soc. 2017, 464, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, I.; Deane, R.; Martí-Vidal, I.; Roelofs, F.; Janssen, M.; Wielgus, M.; Blackburn, L.; Blecher, T.; Perkins, S.; Smirnov, O.; et al. MeqSilhouette v2: Spectrally resolved polarimetric synthetic data generation for the event horizon telescope. Mon. Not. R. Astron. Soc. 2022, 512, 490–504. [Google Scholar] [CrossRef]
- Pardo, J.R.; Cernicharo, J.; Serabyn, E. Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag. 2001, 49, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.G.; Anderson, B.; Morison, I. The Jodrell Bank radio-linked interferometer network. Nature 1980, 288, 64–66. [Google Scholar] [CrossRef]
- Offringa, A.R.; van de Gronde, J.J.; Roerdink, J.B.T.M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 2012, 539, A95. [Google Scholar] [CrossRef] [Green Version]
- Offringa, A.R.; McKinley, B.; Hurley-Walker, N.; Briggs, F.H.; Wayth, R.B.; Kaplan, D.L.; Bell, M.E.; Feng, L.; Neben, A.R.; Hughes, J.D.; et al. WSCLEAN: An implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 2014, 444, 606–619. [Google Scholar] [CrossRef]
- Keimpema, A.; Kettenis, M.; Small, D.; Dijkema, T.J.; Szomoru, A. Efficient Remote Interactive Pipelines Using CASA and Jupyter. In Astronomical Data Analysis Software and Systems XXIX; Pizzo, R., Deul, E.R., Mol, J.D., de Plaa, J., Verkouter, H., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2020; Volume 527, p. 579. [Google Scholar]
- Whitney, A.R.; Cappallo, R.; Aldrich, W.; Anderson, B.; Bos, A.; Casse, J.; Goodman, J.; Parsley, S.; Pogrebenko, S.; Schilizzi, R.; et al. Mark 4 VLBI correlator: Architecture and algorithms. Radio Sci. 2004, 39, RS1007. [Google Scholar] [CrossRef]
- Blackburn, L.; Chan, C.k.; Crew, G.B.; Fish, V.L.; Issaoun, S.; Johnson, M.D.; Wielgus, M.; Akiyama, K.; Barrett, J.; Bouman, K.L.; et al. EHT-HOPS Pipeline for Millimeter VLBI Data Reduction. Astrophys. J. 2019, 882, 23. [Google Scholar] [CrossRef]
- Issaoun, S.; Johnson, M.D.; Blackburn, L.; Brinkerink, C.D.; Mościbrodzka, M.; Chael, A.; Goddi, C. Martí-Vidal, I.; Wagner, J.; Doeleman, S.S.; et al. The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA. Astrophys. J. 2019, 871, 30. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Krichbaum, T.P.; Broderick, A.E.; Wielgus, M.; Blackburn, L.; Gómez, J.L.; Johnson, M.D.; Bouman, K.L.; Chael, A.; Akiyama, K.; et al. Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astron. Astrophys. 2020, 640, A69. [Google Scholar] [CrossRef]
- Janssen, M.; Falcke, H.; Kadler, M.; Ros, E.; Wielgus, M.; Akiyama, K.; Baloković, M.; Blackburn, L.; Bouman, K.L.; Chael, A.; et al. Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nat. Astron. 2021, 5, 1017–1028. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett. 2022, 930, L13. [Google Scholar] [CrossRef]
- Petrov, L.; Kovalev, Y.Y.; Fomalont, E.B.; Gordon, D. The Very Long Baseline Array Galactic Plane Survey—VGaPS. AJ 2011, 142, 35. [Google Scholar] [CrossRef] [Green Version]
- Ulich, B.L.; Haas, R.W. Absolute calibration of millimeter-wavelength spectral lines. ApJS 1976, 30, 247–258. [Google Scholar] [CrossRef]
- Pearson, T.J.; Readhead, A.C.S. Image Formation by Self-Calibration in Radio Astronomy. ARA&A 1984, 22, 97–130. [Google Scholar]
- Pearson, T.J. Caltech VLBI Analysis Programs, California Institute of Technology. Bull. Am. Astron. Soc. 1991, 23, 991–992. [Google Scholar]
- Issaoun, S.; Johnson, M.D.; Blackburn, L.; Mościbrodzka, M.; Chael, A.; Falcke, H. VLBI imaging of black holes via second moment regularization. Astron. Astrophys. 2019, 629, A32. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- Högbom, J.A. Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. A&AS 1974, 15, 417. [Google Scholar]
- Clark, B.G. An efficient implementation of the algorithm ‘CLEAN’. Astron. Astrophys. 1980, 89, 377. [Google Scholar]
- Cornwell, T.J. Multiscale CLEAN Deconvolution of Radio Synthesis Images. IEEE J. Sel. Top. Signal Process. 2008, 2, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.E.; Cornwell, T.J.; Wilkinson, P.N. Multi-frequency synthesis: A new technique in radio interferometrie imaging. Mon. Not. R. Astron. Soc. 1990, 246, 490. [Google Scholar]
- Sault, R.J.; Wieringa, M.H. Multi-frequency synthesis techniques in radio interferometric imaging. A&AS 1994, 108, 585–594. [Google Scholar]
- Likhachev, S. Multi-Frequency Imaging for VLBI. In Future Directions in High Resolution Astronomy; Romney, J., Reid, M., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 340, p. 608. [Google Scholar]
- Rau, U.; Cornwell, T.J. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astron. Astrophys. 2011, 532, A71. [Google Scholar] [CrossRef]
- Cornwell, T.J.; Evans, K.F. A simple maximum entropy deconvolution algorithm. Astron. Astrophys. 1985, 143, 77–83. [Google Scholar]
- Mizuno, Y. GRMHD Simulations and Modeling for Jet Formation and Acceleration Region in AGNs. arXiv 2022, arXiv:2201.12608. [Google Scholar] [CrossRef]
- van der Gucht, J.; Davelaar, J.; Hendriks, L.; Porth, O.; Olivares, H.; Mizuno, Y.; Fromm, C.M.; Falcke, H. Deep Horizon: A machine learning network that recovers accreting black hole parameters. Astron. Astrophys. 2020, 636, A94. [Google Scholar] [CrossRef]
- Yao-Yu Lin, J.; Pesce, D.W.; Wong, G.N.; Uppili Arasanipalai, A.; Prather, B.S.; Gammie, C.F. VLBInet: Radio Interferometry Data Classification for EHT with Neural Networks. arXiv 2021, arXiv:2110.07185. [Google Scholar]
- Fromm, C.M.; Younsi, Z.; Baczko, A.; Mizuno, Y.; Porth, O.; Perucho, M.; Olivares, H.; Nathanail, A.; Angelakis, E.; Ros, E.; et al. Using evolutionary algorithms to model relativistic jets. Application to NGC 1052. Astron. Astrophys. 2019, 629, A4. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Gold, R.; Karami, M.; Preciado-López, J.A.; Tiede, P.; Pu, H.Y.; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; et al. THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J. 2020, 897, 139. [Google Scholar] [CrossRef]
- Jennison, R.C. A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distributions of small angular extent. Mon. Not. R. Astron. Soc. 1958, 118, 276. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, L.; Pesce, D.W.; Johnson, M.D.; Wielgus, M.; Chael, A.A.; Christian, P.; Doeleman, S.S. Closure Statistics in Interferometric Data. Astrophys. J. 2020, 894, 31. [Google Scholar] [CrossRef]
- Broderick, A.E.; Pesce, D.W. Closure Traces: Novel Calibration-insensitive Quantities for Radio Astronomy. Astrophys. J. 2020, 904, 126. [Google Scholar] [CrossRef]
- Thyagarajan, N.; Nityananda, R.; Samuel, J. Invariants in copolar interferometry: An Abelian gauge theory. Phys. Rev. D 2022, 105, 043019. [Google Scholar] [CrossRef]
- Readhead, A.C.S.; Wilkinson, P.N. The mapping of compact radio sources from VLBI data. Astrophys. J. 1978, 223, 25–36. [Google Scholar] [CrossRef]
- Cotton, W.D. A method of mapping compact structure in radio sources using VLBI observations. AJ 1979, 84, 1122–1128. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Mus, A.; Janssen, M.; de Vicente, P.; González, J. Polarization calibration techniques for the new-generation VLBI. Astron. Astrophys. 2021, 646, A52. [Google Scholar] [CrossRef]
- Shepherd, M.C. Difmap: An Interactive Program for Synthesis Imaging. In Astronomical Data Analysis Software and Systems VI; Hunt, G., Payne, H., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; Volume 125, p. 77. [Google Scholar]
- Offringa, A.R.; Smirnov, O. An optimized algorithm for multiscale wideband deconvolution of radio astronomical images. Mon. Not. R. Astron. Soc. 2017, 471, 301–316. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Bouman, K.L.; Blackburn, L.L.; Akiyama, K.; Narayan, R. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys. J. 2018, 857, 23. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Narayan, R.; Doeleman, S.S.; Wardle, J.F.C.; Bouman, K.L. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J. 2016, 829, 11. [Google Scholar] [CrossRef]
- Akiyama, K.; Ikeda, S.; Pleau, M.; Fish, V.L.; Tazaki, F.; Kuramochi, K.; Broderick, A.E.; Dexter, J.; Mościbrodzka, M.; Gowanlock, M.; et al. Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling. AJ 2017, 153, 159. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Kuramochi, K.; Ikeda, S.; Fish, V.L.; Tazaki, F.; Honma, M.; Doeleman, S.S.; Broderick, A.E.; Dexter, J.; Mościbrodzka, M.; et al. Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling. Astrophys. J. 2017, 838, 1. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Vlemmings, W.H.T.; Muller, S.; Casey, S. UVMULTIFIT: A versatile tool for fitting astronomical radio interferometric data. Astron. Astrophys. 2014, 563, A136. [Google Scholar] [CrossRef] [Green Version]
- Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A Fast Dynamic Language for Technical Computing. arXiv 2012, arXiv:1209.5145. [Google Scholar]
- Tiede, P.; Broderick, A.E.; Palumbo, D.C.M. Variational Image Feature Extraction for the Event Horizon Telescope. Astrophys. J. 2022, 925, 122. [Google Scholar] [CrossRef]
- Sun, H.; Bouman, K.L.; Tiede, P.; Wang, J.J.; Blunt, S.; Mawet, D. α-deep Probabilistic Inference (α-DPI): Efficient Uncertainty Quantification from Exoplanet Astrometry to Black Hole Feature Extraction. Astrophys. J. 2022, 932, 99. Available online: http://xxx.lanl.gov/abs/2201.08506 (accessed on 30 July 2022). [CrossRef]
- Sun, H.; Bouman, K.L.; Tiede, P.; Wang, J.J.; Blunt, S.; Mawet, D. alpha-Deep Probabilistic Inference (alpha-DPI): Efficient uncertainty quantification from exoplanet astrometry to black hole feature extraction. arXiv 2022, arXiv:2201.08506. [Google Scholar]
- [Event Horizon Telescope Collaboration]. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar] [CrossRef]
- Homan, D.C.; Wardle, J.F.C. Detection and Measurement of Parsec-Scale Circular Polarization in Four AGNS. AJ 1999, 118, 1942–1962. [Google Scholar] [CrossRef]
- Goddi, C.; Moscadelli, L.; Alef, W.; Brand, J. EVN observations of H2O masers towards the high-mass young stellar object in AFGL 5142. Astron. Astrophys. 2004, 420, 929–936. [Google Scholar] [CrossRef]
- Felli, M.; Spencer, R.E. Very Long Baseline Interferometry: Techniques and Applications: Proceedings of the NATO Advanced Study Institute on VLBI; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Matthews, L.D.; Greenhill, L.J.; Goddi, C.; Chandler, C.J.; Humphreys, E.M.L.; Kunz, M.W. A Feature Movie of SiO Emission 20-100 AU from the Massive Young Stellar Object Orion Source I. Astrophys. J. 2010, 708, 80–92. [Google Scholar] [CrossRef]
- Strom, R. What is the primary beam response of an interferometer with unequal elements? In Proceedings of the European VLBI Network on New Developments in VLBI Science and Technology, Toledo, Spain, 12–15 October 2004; pp. 273–274. [Google Scholar]
- Chi, S.; Barthel, P.D.; Garrett, M.A. Deep, wide-field, global VLBI observations of the Hubble deep field north (HDF-N) and flanking fields (HFF). Astron. Astrophys. 2013, 550, A68. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.S.; Mantovani, F.; Deller, A.T.; Brisken, W.; Alef, W.; Middelberg, E.; Nanni, M.; Tingay, S.J. VLBI imaging throughout the primary beam using accurate UV shifting. Astron. Astrophys. 2011, 526, A140. [Google Scholar] [CrossRef] [Green Version]
- van der Tol, S.; Veenboer, B.; Offringa, A.R. Image Domain Gridding: A fast method for convolutional resampling of visibilities. Astron. Astrophys. 2018, 616, A27. [Google Scholar] [CrossRef]
- Cornwell, T.J.; Perley, R.A. Radio-interferometric imaging of very large fields. The problem of non-coplanar arrays. Astron. Astrophys. 1992, 261, 353–364. [Google Scholar]
- Cornwell, T.J.; Golap, K.; Bhatnagar, S. The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm. IEEE J. Sel. Top. Signal Process. 2008, 2, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Middelberg, E.; Deller, A.T.; Norris, R.P.; Fotopoulou, S.; Salvato, M.; Morgan, J.S.; Brisken, W.; Lutz, D.; Rovilos, E. Mosaiced wide-field VLBI observations of the Lockman Hole/XMM. Astron. Astrophys. 2013, 551, A97. [Google Scholar] [CrossRef] [Green Version]
- Radcliffe, J.F.; Garrett, M.A.; Beswick, R.J.; Muxlow, T.W.B.; Barthel, P.D.; Deller, A.T.; Middelberg, E. Multi-source self-calibration: Unveiling the microJy population of compact radio sources. Astron. Astrophys. 2016, 587, A85. [Google Scholar] [CrossRef]
- Noordam, J.E.; Smirnov, O.M. The MeqTrees software system and its use for third-generation calibration of radio interferometers. Astron. Astrophys. 2010, 524, A61. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, F.; Janssen, M.; Natarajan, I.; Deane, R.; Davelaar, J.; Olivares, H.; Porth, O.; Paine, S.N.; Bouman, K.L.; [The Event Horizon Telescope Collaboration]; et al. SYMBA: An end-to-end VLBI synthetic data generation pipeline. Simulating Event Horizon Telescope observations of M 87. Astron. Astrophys. 2020, 636, A5. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar] [CrossRef]
- Wielgus, M.; Akiyama, K.; Blackburn, L.; Chan, C.-k.; Dexter, J.; Doeleman, S.S.; Fish, V.L.; Issaoun, S.; Johnson, M.D.; Krichbaum, T.P.; et al. Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope. Astrophys. J. 2020, 901, 67. [Google Scholar] [CrossRef]
- Roelofs, F.; Fromm, C.M.; Mizuno, Y.; Davelaar, J.; Janssen, M.; Younsi, Z.; Rezzolla, L.; Falcke, H. Black hole parameter estimation with synthetic very long baseline interferometry data from the ground and from space. Astron. Astrophys. 2021, 650, A56. [Google Scholar] [CrossRef]
- [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar] [CrossRef]
- Zhao, Z.; An, T.; Lao, B. VLBI Network SIMulator: An Integrated Simulation Tool for Radio Astronomers. J. Korean Astron. Soc. 2019, 52, 207–216. [Google Scholar]
- Molenaar, G.; Smirnov, O. Kern. Astron. Comput. 2018, 24, 45. [Google Scholar] [CrossRef]
Name | Meaning |
---|---|
Telescope frontend | Equipment “directly attached to the front of a telescope”, used to detect and encode the sky signal. Receivers (e.g., bolometers) are frontend equipment. |
Telescope backend | Equipment in the telescope that is used to process and store the signal from the frontend. Block Downconverters, which mix the sky signal down to a lower frequency range (heterodyning); analog-to-digital converters, which digitize the data; and data recorders, which store the digitized measurements on hard drives, are backend equipment. |
Baseband data | The recorded data at a telescope that will be used for the correlation. More precisely, the filtered, down-converted, sampled, and quantized electric field measurements stored in the backends. |
Signal stabilization | Described in Section 3: The collection of all post-correlation calibration measures, excluding the a priori flux density calibration (Section 4). The signal stabilization is often referred to as fringe-fitting, but it also involves additional steps, e.g., corrections for bandpass responses and corrections for atmospheric phase turbulence. |
Delay | Residual post-correlation phase-slopes as a function of frequency (e.g., due to atmospheric path length differences). To be corrected in the signal stabilization step. |
Rate | Residual post-correlation phase-slopes as a function of time (e.g., due to Doppler shifts). To be corrected in the signal stabilization step. |
Fringe-fit FFT | The fast Fourier transform step of common fringe-fitting algorithms. Transforms the visibilities from time, frequency space into a rate, delay space, where the peaks are to be found. The height of the peaks corresponds to the strength of the signal. |
Low | An observing frequency below 20 GHz. |
High | An observing frequency above 20 GHz. |
Allan deviation | A measure of frequency stability [46]. An easy-to-follow derivation and description of the Allan deviation equation is given in Section 9.5.1 of Thompson et al. [44]. |
VEX file | “VLBI EXperiment” file, which describes the VLBI setups and observing schedules in a standardized text format (VEX File Definition/Example. Available online: https://vlbi.org/wp-content/uploads/2019/03/vex-definition-15b1.pdf, accessed on 30 July 2022). |
FITS-IDI file | “FITS Interferometry Data Interchange Convention” standardized file format for visibility and VLBI metadata built upon the upon the standard FITS format (FITS-IDI format. Available online: https://fits.gsfc.nasa.gov/registry/fitsidi/AIPSMEM114.PDF, accessed on 30 July 2022). |
ANTAB file | “Antenna table”, which contains station gain and system temperature information in a simple text file format (ANTAB format. Available online: http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?ANTAB, accessed on 30 July 2022). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janssen, M.; Radcliffe, J.F.; Wagner, J. Software and Techniques for VLBI Data Processing and Analysis. Universe 2022, 8, 527. https://doi.org/10.3390/universe8100527
Janssen M, Radcliffe JF, Wagner J. Software and Techniques for VLBI Data Processing and Analysis. Universe. 2022; 8(10):527. https://doi.org/10.3390/universe8100527
Chicago/Turabian StyleJanssen, Michael, Jack F. Radcliffe, and Jan Wagner. 2022. "Software and Techniques for VLBI Data Processing and Analysis" Universe 8, no. 10: 527. https://doi.org/10.3390/universe8100527
APA StyleJanssen, M., Radcliffe, J. F., & Wagner, J. (2022). Software and Techniques for VLBI Data Processing and Analysis. Universe, 8(10), 527. https://doi.org/10.3390/universe8100527