Sign Switching Dark Energy from a Running Barrow Entropy
Abstract
:1. Introduction: Barrow Entropy and Quantum Gravity
2. Barrow Entropy Index Is Energy Scale Dependent
3. Dark Energy from a Running Barrow Entropy Index
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | We remark that [25], on the contrary, incorporated the extra term in a new energy density , which is attributed to dark energy, instead of modifying the gravitational constant. We can check that the two are equivalent by taking Equation (2.12) of [25] and substituting their expressions for and . The difference between the two expressions is given by the fact that [25] considered only the case and kept the integration constant C, which in [14] was set to 0 or considered as part of the total energy density . In our work, we use the form of [14]. As we shall see below, when allowing the BEI to run, we would have an extra term that can be interpreted as a dynamical dark energy, different from the identification in [25] for the fixed index case. |
2 | . This means that the observed value of the dark energy would be in the limit . Without loss of generality, we can take , so that is the observed value of the effective cosmological constant. |
3 | As per Footnote 4, the observed value of the effective cosmological constant over the interval is . Since they are both comparable in magnitude (negative and with the same divergence properties), we can just refer to as the effective cosmological constant at the Big Bang. |
4 | Indeed, a function for small , satisfies and . Another example to illustrate the same phenomenon, albeit with a different divergence, is to consider . This function satisfies and . Colloquially, f climbs out from at the origin with an infinite positive slope. |
5 | Since , there is still a Big Bang singularity in this model. |
References
- Wang, B.; Gong, Y.; Abdalla, E. Thermodynamics of an Accelerated Expanding Universe. Phys. Rev. D 2006, 74, 083520. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Wang, A. Friedmann Equations and Thermodynamics of Apparent Horizons. Phys. Rev. Lett. 2007, 99, 211301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, J.D. The Area of a Rough Black Hole. Phys. Lett. B 2020, 808, 135643. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational Constraints on Barrow Holographic Dark Energy. Eur. Phys. J. C 2020, 80, 826. [Google Scholar] [CrossRef]
- Barrow, J.D.; Basilakos, S.; Saridakis, E.N. Big Bang Nucleosynthesis Constraints on Barrow Entropy. Phys. Lett. B 2021, 815, 136134. [Google Scholar] [CrossRef]
- Leon, G.; Magaña, J.; Hernàndez-Almada, A.; García-Aspeitia, M.A.; Verdugo, T.; Motta, V. Barrow Entropy Cosmology: An Observational Approach With a Hint of Stability Analysis. J. Cosmol. Astropart. Phys. 2021, 12, 032. [Google Scholar] [CrossRef]
- Luciano, G.G.; Saridakis, E.N. Baryon Asymmetry From Barrow Entropy: Theoretical Predictions and Observational Constraints. arXiv 2022, arXiv:2203.12010. [Google Scholar] [CrossRef]
- Jusufi, K.; Azreg-Aïnou, M.; Jamil, M.; Saridakis, E.N. Constraints on Barrow Entropy From M87* And S2 Star Observations. Universe 2022, 8, 102. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Roy, R.; Tsai, Y.; Visinelli, L. Horizon-Scale Tests of Gravity Theories and Fundamental Physics From the Event Horizon Telescope Image of Sagittarius A*. arXiv 2022, arXiv:2205.07787. [Google Scholar]
- Farsi, B.; Sheykhi, A. Growth of Perturbations in Tsallis and Barrow Cosmology. arXiv 2022, arXiv:2205.04138. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Barrow Entropic Dark Energy: A Member of Generalized Holographic Dark Energy Family. Phys. Lett. B 2022, 825, 136844. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions Between the Early and Late Universe. Nat. Astron. 2019, 3, 891. [Google Scholar] [CrossRef]
- di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble Tension—A Review of Solutions. Class. Quantum Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Sheykhi, A. Barrow Entropy Corrections to Friedmann Equations. Phys. Rev. D 2021, 103, 123503. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Basilakos, S. The Generalized Second Law of Thermodynamics With Barrow Entropy. Eur. Phys. J. C 2021, 81, 7. [Google Scholar] [CrossRef]
- al Mamon, A.; Paliathanasis, A.; Saha, S. Dynamics of an Interacting Barrow Holographic Dark Energy Model and its Thermodynamic Implications. Eur. Phys. J. Plus 2021, 136, 134. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Ishibashi, A.; Ohta, N.; Yamaguchi, D. Running Newton Coupling, Scale Identification and Black Hole Thermodynamics. arXiv 2022, arXiv:2204.09892. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Renormalization Group Improved Black Hole Spacetimes. Phys. Rev. D 2000, 62, 043008. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.-F.; Easson, D.A. Asymptotically Safe Gravity as a Scalar-Tensor Theory and Its Cosmological Implications. Phys. Rev. D 2011, 84, 103502. [Google Scholar] [CrossRef] [Green Version]
- Gubitosi, G.; Ooijer, R.; Ripken, C. Frank Saueressig, Consistent Early and Late Time Cosmology From the RG Flow of Gravity. J. Cosmol. Astropart. Phys. 2018, 12, 004. [Google Scholar] [CrossRef] [Green Version]
- Page, D.N. Hawking Radiation and Black Hole Thermodynamics. New J. Phys. 2005, 7, 203. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A. Thermal Features of Barrow Corrected-Entropy Black Hole Formulation. Eur. Phys. J. C 2020, 80, 776. [Google Scholar] [CrossRef]
- Cai, R.-G.; Cao, L.-M.; Hu, Y.-P. Corrected Entropy-Area Relation and Modified Friedmann Equations. J. High Energy Phys. 2008, 8, 090. [Google Scholar] [CrossRef] [Green Version]
- Gour, G. Algebraic Approach to Quantum Black Holes: Logarithmic Corrections to Black Hole Entropy. Phys. Rev. D 2002, 66, 104022. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N. Modified Cosmology Through Spacetime Thermodynamics and Barrow Horizon Entropy. J. Cosmol. Astropart. Phys. 2020, 7, 031. [Google Scholar] [CrossRef]
- Wetterich, C. An Asymptotically Vanishing Time-Dependent Cosmological ‘Constant’. Astron. Astrophys. 1995, 301, 321. [Google Scholar]
- Wetterich, C. The Cosmological Constant and Higher Dimensional Dilatation Symmetry. Phys. Rev. D 2010, 81, 103507. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Graviton Fluctuations Erase the Cosmological Constant. Phys. Lett. B 2017, 773, 6. [Google Scholar] [CrossRef]
- Overduin, J.M.; Wesson, P.S.; Mashhoon, B. Decaying Dark Energy in Higher-Dimensional Gravity. Astron. Astrophys. 2007, 473, 727. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; Wesson, P.S. Gauge-Dependent Cosmological ‘Constant’. Class. Quant. Grav. 2004, 21, 3611. [Google Scholar] [CrossRef] [Green Version]
- Babourova, O.; Frolov, B. The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe. Universe 2020, 6, 230. [Google Scholar] [CrossRef]
- Available online: https://link.springer.com/article/10.1140/epjc/s10052-020-7918-6 (accessed on 13 October 2022).
- Prokopec, T. Negative Energy Cosmology and the Cosmological Constant. arXiv 2011, arXiv:1105.0078. [Google Scholar]
- Biswas, T.; Koivisto, T.; Mazumdar, A. Could Our Universe Have Begun With Negative Lambda? arXiv 2011, arXiv:1105.2636. [Google Scholar]
- Ye, G.; Piao, Y.-S. Is the Hubble Tension a Hint of AdS Phase Around Recombination? Phys. Rev. D 2020, 101, 083507. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.; Piao, Y.-S. T0 Censorship of Early Dark Energy and AdS Vacua. Phys. Rev. D 2020, 102, 083523. [Google Scholar] [CrossRef]
- Akarsu, O.; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated Dark Energy: Observational Hints of a Spontaneous Sign Switch in the Cosmological Constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef] [Green Version]
- Gupt, B.; Singh, P. Non-singular AdS-DS Transitions in a Landscape Scenario. Phys. Rev. D 2014, 89, 063520. [Google Scholar] [CrossRef] [Green Version]
- Dutta, K.; Ruchika; Roy, A.; Sen, A.A.; Sheikh-Jabbari, M.M. Beyond ΛCDM with Low and High Redshift Data: Implications for Dark Energy. Gen. Relativ. Gravit. 2020, 52, 15. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.A.; Adil, S.A.; Sen, S. Do Cosmological Observations Allow a Negative Λ? arXiv 2021, arXiv:2112.10641. [Google Scholar] [CrossRef]
- Akarsu, O.; Kumar, S.; Ozulker, E.; Vazquez, J.A. Relaxing Cosmological Tensions With a Sign Switching Cosmological Constant. Phys. Rev. D 2021, 104, 123512. [Google Scholar] [CrossRef]
- Battye, R.A.; Charnock, T.; Moss, A. Tension Between the Power Spectrum of Density Perturbations Measured on Large and Small Scales. Phys. Rev. D 2015, 91, 103508. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D. Quantifying the S8 Tension With the Redshift Space Distortion Data Set. Phys. Dark Univ. 2021, 1, 100766. [Google Scholar] [CrossRef]
- Benevento, G.; Hu, W.; Raveri, M. Can Late Dark Energy Transitions Raise the Hubble Constant. Phys. Rev. D 2020, 101, 103517. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H.; Zosso, J. Simultaneously Solving the H0 and σ8 Tensions With Late Dark Energy. arXiv 2022, arXiv:2201.11623. [Google Scholar]
- Sakr, Z.; Sapone, D. Can Varying the Gravitational Constant Alleviate the Tensions? J. Cosmol. Astropart. Phys. 2022, 3, 034. [Google Scholar] [CrossRef]
- Visinelli, L.; Vagnozzi, S.; Danielsson, U. Revisiting a Negative Cosmological Constant From Low-Redshift Data. Symmetry 2019, 11, 1035. [Google Scholar] [CrossRef]
- Available online: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.L041301 (accessed on 13 October 2022).
- Feynman, R.; Sands, M.; Leighton, R.B. The Feynmann Lectures on Physics; Addison Wesley Publishing Co.: Reading, MA, USA, 1963; pp. 46-1–46-9. [Google Scholar]
- Price, H. Cosmology, Time’s Arrow, and That Old Double Standard. In Time’s Arrows Today; Savitt, S., Ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Price, H. The Thermodynamic Arrow: Puzzles and Pseudo-puzzles. arXiv 2004, arXiv:physics/0402040. [Google Scholar]
- Vaas, R. Time After Time—Big Bang Cosmology and the Arrows of Time. Fundam. Theor. Phys. 2012, 172, 5. [Google Scholar]
- Price, H. Time’s Arrow and Eddington’s Challenge. Prog. Math. Phys. 2013, 63, 187. [Google Scholar]
- Penrose, R. Singularities and Time-Asymmetry. In General Relativity, An Einstein Centenary Survey; Hawking, S.T., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- McInnes, B. Arrow of Time in String Theory. Nucl. Phys. B 2007, 782, 1. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Before the Big Bang: An Outrageous New Perspective and Its Implications for Particle Physics. Contribution to: 10th European Particle Accelerator Conference (EPAC 06). Conf. Proc. C 2006, 060626, 2759. [Google Scholar]
- McInnes, B. The Arrow Of Time In The Landscape. arXiv 2007, arXiv:0711.1656. [Google Scholar]
- Carroll, S.M. In What Sense Is the Early Universe Fine-Tuned? arXiv 2007, arXiv:1406.3057. [Google Scholar]
- Greene, B.; Hinterbichler, K.; Judes, S.; Parikh, M.K. Smooth Initial Conditions From Weak Gravity. Phys. Lett. B 2011, 97, 178. [Google Scholar] [CrossRef] [Green Version]
- Sloan, D.; Ellis, G. Solving the Cosmological Entropy Issue with a Higgs Dilaton. Phys. Rev. D 2019, 99, 063518. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.-i.; Panpanich, S. Cuscuta-Galileon Cosmology: Dynamics, Gravitational Constants and the Hubble Constant. Phys. Rev. D 2022, 105, 104022. [Google Scholar] [CrossRef]
- Uzan, J.-P. Varying Constants, Gravitation and Cosmology. Living Rev. Rel. 2011, 14, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, D. Fractal Properties of Quantum Spacetime. Phys. Rev. Lett. 2009, 102, 111303. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. The Small Scale Structure of Spacetime. arXiv 2010, arXiv:1009.1136. [Google Scholar]
- Alencar, G.; Bezerra, V.B.; Cunha, M.S.; Muniz, C.R. On Effective Spacetime Dimension in the Hořava-Lifshitz Gravity. Phys. Lett. B 2015, 747, 536. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. ABC of Multi-Fractal Spacetimes and Fractional Sea Turtles. Eur. Phys. J. C 2016, 76, 181. [Google Scholar] [CrossRef] [Green Version]
- Lok Hu, B.L. Fractal Spacetimes in Stochastic Gravity?—Views from Anomalous Diffusion and the Correlation Hierarchy. J. Phys. Conf. Ser. 2017, 880, 012004. [Google Scholar]
- Carlip, S. Dimension and Dimensional Reduction in Quantum Gravity. Universe 2019, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; da Silva, F.R.; Moniz, P.V. Prospecting Black Hole Thermodynamics With Fractional Quantum Mechanics. Eur. Phys. J. C 2021, 81, 632. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Different Faces of Generalized Holographic Dark Energy. arXiv 2021, arXiv:2105.08438. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Early and Late Universe Holographic Cosmology From a New Generalized Entropy. arXiv 2022, arXiv:2205.08876. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Faraoni, V. How Fundamental Is Entropy? From Non-extensive Statistics and Black Hole Physics to the Holographic Dark Universe. arXiv 2022, arXiv:2201.02424. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gennaro, S.; Ong, Y.C. Sign Switching Dark Energy from a Running Barrow Entropy. Universe 2022, 8, 541. https://doi.org/10.3390/universe8100541
Di Gennaro S, Ong YC. Sign Switching Dark Energy from a Running Barrow Entropy. Universe. 2022; 8(10):541. https://doi.org/10.3390/universe8100541
Chicago/Turabian StyleDi Gennaro, Sofia, and Yen Chin Ong. 2022. "Sign Switching Dark Energy from a Running Barrow Entropy" Universe 8, no. 10: 541. https://doi.org/10.3390/universe8100541
APA StyleDi Gennaro, S., & Ong, Y. C. (2022). Sign Switching Dark Energy from a Running Barrow Entropy. Universe, 8(10), 541. https://doi.org/10.3390/universe8100541