Collisions of Electrons with Alkali, Alkaline and Complex Atoms Relevant to Solar and Stellar Atmospheres
Abstract
:1. Statement of the Problem
2. Available Experimental and Theoretical Data for Simple Atoms
3. Fitting Formula Inferred for Simple Atoms
4. Accuracy of the Application of Our Approach to Simple Atoms
5. Extension to Complex Atoms
5.1. The Frozen Core Approximation
- Part 1: Electrons in a complete subshell or an electron in an s-state above electrons in a complete subshell.
- Part 2: A partially filled (incomplete) subshell located above part 1, which we call the atom core. and are the total orbital angular momentum of the electrons of the atom core and their total spin, respectively. is the spectral term of the atom core.
- Part 3: A valence/optical electron within an s- or p-state.
5.2. Accuracy of the Rates of Complex Atoms
5.3. Polarization Transfer Rates of Complex Atoms
6. Extension to Atoms with Hyperfine Structure
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sahal-Bréchot, S.; Vogt, E.; Thoraval, S.; Diedhiou, I. Impact polarization of the Halpha line of hydrogen in solar flares: Calculations of electron and proton collisional anisotropic processes between the Zeeman excited sublevels. Astron. Astrophys. 1996, 309, 317. [Google Scholar]
- Barklem, P.S. Accurate abundance analysis of late-type stars: Advances in atomic physics. Astron. Astrophys. Rev. 2016, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Bartschat, K.; Zatsarinny, O. Meléndez, J. Electron Scattering from Neutral Fe and Low-energy Photodetachment of Fe−. Astrophys. J. 2018, 867, 63. [Google Scholar] [CrossRef] [Green Version]
- Reggiani, H.; Amarsi, A.M.; Lind, K.; Barklem, P.S.; Zatsarinny, O.; Bartschat, K.; Fursa, D.V.; Bray, I.; Spina, L.; Meléndez, J. Non-LTE analysis of KI in late-type stars. Astron. Astrophys. 2018, 627, A177. [Google Scholar] [CrossRef] [Green Version]
- Zatsarinny, O.; Bartschat, K.; Fernandez-Menchero, L.; Tayal, S.S. Photoionization of neutral iron from the ground and excited states. Phys. Rev. A 2019, 99, 023430. [Google Scholar] [CrossRef] [Green Version]
- Bergemann, M.; Hoppe, R.; Semenova, E.; Carlsson, M.; Yakovleva, S.A.; Voronov, Y.V.; Bautista, M.; Nemer, A.; Belyaev, A.K.; Leenaarts, J.; et al. Solar oxygen abundance. Mon. Not. R. Astron. Soc. 2021, 508, 2236. [Google Scholar] [CrossRef]
- Tayal, S.S.; Zatsarinny, O. Effective Collision Strengths and Radiative Parameters for Lines in the Sc ii Spectrum. Astrophys. J. Suppl. Ser. 2022, 259, 52. [Google Scholar] [CrossRef]
- Seaton, M.J. The impact parameter method for electron excitation of optically allowed atomic transitions. Proc. Phys. Soc. 1962, 79, 1105. [Google Scholar] [CrossRef]
- van Regemorter, H. Rate of Collisional Excitation in Stellar Atmospheres. Astrophys. J. 1962, 136, 906. [Google Scholar] [CrossRef]
- Derouich, M.; Radi, A.; Barklem, P.S. Unified numerical model of collisional depolarization and broadening rates that are due to hydrogen atom collisions. Astron. Astrophys. 2015, 584, 64. [Google Scholar] [CrossRef]
- Derouich, M. General model of depolarization and transfer of polarization of singly ionized atoms by collisions with hydrogen atoms. New Astron. 2017, 51, 32. [Google Scholar] [CrossRef]
- Derouich, M. Comprehensive Data for Depolarization of the Second Solar Spectrum by Isotropic Collisions with Neutral Hydrogen. Astrophys. J. Suppl. Ser. 2020, 247, 72. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; The MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Derouich, M.; Sahal-Bréchot, S.; Barklem, P.S. Collisional depolarization of the lines of complex atoms/ions by neutral hydrogen. Astron. Astrophys. 2005, 434, 779. [Google Scholar] [CrossRef] [Green Version]
- Enemark, E.A.; Gallagher, A. Electron excitation of the sodium D lines. Phys. Rev. A 1972, 6, 192. [Google Scholar] [CrossRef]
- Ehlers, V.; Gallagher, A. Electron excitation of the calcium 4227-Å resonance line. Phys. Rev. A 1973, 7, 1573. [Google Scholar] [CrossRef]
- Leep, D.; Gallagher, A. Electron excitation of the lithium 6708-Å resonance line. Phys. Rev. A 1974, 10, 1082. [Google Scholar] [CrossRef]
- Chen, S.T.; Leep, D.; Gallagher, A. Excitation of the Sr and Sr+ resonance lines by electron impact on Sr atoms. Phys. Rev. A 1976, 13, 947. [Google Scholar] [CrossRef]
- Chen, S.T.; Gallagher, A. Excitation of the Ba and Ba+ resonance lines by electron impact on Ba atoms. Phys. Rev. A 1976, 14, 593. [Google Scholar] [CrossRef]
- Leep, D.; Gallagher, A. Excitation of the Mg and Mg+ resonance lines by electron impact on Mg atoms. Phys. Rev. A 1976, 13, 148. [Google Scholar] [CrossRef]
- Chen, S.T.; Gallagher, A. Electron excitation of the resonance lines of the alkali-metal atoms. Phys. Rev. A 1978, 17, 551. [Google Scholar] [CrossRef]
- Vriens, L.; Smeets, A.H.M. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms. Phys. Rev. A 1980, 22, 940. [Google Scholar] [CrossRef]
- Gao, X.; Han, X.Y.; Voky, L.; Feautrier, N.; Li, J.M. Precision calculation of low-energy electron-impact excitation cross sections of sodium. Phys. Rev. A 2010, 81, 022703. [Google Scholar] [CrossRef]
- Lind, K.; Asplund, M.; Barklem, P.S.; Belyaev, A.K. Non-LTE calculations for neutral Na in late-type stars using improved atomic data. Astron. Astrophys. 2011, 528, A103. [Google Scholar] [CrossRef] [Green Version]
- Lino, J.L.S. Cross sections for electron-impact excitation of neutral atoms. Rev. Mex. Fis. 2017, 63, 190. [Google Scholar]
- Osorio, Y.; Barklem, P.S.; Lind, K.; Asplund, M. The influence of electron collisions on non-LTE Li line formation in stellar atmospheres. Astron. Astrophys. 2011, 529, A31. [Google Scholar] [CrossRef] [Green Version]
- Amarsi, A.M.; Grevesse, N.; Grumer, J.; Asplund, M.; Barklem, P.S.; Collet, R. The 3D non-LTE solar nitrogen abundance from atomic lines. Astron. Astrophys. 2020, 636, A120. [Google Scholar] [CrossRef] [Green Version]
- Sahal-Bréchot, S.; Derouich, M.; Bommier, V.; Barklem, P.S. Multipole rates for atomic polarization studies: The case of complex atoms in non-spherically symmetric states colliding with atomic hydrogen. Astron. Astrophys. 2007, 465, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Derouich, M.; Sahal-Bréchot, S.; Barklem, P.S. Spin depolarizing effect in collisions of simple/complex atoms in spherically symmetric states with neutral hydrogen. Astron. Astrophys. 2005, 441, 395–406. [Google Scholar] [CrossRef]
- Barklem, P.S. Electron-impact excitation of neutral oxygen. Astron. Astrophys. 2007, 462, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Derouich, M.; Sahal-Bréchot, S.; Barklem, P.S. Collisional depolarization and transfer rates of spectral lines by atomic hydrogen-II. Application to d states of neutral atoms. Astron. Astrophys. 2003, 409, 369–373. [Google Scholar] [CrossRef]
- Derouich, M. Étude des Collisions Dépolarisant les Raies du “Deuxième Spectre” du Soleil. Développement et Exploitation d’une Nouvelle Méthode Théorique. Ph.D. Thesis, Paris VII-Denis Diderot University, Paris, France, 2004. Available online: https://tel.archives-ouvertes.fr/tel-00331859 (accessed on 11 October 2022).
- Derouich, M.; Barklem, P.S. Spin depolarizing effect in collisions with neutral hydrogen-II. Application to simple/complex ions in spherically symmetric states. Astron. Astrophys. 2007, 462, 1171–1177. [Google Scholar] [CrossRef] [Green Version]
- Derouich, M. Collisional depolarization of molecular lines. Application to the SiO+H isotropic collisions. Astron. Astrophys. 2006, 449, 1–7. [Google Scholar] [CrossRef]
- Derouich, M.; Basurah, H.; Badruddin, B. Scattering Polarisation of the d-States of Ions and Solar Magnetic Field: Effects of Isotropic Collisions; Cambridge University Press: Cambridge, UK, 2017; Volume 34, p. e018. [Google Scholar]
- Nienhuis, G. Quantum-mechanical theory of transfer and relaxation of atomic multipole moments. J. Phys. B Atom. Molec. Phys. 1976, 9, 167. [Google Scholar] [CrossRef]
- Omont, A. Irreducible components of the density matrix. Application to optical pumping. Prog. Quantum Electron. 1977, 5, 69–138. [Google Scholar] [CrossRef]
Experimental Reference | s–p Atomic Transition | Threshold Energy |
---|---|---|
(eV) | ||
[21] | Cs (5 6s <—> 5 6p ) | 1.4546 |
[21] | Rb (4 5s <—> 4 5p ) | 1.5890 |
[21] | K (3 4s <—> 3 4p ) | 1.6171 |
[18] | Li (1 2s <—> 1 2p ) | 1.8478 |
[16] | Na (2 3s <—> 2 3p ) | 2.1044 |
[20] | Ba (5 6 <—> 5 6 s 6p ) | 2.2391 |
[19] | Sr (4 5 <—> 4 5 s 5p ) | 2.6902 |
[17] | Ca (3 4 <—> 3 4 s 4p ) | 2.9324 |
[21] | Mg (2 3 <—> 2 3 s 3p ) | 4.3457 |
Simple Atom | Threshold Energy | [] (10 cm s) | [] (10 cm s) |
---|---|---|---|
(eV) | (Equation (4)) | (Direct Calculation) | |
Cs | 1.4546 | 2.5395 | 2.4727 |
Rb | 1.5890 | 2.2111 | 2.6191 |
K | 1.6171 | 2.1453 | 1.8627 |
Li | 1.8478 | 1.6436 | 1.5711 |
Na | 2.1044 | 1.1690 | 1.4102 |
Ba | 2.2391 | 0.9566 | 0.7497 |
Sr | 2.6902 | 0.4343 | 0.3876 |
Ca | 2.9324 | 0.2714 | 0.3010 |
Mg | 4.3457 | 0.4132 | 0.4397 |
Transition | (eV) | T(K) | [] | [] |
---|---|---|---|---|
T1 | 1.46743 | 5000 | 3.93 | 2.51 |
1.46743 | 7000 | 4.48 | 2.86 | |
T2 | 1.59413 | 5000 | 4.25 | 2.20 |
1.59413 | 7000 | 4.90 | 2.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derouich, M.; Qutub, S.; Mustajab, F.; Ahmad, B.Z. Collisions of Electrons with Alkali, Alkaline and Complex Atoms Relevant to Solar and Stellar Atmospheres. Universe 2022, 8, 613. https://doi.org/10.3390/universe8120613
Derouich M, Qutub S, Mustajab F, Ahmad BZ. Collisions of Electrons with Alkali, Alkaline and Complex Atoms Relevant to Solar and Stellar Atmospheres. Universe. 2022; 8(12):613. https://doi.org/10.3390/universe8120613
Chicago/Turabian StyleDerouich, Moncef, Saleh Qutub, Fainana Mustajab, and Badruddin Zaheer Ahmad. 2022. "Collisions of Electrons with Alkali, Alkaline and Complex Atoms Relevant to Solar and Stellar Atmospheres" Universe 8, no. 12: 613. https://doi.org/10.3390/universe8120613
APA StyleDerouich, M., Qutub, S., Mustajab, F., & Ahmad, B. Z. (2022). Collisions of Electrons with Alkali, Alkaline and Complex Atoms Relevant to Solar and Stellar Atmospheres. Universe, 8(12), 613. https://doi.org/10.3390/universe8120613