Mapping the Galactic Metallicity Gradient with Open Clusters: The State-of-the-Art and Future Challenges
Abstract
:1. Introduction
2. An Overview on the Galactic High-Resolution Spectroscopic Surveys and Programmes
2.1. APOGEE
2.2. Gaia-ESO
2.3. GALAH
2.4. OCCASO
2.5. SPA
3. The Homogenised Dataset
3.1. Metallicity Homogenisation
3.2. Orbital Parameters
4. Galactic Metallicity Gradients
5. Present and Future Challenges
5.1. The Selection Bias
5.2. The Cluster Dissipation Bias
5.3. The Role of Resonances in the Galactic Disk
5.4. The Role of the Galactic Warp
5.5. Intra- and Inter-Clusters Chemical Homogeneity
5.6. Spectroscopic Analysis of Young Stars
5.7. Analysis of Cool Stars
5.8. Atomic Diffusion
6. The Radial Gradient of the Milky Way in the Extragalactic Framework
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiappini, C.; Matteucci, F.; Gratton, R. The Chemical Evolution of the Galaxy: The Two-Infall Model. Astrophys. J. Astrophys. J. 1997, 477, 765–780. [Google Scholar] [CrossRef]
- Prantzos, N.; Boissier, S. Chemo-spectrophotometric evolution of spiral galaxies—III. Abundance and colour gradients in discs. Mon. Not. R. Astron. Soc. Mon. Not. R. Astron. Soc. 2000, 313, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Minchev, I.; Chiappini, C.; Martig, M. Chemodynamical evolution of the Milky Way disk. II. Variations with Galactic radius and height above the disk plane. Astron. Astrophys. 2014, 572, A92. [Google Scholar] [CrossRef] [Green Version]
- Grisoni, V.; Spitoni, E.; Matteucci, F. Abundance gradients along the Galactic disc from chemical evolution models. Mon. Not. R. Astron. Soc. 2018, 481, 2570–2580. [Google Scholar] [CrossRef] [Green Version]
- Mollá, M.; Díaz, Á.I.; Cavichia, O.; Gibson, B.K.; Maciel, W.J.; Costa, R.D.D.; Ascasibar, Y.; Few, C.G. The time evolution of the Milky Way’s oxygen abundance gradient. Mon. Not. R. Astron. Soc. 2019, 482, 3071–3088. [Google Scholar] [CrossRef] [Green Version]
- Schönrich, R.; Binney, J. Chemical evolution with radial mixing. Mon. Not. R. Astron. Soc. 2009, 396, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Spitoni, E.; Matteucci, F.; Recchi, S.; Cescutti, G.; Pipino, A. Effects of galactic fountains and delayed mixing in the chemical evolution of the Milky Way. Astron. Astrophys. 2009, 504, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Spitoni, E.; Matteucci, F. Effects of the radial flows on the chemical evolution of the Milky Way disk. Astron. Astrophys. 2011, 531, A72. [Google Scholar] [CrossRef]
- Spitoni, E.; Romano, D.; Matteucci, F.; Ciotti, L. The Effect of Stellar Migration on Galactic Chemical Evolution: A Heuristic Approach. Astrophys. J. 2015, 802, 129. [Google Scholar] [CrossRef] [Green Version]
- Minchev, I.; Chiappini, C.; Martig, M. Chemodynamical evolution of the Milky Way disk. I. The solar vicinity. Astron. Astrophys. 2013, 558, A9. [Google Scholar] [CrossRef] [Green Version]
- Kubryk, M.; Prantzos, N.; Athanassoula, E. Evolution of the Milky Way with radial motions of stars and gas. II. The evolution of abundance profiles from H to Ni. Astron. Astrophys. 2015, 580, A127. [Google Scholar] [CrossRef] [Green Version]
- Kubryk, M.; Prantzos, N.; Athanassoula, E. Evolution of the Milky Way with radial motions of stars and gas. I. The solar neighbourhood and the thin and thick disks. Astron. Astrophys. 2015, 580, A126. [Google Scholar] [CrossRef]
- Spitoni, E.; Silva Aguirre, V.; Matteucci, F.; Calura, F.; Grisoni, V. Galactic Archaeology with asteroseismic ages: Evidence for delayed gas infall in the formation of the Milky Way disc. Astron. Astrophys. 2019, 623, A60. [Google Scholar] [CrossRef] [Green Version]
- Spitoni, E.; Verma, K.; Silva Aguirre, V.; Calura, F. Galactic archaeology with asteroseismic ages. II. Confirmation of a delayed gas infall using Bayesian analysis based on MCMC methods. Astron. Astrophys. 2020, 635, A58. [Google Scholar] [CrossRef]
- Spitoni, E.; Verma, K.; Silva Aguirre, V.; Vincenzo, F.; Matteucci, F.; Vaičekauskaitė, B.; Palla, M.; Grisoni, V.; Calura, F. APOGEE DR16: A multi-zone chemical evolution model for the Galactic disc based on MCMC methods. Astron. Astrophys. 2021, 647, A73. [Google Scholar] [CrossRef]
- Matteucci, F.; Francois, P. Galactic chemical evolution: Abundance gradients of individual elements. Mon. Not. R. Astron. Soc. 1989, 239, 885–904. [Google Scholar] [CrossRef]
- Larson, R.B. Models for the formation of disc galaxies. Mon. Not. R. Astron. Soc. 1976, 176, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Grand, R.J.J.; Gómez, F.A.; Marinacci, F.; Pakmor, R.; Springel, V.; Campbell, D.J.R.; Frenk, C.S.; Jenkins, A.; White, S.D.M. The Auriga Project: The properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 2017, 467, 179–207. [Google Scholar] [CrossRef] [Green Version]
- Vincenzo, F.; Kobayashi, C. Stellar migrations and metal flows—Chemical evolution of the thin disc of a simulated Milky Way analogous galaxy. Mon. Not. R. Astron. Soc. 2020, 496, 80–94. [Google Scholar] [CrossRef]
- Mollá, M.; Díaz, A.I. A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data. Mon. Not. R. Astron. Soc. 2005, 358, 521–543. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Sestito, P.; Randich, S.; Galli, D. The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters. Astron. Astrophys. 2009, 494, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Palla, M.; Matteucci, F.; Spitoni, E.; Vincenzo, F.; Grisoni, V. Chemical evolution of the Milky Way: Constraints on the formation of the thick and thin discs. Mon. Not. R. Astron. Soc. 2020, 498, 1710–1725. [Google Scholar] [CrossRef]
- Matteucci, F. Modelling the chemical evolution of the Milky Way. Astron. Astrophys. Rev. 2021, 29, 5. [Google Scholar] [CrossRef]
- Balser, D.S.; Rood, R.T.; Bania, T.M.; Anderson, L.D. H II Region Metallicity Distribution in the Milky Way Disk. Astrophys. J. 2011, 738, 27. [Google Scholar] [CrossRef] [Green Version]
- Esteban, C.; García-Rojas, J. Revisiting the radial abundance gradients of nitrogen and oxygen of the Milky Way. Mon. Not. R. Astron. Soc. 2018, 478, 2315–2336. [Google Scholar] [CrossRef]
- Arellano-Córdova, K.Z.; Esteban, C.; García-Rojas, J.; Méndez-Delgado, J.E. The Galactic radial abundance gradients of C, N, O, Ne, S, Cl, and Ar from deep spectra of H II regions. Mon. Not. R. Astron. Soc. 2020, 496, 1051–1076. [Google Scholar] [CrossRef]
- Maciel, W.J.; Quireza, C.; Costa, R.D.D. Time variation of radial gradients in the Galactic disk: Electron temperatures and abundances. Astron. Astrophys. 2007, 463, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Maciel, W.J.; Costa, R.D.D.; Cavichia, O. Radial abundance gradients from planetary nebulae at different distances from the galactic plane. Rev. Mex. Astron. AstrofíSica 2015, 51, 165. [Google Scholar]
- Stanghellini, L.; Haywood, M. The Galactic Structure and Chemical Evolution Traced by the Population of Planetary Nebulae. Astrophys. J. 2010, 714, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
- Stanghellini, L.; Haywood, M. Galactic Planetary Nebulae as Probes of Radial Metallicity Gradients and Other Abundance Patterns. Astrophys. J. 2018, 862, 45. [Google Scholar] [CrossRef]
- Genovali, K.; Lemasle, B.; Bono, G.; Romaniello, M.; Fabrizio, M.; Ferraro, I.; Iannicola, G.; Laney, C.D.; Nonino, M.; Bergemann, M.; et al. On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk. Astron. Astrophys. 2014, 566, A37. [Google Scholar] [CrossRef] [Green Version]
- Lemasle, B.; François, P.; Genovali, K.; Kovtyukh, V.V.; Bono, G.; Inno, L.; Laney, C.D.; Kaper, L.; Bergemann, M.; Fabrizio, M.; et al. Galactic abundance gradients from Cepheids. α and heavy elements in the outer disk. Astron. Astrophys. 2013, 558, A31. [Google Scholar] [CrossRef] [Green Version]
- Luck, R.E. Cepheid Abundances: Multiphase Results and Spatial Gradients. Astron. J. 2018, 156, 171. [Google Scholar] [CrossRef] [Green Version]
- Boeche, C.; Siebert, A.; Piffl, T.; Just, A.; Steinmetz, M.; Grebel, E.K.; Sharma, S.; Kordopatis, G.; Gilmore, G.; Chiappini, C.; et al. Chemical gradients in the Milky Way from the RAVE data. II. Giant stars. Astron. Astrophys. 2014, 568, A71. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Liu, X.W.; Zhang, H.W.; Yuan, H.B.; Xiang, M.S.; Chen, B.Q.; Ren, J.J.; Sun, N.C.; Wang, C.; Zhang, Y.; et al. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars. Res. Astron. Astrophys. 2015, 15, 1240. [Google Scholar] [CrossRef] [Green Version]
- Anders, F.; Chiappini, C.; Minchev, I.; Miglio, A.; Montalbán, J.; Mosser, B.; Rodrigues, T.S.; Santiago, B.X.; Baudin, F.; Beers, T.C.; et al. Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way’s radial metallicity gradient. Astron. Astrophys. 2017, 600, A70. [Google Scholar] [CrossRef]
- Daflon, S.; Cunha, K. Galactic Metallicity Gradients Derived from a Sample of OB Stars. Astrophys. J. 2004, 617, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Bragança, G.A.; Daflon, S.; Lanz, T.; Cunha, K.; Bensby, T.; McMillan, P.J.; Garmany, C.D.; Glaspey, J.W.; Borges Fernandes, M.; Oey, M.S.; et al. Radial abundance gradients in the outer Galactic disk as traced by main-sequence OB stars. Astron. Astrophys. 2019, 625, A120. [Google Scholar] [CrossRef] [Green Version]
- Janes, K.A. Evidence for an abundance gradient in the galactic disk. Astrophys. J. Suppl. 1979, 39, 135–156. [Google Scholar] [CrossRef]
- Bragaglia, A.; Sestito, P.; Villanova, S.; Carretta, E.; Randich, S.; Tosi, M. Old open clusters as key tracers of Galactic chemical evolution. II. Iron and elemental abundances in NGC 2324, NGC 2477 NGC 2660, NGC 3960, and Berkeley 32. Astron. Astrophys. 2008, 480, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Sestito, P.; Bragaglia, A.; Randich, S.; Pallavicini, R.; Andrievsky, S.M.; Korotin, S.A. Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20, Berkeley 29, Collinder 261 and Melotte 66. Astron. Astrophys. 2008, 488, 943–958. [Google Scholar] [CrossRef]
- Friel, E.D.; Jacobson, H.R.; Pilachowski, C.A. Abundances of Red Giants in Old Open Clusters. V. Be 31, Be 32, Be 39, M 67, NGC 188, and NGC 1193. Astron. J. 2010, 139, 1942–1967. [Google Scholar] [CrossRef]
- Carrera, R.; Pancino, E. Chemical abundance analysis of the open clusters Berkeley 32, NGC 752, Hyades, and Praesepe. Astron. Astrophys. 2011, 535, A30. [Google Scholar] [CrossRef]
- Yong, D.; Carney, B.W.; Friel, E.D. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters. Astron. J. 2012, 144, 95. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.B.S.; Lambert, D.L.; Giridhar, S. The evolution of the Milky Way: New insights from open clusters. Mon. Not. R. Astron. Soc. 2016, 463, 4366–4382. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, H.R.; Friel, E.D.; Jílková, L.; Magrini, L.; Bragaglia, A.; Vallenari, A.; Tosi, M.; Randich, S.; Donati, P.; Cantat-Gaudin, T.; et al. The Gaia-ESO Survey: Probes of the inner disk abundance gradient. Astron. Astrophys. 2016, 591, A37. [Google Scholar] [CrossRef]
- Casamiquela, L.; Blanco-Cuaresma, S.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Anders, F.; Chiappini, C.; Carbajo-Hijarrubia, J.; Aguado, D.S.; del Pino, A.; et al. OCCASO—III. Iron peak and α elements of 18 open clusters. Comparison with chemical evolution models and field stars. Mon. Not. R. Astron. Soc. 2019, 490, 1821–1842. [Google Scholar] [CrossRef]
- Donor, J.; Frinchaboy, P.M.; Cunha, K.; O’Connell, J.E.; Prieto, C.A.; Almeida, A.; Anders, F.; Beaton, R.; Bizyaev, D.; Brownstein, J.R.; et al. The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16. Astron. J. 2020, 159, 199. [Google Scholar] [CrossRef] [Green Version]
- Netopil, M.; Oralhan, İ.A.; Çakmak, H.; Michel, R.; Karataş, Y. The Galactic metallicity gradient shown by open clusters in the light of radial migration. Mon. Not. R. Astron. Soc. 2021, 509, 421–439. [Google Scholar] [CrossRef]
- Carraro, G.; Ng, Y.K.; Portinari, L. On the Galactic disc age-metallicity relation. Mon. Not. R. Astron. Soc. 1998, 296, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Friel, E.D.; Janes, K.A.; Tavarez, M.; Scott, J.; Katsanis, R.; Lotz, J.; Hong, L.; Miller, N. Metallicities of Old Open Clusters. Astron. J. 2002, 124, 2693–2720. [Google Scholar] [CrossRef] [Green Version]
- Cunha, K.; Frinchaboy, P.M.; Souto, D.; Thompson, B.; Zasowski, G.; Allende Prieto, C.; Carrera, R.; Chiappini, C.; Donor, J.; García-Hernández, D.A.; et al. Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey. Astron. Nachr. 2016, 337, 922. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Randich, S.; Palla, F.; Biazzo, K.; Sacco, G.G.; Alfaro, E.J.; Franciosini, E.; Magrini, L.; Morbidelli, L.; Frasca, A.; et al. The Gaia-ESO Survey: Metallicity of the Chamaeleon I star-forming region. Astron. Astrophys. 2014, 568, A2. [Google Scholar] [CrossRef] [Green Version]
- Quillen, A.C.; Nolting, E.; Minchev, I.; De Silva, G.; Chiappini, C. Migration in the shearing sheet and estimates for young open cluster migration. Mon. Not. R. Astron. Soc. 2018, 475, 4450–4466. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Q.; Zhao, G. Open clusters as tracers on radial migration of the galactic disc. Mon. Not. R. Astron. Soc. 2020, 495, 2673–2681. [Google Scholar] [CrossRef]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef] [Green Version]
- Lindegren, L.; Lammers, U.; Bastian, U.; Hernández, J.; Klioner, S.; Hobbs, D.; Bombrun, A.; Michalik, D.; Ramos-Lerate, M.; Butkevich, A.; et al. Gaia Data Release 1. Astrometry: One billion positions, two million proper motions and parallaxes. Astron. Astrophys. 2016, 595, A4. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; et al. The Gaia-ESO Public Spectroscopic Survey. Messenger 2012, 147, 25–31. [Google Scholar]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M.; Allende Prieto, C.; Barkhouser, R.; Bizyaev, D.; Blank, B.; Brunner, S.; Burton, A.; Carrera, R.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- Buder, S.; Asplund, M.; Duong, L.; Kos, J.; Lind, K.; Ness, M.K.; Sharma, S.; Bland-Hawthorn, J.; Casey, A.R.; de Silva, G.M.; et al. The GALAH Survey: Second data release. Mon. Not. R. Astron. Soc. 2018, 478, 4513–4552. [Google Scholar] [CrossRef] [Green Version]
- Cantat-Gaudin, T.; Anders, F.; Castro-Ginard, A.; Jordi, C.; Romero-Gómez, M.; Soubiran, C.; Casamiquela, L.; Tarricq, Y.; Moitinho, A.; Vallenari, A.; et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 2020, 640, A1. [Google Scholar] [CrossRef]
- Wilson, J.C.; Hearty, F.R.; Skrutskie, M.F.; Majewski, S.R.; Holtzman, J.A.; Eisenstein, D.; Gunn, J.; Blank, B.; Henderson, C.; Smee, S.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs. Publ. Astron. Soc. Pac. 2019, 131, 055001. [Google Scholar] [CrossRef] [Green Version]
- Beaton, R.L.; Oelkers, R.J.; Hayes, C.R.; Covey, K.R.; Chojnowski, S.D.; De Lee, N.; Sobeck, J.S.; Majewski, S.R.; Cohen, R.; Fernandez-Trincado, J.; et al. Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey. arXiv 2021, arXiv:2108.11907. [Google Scholar]
- Frinchaboy, P.M.; Thompson, B.; Jackson, K.M.; O’Connell, J.; Meyer, B.; Zasowski, G.; Majewski, S.R.; Chojnowksi, S.D.; Johnson, J.A.; Allende Prieto, C.; et al. The Open Cluster Chemical Analysis and Mapping Survey: Local Galactic Metallicity Gradient with APOGEE Using SDSS DR10. Astrophys. J. Lett. 2013, 777, L1. [Google Scholar] [CrossRef] [Green Version]
- Donor, J.; Frinchaboy, P.M.; Cunha, K.; Thompson, B.; O’Connell, J.; Zasowski, G.; Jackson, K.M.; Meyer McGrath, B.; Almeida, A.; Bizyaev, D.; et al. The Open Cluster Chemical Abundances and Mapping Survey. II. Precision Cluster Abundances for APOGEE Using SDSS DR14. Astron. J. 2018, 156, 142. [Google Scholar] [CrossRef] [Green Version]
- Souto, D.; Cunha, K.; Smith, V.V.; Allende Prieto, C.; García-Hernández, D.A.; Pinsonneault, M.; Holzer, P.; Frinchaboy, P.; Holtzman, J.; Johnson, J.A.; et al. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67. Astrophys. J. 2018, 857, 14. [Google Scholar] [CrossRef]
- Poovelil, V.J.; Zasowski, G.; Hasselquist, S.; Seth, A.; Donor, J.; Beaton, R.L.; Cunha, K.; Frinchaboy, P.M.; García-Hernández, D.A.; Hawkins, K.; et al. Open Cluster Chemical Homogeneity throughout the Milky Way. Astrophys. J. 2020, 903, 55. [Google Scholar] [CrossRef]
- Price-Jones, N.; Bovy, J.; Webb, J.J.; Allende Prieto, C.; Beaton, R.; Brownstein, J.R.; Cohen, R.E.; Cunha, K.; Donor, J.; Frinchaboy, P.M.; et al. Strong chemical tagging with APOGEE: 21 candidate star clusters that have dissolved across the Milky Way disc. Mon. Not. R. Astron. Soc. 2020, 496, 5101–5115. [Google Scholar] [CrossRef]
- Souto, D.; Cunha, K.; Smith, V.V. A Metallicity Study of F, G, K, and M Dwarfs in the Coma Berenices Open Cluster from the APOGEE Survey. Astrophys. J. 2021, 917, 11. [Google Scholar] [CrossRef]
- Souto, D.; Cunha, K.; Smith, V.; Allende Prieto, C.; Pinsonneault, M.; Zamora, O.; García-Hernández, D.A.; Mészáros, S.; Bovy, J.; García Pérez, A.E.; et al. Chemical Abundances in a Sample of Red Giants in the Open Cluster NGC 2420 from APOGEE. Astrophys. J. 2016, 830, 35. [Google Scholar] [CrossRef] [Green Version]
- Cunha, K.; Smith, V.V.; Johnson, J.A.; Bergemann, M.; Mészáros, S.; Shetrone, M.D.; Souto, D.; Allende Prieto, C.; Schiavon, R.P.; Frinchaboy, P.; et al. Sodium and Oxygen Abundances in the Open Cluster NGC 6791 from APOGEE H-band Spectroscopy. Astrophys. J. Lett. 2015, 798, L41. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, L.; Avila, G.; Blecha, A.; Cacciari, C.; Cayatte, V.; Colless, M.; Damiani, F.; de Propris, R.; Dekker, H.; di Marcantonio, P.; et al. Installation and commissioning of FLAMES, the VLT Multifibre Facility. Messenger 2002, 110, 1–9. [Google Scholar]
- Randich, S.; Gilmore, G.; Gaia-ESO Consortium. The Gaia-ESO Large Public Spectroscopic Survey. Messenger 2013, 154, 47–49. [Google Scholar]
- Bertelli Motta, C.; Pasquali, A.; Richer, J.; Michaud, G.; Salaris, M.; Bragaglia, A.; Magrini, L.; Randich, S.; Grebel, E.K.; Adibekyan, V.; et al. The Gaia-ESO Survey: Evidence of atomic diffusion in M67? Mon. Not. R. Astron. Soc. 2018, 478, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Spina, L.; Randich, S.; Friel, E.; Kordopatis, G.; Worley, C.; Pancino, E.; Bragaglia, A.; Donati, P.; Tautvaišienė, G.; et al. The Gaia-ESO Survey: The origin and evolution of s-process elements. Astron. Astrophys. 2018, 617, A106. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Vincenzo, F.; Randich, S.; Pancino, E.; Casali, G.; Tautvaišienė, G.; Drazdauskas, A.; Mikolaitis, Š.; Minkevičiūtė, R.; Stonkutė, E.; et al. The Gaia-ESO Survey: The N/O abundance ratio in the Milky Way. Astron. Astrophys. 2018, 618, A102. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Lagarde, N.; Charbonnel, C.; Franciosini, E.; Randich, S.; Smiljanic, R.; Casali, G.; Viscasillas Vazquez, C.; Spina, L.; Biazzo, K.; et al. The Gaia-ESO survey: Mixing processes in low-mass stars traced by lithium abundance in cluster and field stars. arXiv 2021, arXiv:2105.04866. [Google Scholar] [CrossRef]
- Prisinzano, L.; Damiani, F.; Kalari, V.; Jeffries, R.; Bonito, R.; Micela, G.; Wright, N.J.; Jackson, R.J.; Tognelli, E.; Guarcello, M.G.; et al. The Gaia-ESO Survey: Age spread in the star forming region NGC 6530 from the HR diagram and gravity indicators. Astron. Astrophys. 2019, 623, A159. [Google Scholar] [CrossRef] [Green Version]
- Hatzidimitriou, D.; Held, E.V.; Tognelli, E.; Bragaglia, A.; Magrini, L.; Bravi, L.; Gazeas, K.; Dapergolas, A.; Drazdauskas, A.; Delgado-Mena, E.; et al. The Gaia-ESO Survey: The inner disc, intermediate-age open cluster Pismis 18. Astron. Astrophys. 2019, 626, A90. [Google Scholar] [CrossRef] [Green Version]
- Casali, G.; Magrini, L.; Tognelli, E.; Jackson, R.; Jeffries, R.D.; Lagarde, N.; Tautvaišienė, G.; Masseron, T.; Degl’Innocenti, S.; Prada Moroni, P.G.; et al. The Gaia-ESO survey: Calibrating a relationship between age and the [C/N] abundance ratio with open clusters. Astron. Astrophys. 2019, 629, A62. [Google Scholar] [CrossRef] [Green Version]
- Casali, G.; Magrini, L.; Frasca, A.; Bragaglia, A.; Catanzaro, G.; D’Orazi, V.; Sordo, R.; Carretta, E.; Origlia, L.; Andreuzzi, G.; et al. Stellar Population Astrophysics (SPA) with TNG. The old open clusters Collinder 350, Gulliver 51, NGC 7044, and Ruprecht 171. Astron. Astrophys. 2020, 643, A12. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Carraro, G.; Desidera, S.; Randich, S.; Magrini, L.; Adibekyan, V.; Smiljanic, R.; Spina, L.; Tsantaki, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. I. Stellar parameters, and iron-peak, α-, and proton-capture elements. Astron. Astrophys. 2020, 634, A34. [Google Scholar] [CrossRef] [Green Version]
- Randich, S.; Pasquini, L.; Franciosini, E.; Magrini, L.; Jackson, R.J.; Jeffries, R.D.; d’Orazi, V.; Romano, D.; Sanna, N.; Tautvaišienė, G.; et al. The Gaia-ESO Survey: Galactic evolution of lithium at high metallicity. Astron. Astrophys. 2020, 640, L1. [Google Scholar] [CrossRef]
- Jackson, R.J.; Jeffries, R.D.; Wright, N.J.; Randich, S.; Sacco, G.; Pancino, E.; Cantat-Gaudin, T.; Gilmore, G.; Vallenari, A.; Bensby, T.; et al. The Gaia-ESO Survey: Membership probabilities for stars in 32 open clusters from 3D kinematics. Mon. Not. R. Astron. Soc. 2020, 496, 4701–4716. [Google Scholar] [CrossRef]
- Bonito, R.; Prisinzano, L.; Venuti, L.; Damiani, F.; Micela, G.; Sacco, G.; Traven, G.; Biazzo, K.; Sbordone, L.; Masseron, T.; et al. The Gaia-ESO Survey: A new diagnostic for accretion and outflow activity in the young cluster NGC 2264. Astron. Astrophys. 2020, 642, A56. [Google Scholar] [CrossRef]
- Gutiérrez Albarrán, M.L.; Montes, D.; Gómez Garrido, M.; Tabernero, H.M.; González Hernández, J.I.; Marfil, E.; Frasca, A.; Lanzafame, A.C.; Klutsch, A.; Franciosini, E.; et al. The Gaia-ESO Survey: Calibrating the lithium-age relation with open clusters and associations. I. Cluster age range and initial membership selections. Astron. Astrophys. 2020, 643, A71. [Google Scholar] [CrossRef]
- Semenova, E.; Bergemann, M.; Deal, M.; Serenelli, A.; Hansen, C.J.; Gallagher, A.J.; Bayo, A.; Bensby, T.; Bragaglia, A.; Carraro, G.; et al. The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations. Astron. Astrophys. 2020, 643, A164. [Google Scholar] [CrossRef]
- Binks, A.S.; Jeffries, R.D.; Jackson, R.J.; Franciosini, E.; Sacco, G.G.; Bayo, A.; Magrini, L.; Randich, S.; Arancibia-Silva, J.; Bergemann, M.; et al. The Gaia-ESO survey: A lithium depletion boundary age for NGC 2232. Mon. Not. R. Astron. Soc. 2021, 505, 1280–1292. [Google Scholar] [CrossRef]
- Spina, L.; Randich, S.; Magrini, L.; Jeffries, R.D.; Friel, E.D.; Sacco, G.G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; et al. The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters. Astron. Astrophys. 2017, 601, A70. [Google Scholar] [CrossRef] [Green Version]
- De Silva, G.M.; Freeman, K.C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E.W.; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D.B.; Zwitter, T.; et al. The GALAH survey: Scientific motivation. Mon. Not. R. Astron. Soc. 2015, 449, 2604–2617. [Google Scholar] [CrossRef] [Green Version]
- Martell, S.L.; Sharma, S.; Buder, S.; Duong, L.; Schlesinger, K.J.; Simpson, J.; Lind, K.; Ness, M.; Marshall, J.P.; Asplund, M.; et al. The GALAH survey: Observational overview and Gaia DR1 companion. Mon. Not. R. Astron. Soc. 2017, 465, 3203–3219. [Google Scholar] [CrossRef] [Green Version]
- Buder, S.; Sharma, S.; Kos, J.; Amarsi, A.M.; Nordlander, T.; Lind, K.; Martell, S.L.; Asplund, M.; Bland-Hawthorn, J.; Casey, A.R.; et al. The GALAH+ survey: Third data release. Mon. Not. R. Astron. Soc. 2021, 506, 150–201. [Google Scholar] [CrossRef]
- Stello, D.; Zinn, J.; Elsworth, Y.; Garcia, R.A.; Kallinger, T.; Mathur, S.; Mosser, B.; Sharma, S.; Chaplin, W.J.; Davies, G.; et al. The K2 Galactic Archaeology Program Data Release. I. Asteroseismic Results from Campaign 1. Astrophys. J. 2017, 835, 83. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Stello, D.; Buder, S.; Kos, J.; Bland-Hawthorn, J.; Asplund, M.; Duong, L.; Lin, J.; Lind, K.; Ness, M.; et al. The TESS-HERMES survey data release 1: High-resolution spectroscopy of the TESS southern continuous viewing zone. Mon. Not. R. Astron. Soc. 2018, 473, 2004–2019. [Google Scholar] [CrossRef]
- Spina, L.; Ting, Y.S.; De Silva, G.M.; Frankel, N.; Sharma, S.; Cantat-Gaudin, T.; Joyce, M.; Stello, D.; Karakas, A.I.; Asplund, M.B.; et al. The GALAH survey: Tracing the Galactic disc with open clusters. Mon. Not. R. Astron. Soc. 2021, 503, 3279–3296. [Google Scholar] [CrossRef]
- Casamiquela, L.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.; Pancino, E.; Hidalgo, S.L.; Martínez-Vázquez, C.E.; Murabito, S.; del Pino, A.; Aparicio, A.; et al. The OCCASO survey: Presentation and radial velocities of 12 Milky Way open clusters. Mon. Not. R. Astron. Soc. 2016, 458, 3150–3167. [Google Scholar] [CrossRef] [Green Version]
- Casamiquela, L.; Carrera, R.; Blanco-Cuaresma, S.; Jordi, C.; Balaguer-Núñez, L.; Pancino, E.; Anders, F.; Chiappini, C.; Díaz-Pérez, L.; Aguado, D.S.; et al. OCCASO—II. Physical parameters and Fe abundances of red clump stars in 18 open clusters. Mon. Not. R. Astron. Soc. 2017, 470, 4363–4381. [Google Scholar] [CrossRef] [Green Version]
- Casamiquela, L.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Chiappini, C.; Anders, F.; Antoja, T.; Miret-Roig, N.; Romero-Gomez, M.; Blanco-Cuaresma, S.; et al. NGC 6705 a young α-enhanced open cluster from OCCASO data. Astron. Astrophys. 2018, 610, A66. [Google Scholar] [CrossRef] [Green Version]
- Origlia, L.; Dalessandro, E.; Sanna, N.; Mucciarelli, A.; Oliva, E.; Cescutti, G.; Rainer, M.; Bragaglia, A.; Bono, G. Stellar population astrophysics (SPA) with the TNG. GIANO-B spectroscopy of red supergiants in Alicante 7 and Alicante 10. Astron. Astrophys. 2019, 629, A117. [Google Scholar] [CrossRef] [Green Version]
- Frasca, A.; Alonso-Santiago, J.; Catanzaro, G.; Bragaglia, A.; Carretta, E.; Casali, G.; D’Orazi, V.; Magrini, L.; Andreuzzi, G.; Oliva, E.; et al. Stellar population astrophysics (SPA) with the TNG. Characterization of the young open cluster <ASTROBJ>ASCC 123</ASTROBJ>. Astron. Astrophys. 2019, 632, A16. [Google Scholar] [CrossRef]
- D’Orazi, V.; Oliva, E.; Bragaglia, A.; Frasca, A.; Sanna, N.; Biazzo, K.; Casali, G.; Desidera, S.; Lucatello, S.; Magrini, L.; et al. Stellar population astrophysics (SPA) with the TNG. Revisiting the metallicity of Praesepe (M 44). Astron. Astrophys. 2020, 633, A38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Lucatello, S.; Bragaglia, A.; Carrera, R.; Spina, L.; Alonso-Santiago, J.; Andreuzzi, G.; Casali, G.; Carretta, E.; Frasca, A.; et al. Stellar Population Astrophysics (SPA) with TNG. Atmospheric parameters of members of 16 unstudied open clusters. Astron. Astrophys. 2021, 654, A77. [Google Scholar] [CrossRef]
- Liu, L.; Pang, X. A Catalog of Newly Identified Star Clusters in Gaia DR2. Astrophys. J. Suppl. Ser. 2019, 245, 32. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [Google Scholar] [CrossRef]
- Kharchenko, N.V.; Piskunov, A.E.; Schilbach, E.; Röser, S.; Scholz, R.D. Global survey of star clusters in the Milky Way. II. The catalogue of basic parameters. Astron. Astrophys. 2013, 558, A53. [Google Scholar] [CrossRef] [Green Version]
- Soubiran, C.; Cantat-Gaudin, T.; Romero-Gómez, M.; Casamiquela, L.; Jordi, C.; Vallenari, A.; Antoja, T.; Balaguer-Núñez, L.; Bossini, D.; Bragaglia, A.; et al. Open cluster kinematics with Gaia DR2. Astron. Astrophys. 2018, 619, A155. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Nordlander, T.; Casey, A.R.; Bedell, M.; D’Orazi, V.; Meléndez, J.; Karakas, A.I.; Desidera, S.; Baratella, M.; Yana Galarza, J.J.; et al. How Magnetic Activity Alters What We Learn from Stellar Spectra. Astrophys. J. 2020, 895, 52. [Google Scholar] [CrossRef]
- Astraatmadja, T.L.; Bailer-Jones, C.A.L. Estimating Distances from Parallaxes. II. Performance of Bayesian Distance Estimators on a Gaia-like Catalogue. Astrophys. J. 2016, 832, 137. [Google Scholar] [CrossRef] [Green Version]
- Bovy, J. galpy: A python Library for Galactic Dynamics. Astrophys. J. Suppl. Ser. 2015, 216, 29. [Google Scholar] [CrossRef]
- Twarog, B.A.; Ashman, K.M.; Anthony-Twarog, B.J. Some Revised Observational Constraints on the Formation and Evolution of the Galactic Disk. Astron. J. 1997, 114, 2556. [Google Scholar] [CrossRef]
- Netopil, M.; Paunzen, E.; Heiter, U.; Soubiran, C. On the metallicity of open clusters. III. Homogenised sample. Astron. Astrophys. 2016, 585, A150. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M.D.; Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. arXiv 2011, arXiv:stat.CO/1111.4246. [Google Scholar]
- Salvatier, J.; Wieckiâ, T.V.; Fonnesbeck, C. Astrophysics Source Code Library. Available online: http://www.informationweek.com/news/201202317 (accessed on 5 December 2021).
- Carrera, R.; Bragaglia, A.; Cantat-Gaudin, T.; Vallenari, A.; Balaguer-Núñez, L.; Bossini, D.; Casamiquela, L.; Jordi, C.; Sordo, R.; Soubiran, C. Open clusters in APOGEE and GALAH. Combining Gaia and ground-based spectroscopic surveys. Astron. Astrophys. 2019, 623, A80. [Google Scholar] [CrossRef] [Green Version]
- Trick, W.H.; Coronado, J.; Rix, H.W. The Galactic disc in action space as seen by Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 484, 3291–3306. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, A.; Abril-Cabezas, I.; Trick, W.H.; Fragkoudi, F.; Ness, M. Chemodynamical signatures of bar resonances in the Galactic disk: Current data and future prospects. arXiv 2021, arXiv:2105.05263. [Google Scholar]
- Casagrande, L.; Schönrich, R.; Asplund, M.; Cassisi, S.; Ramírez, I.; Meléndez, J.; Bensby, T.; Feltzing, S. New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Improved astrophysical parameters for the Geneva-Copenhagen Survey. Astron. Astrophys. 2011, 530, A138. [Google Scholar] [CrossRef]
- Minchev, I.; Anders, F.; Recio-Blanco, A.; Chiappini, C.; de Laverny, P.; Queiroz, A.; Steinmetz, M.; Adibekyan, V.; Carrillo, I.; Cescutti, G.; et al. Estimating stellar birth radii and the time evolution of Milky Way’s ISM metallicity gradient. Mon. Not. R. Astron. Soc. 2018, 481, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Cunha, K.; Sellgren, K.; Smith, V.V.; Ramirez, S.V.; Blum, R.D.; Terndrup, D.M. Chemical Abundances of Luminous Cool Stars in the Galactic Center from High-Resolution Infrared Spectroscopy. Astrophys. J. 2007, 669, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Davies, B.; Origlia, L.; Kudritzki, R.P.; Figer, D.F.; Rich, R.M.; Najarro, F.; Negueruela, I.; Clark, J.S. Chemical Abundance Patterns in the Inner Galaxy: The Scutum Red Supergiant Clusters. Astrophys. J. 2009, 696, 2014–2025. [Google Scholar] [CrossRef] [Green Version]
- Tarricq, Y.; Soubiran, C.; Casamiquela, L.; Cantat-Gaudin, T.; Chemin, L.; Anders, F.; Antoja, T.; Romero-Gómez, M.; Figueras, F.; Jordi, C.; et al. 3D kinematics and age distribution of the open cluster population. Astron. Astrophys. 2021, 647, A19. [Google Scholar] [CrossRef]
- Lépine, J.R.D.; Cruz, P.; Scarano, S.J.; Barros, D.A.; Dias, W.S.; Pompéia, L.; Andrievsky, S.M.; Carraro, G.; Famaey, B. Overlapping abundance gradients and azimuthal gradients related to the spiral structure of the Galaxy. Mon. Not. R. Astron. Soc. 2011, 417, 698–708. [Google Scholar] [CrossRef] [Green Version]
- Trick, W.H.; Fragkoudi, F.; Hunt, J.A.S.; Mackereth, J.T.; White, S.D.M. Identifying resonances of the Galactic bar in Gaia DR2: I. Clues from action space. Mon. Not. R. Astron. Soc. 2021, 500, 2645–2665. [Google Scholar] [CrossRef]
- Nakanishi, H.; Sofue, Y. Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: I. The H I Disk. Publ. Astron. Soc. Jpn. 2003, 55, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Levine, E.S.; Blitz, L.; Heiles, C. The Vertical Structure of the Outer Milky Way H I Disk. Astrophys. J. 2006, 643, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Koo, B.C.; Park, G.; Kim, W.T.; Lee, M.G.; Balser, D.S.; Wenger, T.V. Tracing the Spiral Structure of the Outer Milky Way with Dense Atomic Hydrogen Gas. Publ. Astron. Soc. Pac. 2017, 129, 094102. [Google Scholar] [CrossRef] [Green Version]
- Cersosimo, J.C.; Mader, S.; Figueroa, N.S.; Vélez, S.F.; Soto, C.L.; Azcárate, D. Warped Ionized Hydrogen in the Galaxy. Astrophys. J. 2009, 699, 469–477. [Google Scholar] [CrossRef] [Green Version]
- May, J.; Alvarez, H.; Bronfman, L. Physical properties of molecular clouds in the southern outer Galaxy. Astron. Astrophys. 1997, 327, 325–332. [Google Scholar]
- Nakagawa, M.; Onishi, T.; Mizuno, A.; Fukui, Y. An Unbiased Search for Molecular Clouds in the Southern Galactic Warp. Publ. Astron. Soc. Jpn. 2005, 57, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hou, L.G.; Wu, Y.W. The spiral structure of the Milky Way. Res. Astron. Astrophys. 2018, 18, 146. [Google Scholar] [CrossRef] [Green Version]
- Hammersley, P.L.; López-Corredoira, M. Modelling star counts in the Monoceros stream and the Galactic anti-centre. Astron. Astrophys. 2011, 527, A6. [Google Scholar] [CrossRef]
- Poggio, E.; Drimmel, R.; Smart, R.L.; Spagna, A.; Lattanzi, M.G. The kinematic signature of the Galactic warp in Gaia DR1. I. The Hipparcos subsample. Astron. Astrophys. 2017, 601, A115. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhao, G.; Jia, Y.; Liao, S.; Yang, C.; Wang, Q. Flare and Warp of Galactic Disk with OB Stars from Gaia DR2. Astrophys. J. 2019, 871, 208. [Google Scholar] [CrossRef]
- Chrobáková, Ž.; Nagy, R.; López-Corredoira, M. Structure of the outer Galactic disc with Gaia DR2. Astron. Astrophys. 2020, 637, A96. [Google Scholar] [CrossRef]
- Feast, M.W.; Menzies, J.W.; Matsunaga, N.; Whitelock, P.A. Cepheid variables in the flared outer disk of our galaxy. Nature 2014, 509, 342–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, S.; Deng, L.; de Grijs, R.; Liu, C.; Tian, H. An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheids. Nat. Astron. 2019, 3, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Skowron, D.M.; Skowron, J.; Mróz, P.; Udalski, A.; Pietrukowicz, P.; Soszyński, I.; Szymański, M.K.; Poleski, R.; Kozłowski, S.; Ulaczyk, K.; et al. A three-dimensional map of the Milky Way using classical Cepheid variable stars. Science 2019, 365, 478–482. [Google Scholar] [CrossRef] [Green Version]
- Carraro, G.; Seleznev, A.F.; Baume, G.; Turner, D.G. The complex stellar populations in the background of open clusters in the third Galactic quadrant. Mon. Not. R. Astron. Soc. 2016, 455, 4031–4045. [Google Scholar] [CrossRef] [Green Version]
- Amôres, E.B.; Robin, A.C.; Reylé, C. Evolution over time of the Milky Way’s disc shape. Astron. Astrophys. 2017, 602, A67. [Google Scholar] [CrossRef] [Green Version]
- López-Corredoira, M.; Momany, Y.; Zaggia, S.; Cabrera-Lavers, A. Re-affirming the connection between the Galactic stellar warp and the Canis Major over-density. Astron. Astrophys. 2007, 472, L47–L50. [Google Scholar] [CrossRef] [Green Version]
- Mitschang, A.W.; De Silva, G.; Sharma, S.; Zucker, D.B. Quantifying chemical tagging: Towards robust group finding in the Galaxy. Mon. Not. R. Astron. Soc. 2013, 428, 2321–2332. [Google Scholar] [CrossRef]
- Blanco-Cuaresma, S.; Fraix-Burnet, D. A phylogenetic approach to chemical tagging. Reassembling open cluster stars. Astron. Astrophys. 2018, 618, A65. [Google Scholar] [CrossRef] [Green Version]
- Bragaglia, A.; Gratton, R.G.; Carretta, E.; D’Orazi, V.; Sneden, C.; Lucatello, S. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39. Astron. Astrophys. 2012, 548, A122. [Google Scholar] [CrossRef] [Green Version]
- Carraro, G.; de Silva, G.; Monaco, L.; Milone, A.P.; Mateluna, R. Updated properties of the old open cluster Melotte 66: Searching for multiple stellar populations. Astron. Astrophys. 2014, 566, A39. [Google Scholar] [CrossRef] [Green Version]
- Geisler, D.; Villanova, S.; Carraro, G.; Pilachowski, C.; Cummings, J.; Johnson, C.I.; Bresolin, F. The Unique Na:O Abundance Distribution in NGC 6791: The First Open(?) Cluster with Multiple Populations. Astrophys. J. Lett. 2012, 756, L40. [Google Scholar] [CrossRef] [Green Version]
- Bragaglia, A.; Sneden, C.; Carretta, E.; Gratton, R.G.; Lucatello, S.; Bernath, P.F.; Brooke, J.S.A.; Ram, R.S. Searching for Chemical Signatures of Multiple Stellar Populations in the Old, Massive Open Cluster NGC 6791. Astrophys. J. 2014, 796, 68. [Google Scholar] [CrossRef] [Green Version]
- Villanova, S.; Carraro, G.; Geisler, D.; Monaco, L.; Assmann, P. NGC 6791: A Probable Bulge Cluster without Multiple Populations. Astrophys. J. 2018, 867, 34. [Google Scholar] [CrossRef]
- Spina, L.; Palla, F.; Randich, S.; Sacco, G.; Jeffries, R.; Magrini, L.; Franciosini, E.; Meyer, M.R.; Tautvaišienė, G.; Gilmore, G.; et al. The Gaia-ESO Survey: Chemical signatures of rocky accretion in a young solar-type star. Astron. Astrophys. 2015, 582, L6. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Meléndez, J.; Casey, A.R.; Karakas, A.I.; Tucci-Maia, M. Chemical Inhomogeneities in the Pleiades: Signatures of Rocky-forming Material in Stellar Atmospheres. Astrophys. J. 2018, 863, 179. [Google Scholar] [CrossRef]
- Spina, L.; Sharma, P.; Meléndez, J.; Bedell, M.; Casey, A.R.; Carlos, M.; Franciosini, E.; Vallenari, A. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 2021, 5, 1163–1169. [Google Scholar] [CrossRef]
- James, D.J.; Melo, C.; Santos, N.C.; Bouvier, J. Fundamental properties of pre-main sequence stars in young, southern star forming regions: Metallicities. Astron. Astrophys. 2006, 446, 971–983. [Google Scholar] [CrossRef] [Green Version]
- D’Orazi, V.; Randich, S. Chemical composition of the young open clusters IC 2602 and IC 2391. Astron. Astrophys. 2009, 501, 553–562. [Google Scholar] [CrossRef]
- D’Orazi, V.; Biazzo, K.; Randich, S. Chemical composition of the Taurus-Auriga association. Astron. Astrophys. 2011, 526, A103. [Google Scholar] [CrossRef] [Green Version]
- Biazzo, K.; Randich, S.; Palla, F. Chemical pattern across the young associations ONC and OB1b. Astron. Astrophys. 2011, 525, A35. [Google Scholar] [CrossRef] [Green Version]
- Biazzo, K.; Randich, S.; Palla, F.; Briceño, C. Elemental abundances of low-mass stars in the young clusters 25 Orionis and λ Orionis. Astron. Astrophys. 2011, 530, A19. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Oliveira, D.; Freitas, F.C.; Meléndez, J.; Bedell, M.; Ramírez, I.; Bean, J.L.; Asplund, M.; Spina, L.; Dreizler, S.; Alves-Brito, A.; et al. The Solar Twin Planet Search. The age-chromospheric activity relation. Astron. Astrophys. 2018, 619, A73. [Google Scholar] [CrossRef] [Green Version]
- Yana Galarza, J.; Meléndez, J.; Lorenzo-Oliveira, D.; Valio, A.; Reggiani, H.; Carlos, M.; Ponte, G.; Spina, L.; Haywood, R.D.; Gandolfi, D. The effect of stellar activity on the spectroscopic stellar parameters of the young solar twin HIP 36515. Mon. Not. R. Astron. Soc. 2019, 490, L86–L90. [Google Scholar] [CrossRef] [Green Version]
- Anders, F.; Cantat-Gaudin, T.; Quadrino-Lodoso, I.; Gieles, M.; Jordi, C.; Castro-Ginard, A.; Balaguer-Núñez, L. The star cluster age function in the Galactic disc with Gaia DR2. Fewer old clusters and a low cluster formation efficiency. Astron. Astrophys. 2021, 645, L2. [Google Scholar] [CrossRef]
- Bessell, M.S.; Castelli, F.; Plez, B. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O—M stars. Astron. Astrophys. 1998, 333, 231–250. [Google Scholar]
- Short, C.I.; Hauschildt, P.H. Atmospheric Models of Red Giants with Massive-Scale Non-Local Thermodynamic Equilibrium. Astrophys. J. 2003, 596, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Friel, E.D.; Jacobson, H.R.; Barrett, E.; Fullton, L.; Balachandran, S.C.; Pilachowski, C.A. Abundances of Red Giants in the Old Open Cluster Collinder 261. Astron. J. 2003, 126, 2372–2384. [Google Scholar] [CrossRef]
- Korn, A.J.; Grundahl, F.; Richard, O.; Mashonkina, L.; Barklem, P.S.; Collet, R.; Gustafsson, B.; Piskunov, N. Atomic Diffusion and Mixing in Old Stars. I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397. Astrophys. J. 2007, 671, 402–419. [Google Scholar] [CrossRef] [Green Version]
- Lind, K.; Korn, A.J.; Barklem, P.S.; Grundahl, F. Atomic diffusion and mixing in old stars. II. Observations of stars in the globular cluster NGC 6397 with VLT/FLAMES-GIRAFFE. Astron. Astrophys. 2008, 490, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Nordlander, T.; Korn, A.J.; Richard, O.; Lind, K. Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints. Astrophys. J. 2012, 753, 48. [Google Scholar] [CrossRef] [Green Version]
- Dotter, A.; Conroy, C.; Cargile, P.; Asplund, M. The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging. Astrophys. J. 2017, 840, 99. [Google Scholar] [CrossRef]
- Bland-Hawthorn, J.; Gerhard, O. The Galaxy in Context: Structural, Kinematic, and Integrated Properties. Annu. Rev. Astron. Astrophys. 2016, 54, 529–596. [Google Scholar] [CrossRef] [Green Version]
- Kormendy, J.; Drory, N.; Bender, R.; Cornell, M.E. Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation by Hierarchical Clustering. Astrophys. J. 2010, 723, 54–80. [Google Scholar] [CrossRef] [Green Version]
- Mutch, S.J.; Croton, D.J.; Poole, G.B. The Mid-life Crisis of the Milky Way and M31. Astrophys. J. 2011, 736, 84. [Google Scholar] [CrossRef] [Green Version]
- Robotham, A.S.G.; Baldry, I.K.; Bland-Hawthorn, J.; Driver, S.P.; Loveday, J.; Norberg, P.; Bauer, A.E.; Bekki, K.; Brough, S.; Brown, M.; et al. Galaxy In addition, Mass Assembly (GAMA): In search of Milky Way Magellanic Cloud analogues. Mon. Not. R. Astron. Soc. 2012, 424, 1448–1453. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Menguiano, L.; Sánchez, S.F.; Pérez, I.; Ruiz-Lara, T.; Galbany, L.; Anderson, J.P.; Krühler, T.; Kuncarayakti, H.; Lyman, J.D. The shape of oxygen abundance profiles explored with MUSE: Evidence for widespread deviations from single gradients. Astron. Astrophys. 2018, 609, A119. [Google Scholar] [CrossRef]
- Bresolin, F. Metallicity gradients in small and nearby spiral galaxies. Mon. Not. R. Astron. Soc. 2019, 488, 3826–3843. [Google Scholar] [CrossRef]
- Boardman, N.F.; Zasowski, G.; Newman, J.A.; Sanchez, S.F.; Schaefer, A.; Lian, J.; Bizyaev, D.; Drory, N. SDSS-IV MaNGA: Galaxy gas-phase metallicity gradients vary across the mass-size plane. Mon. Not. R. Astron. Soc. 2021, 501, 948–953. [Google Scholar] [CrossRef]
- Zurita, A.; Florido, E.; Bresolin, F.; Pérez, I.; Pérez-Montero, E. Bar effect on gas-phase abundance gradients—II. Luminosity-dependent flattening. Mon. Not. R. Astron. Soc. 2021, 500, 2380–2400. [Google Scholar] [CrossRef]
- Zurita, A.; Florido, E.; Bresolin, F.; Pérez-Montero, E.; Pérez, I. Bar effect on gas-phase abundance gradients. I. Data sample and chemical abundances. Mon. Not. R. Astron. Soc. 2021, 500, 2359–2379. [Google Scholar] [CrossRef]
- Bacon, R.; Accardo, M.; Adjali, L.; Anwand, H.; Bauer, S.; Biswas, I.; Blaizot, J.; Boudon, D.; Brau-Nogue, S.; Brinchmann, J.; et al. The MUSE second-generation VLT instrument. In Ground-Based and Airborne Instrumentation for Astronomy III; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; McLean, I.S., Ramsay, S.K., Takami, H., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7735, p. 773508. [Google Scholar] [CrossRef]
- Sánchez, S.F.; Rosales-Ortega, F.F.; Iglesias-Páramo, J.; Mollá, M.; Barrera-Ballesteros, J.; Marino, R.A.; Pérez, E.; Sánchez-Blazquez, P.; González Delgado, R.; Cid Fernandes, R.; et al. A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA. Astron. Astrophys. 2014, 563, A49. [Google Scholar] [CrossRef]
- Bovy, J.; Rix, H.W. A Direct Dynamical Measurement of the Milky Way’s Disk Surface Density Profile, Disk Scale Length, and Dark Matter Profile at 4 kpc <~R <~9 kpc. Astrophys. J. 2013, 779, 115. [Google Scholar] [CrossRef] [Green Version]
- Licquia, T.C.; Newman, J.A. Sizing Up the Milky Way: A Bayesian Mixture Model Meta-analysis of Photometric Scale Length Measurements. Astrophys. J. 2016, 831, 71. [Google Scholar] [CrossRef] [Green Version]
- Boardman, N.; Zasowski, G.; Newman, J.A.; Andrews, B.; Fielder, C.; Bershady, M.; Brinkmann, J.; Drory, N.; Krishnarao, D.; Lane, R.R.; et al. Are the Milky Way and Andromeda unusual? A comparison with Milky Way and Andromeda analogues. Mon. Not. R. Astron. Soc. 2020, 498, 4943–4954. [Google Scholar] [CrossRef]
- Boardman, N.; Zasowski, G.; Seth, A.; Newman, J.; Andrews, B.; Bershady, M.; Bird, J.; Chiappini, C.; Fielder, C.; Fraser-McKelvie, A.; et al. Milky Way analogues in MaNGA: Multiparameter homogeneity and comparison to the Milky Way. Mon. Not. R. Astron. Soc. 2020, 491, 3672–3701. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Medel, H.J.; Avila-Reese, V.; Sánchez, S.F.; González-Samaniego, A.; Rodríguez-Puebla, A. Optical integral field spectroscopy observations applied to simulated galaxies: Testing the fossil record method. Mon. Not. R. Astron. Soc. 2019, 483, 4525–4550. [Google Scholar] [CrossRef] [Green Version]
- Nitschai, M.S.; Cappellari, M.; Neumayer, N. First Gaia dynamical model of the Milky Way disc with six phase space coordinates: A test for galaxy dynamics. Mon. Not. R. Astron. Soc. 2020, 494, 6001–6011. [Google Scholar] [CrossRef]
- Dalton, G. WEAVE: The Next, Generation Spectroscopy Facility for the WHT. In Multi-Object Spectroscopy in the Next, Decade: Big Questions, Large Surveys, and Wide Fields; Astronomical Society of the Pacific Conference Series; Skillen, I., Balcells, M., Trager, S., Eds.; ADS: San Francisco, CA, USA, 2016; Volume 507, pp. 465–472. [Google Scholar]
- de Jong, R.S.; Bellido-Tirado, O.; Chiappini, C.; Depagne, É.; Haynes, R.; Johl, D.; Schnurr, O.; Schwope, A.; Walcher, J.; Dionies, F.; et al. 4MOST: 4-m multi-object spectroscopic telescope. In Ground-Based and Airborne Instrumentation for Astronomy IV; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; McLean, I.S., Ramsay, S.K., Takami, H., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8446, p. 84460T. [Google Scholar] [CrossRef] [Green Version]
- Cirasuolo, M.; Afonso, J.; Carollo, M.; Flores, H.; Maiolino, R.; Oliva, E.; Paltani, S.; Vanzi, L.; Evans, C.; Abreu, M.; et al. MOONS: The Multi-Object Optical and Near-infrared Spectrograph for the VLT. In Ground-Based and Airborne Instrumentation for Astronomy V; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Ramsay, S.K., McLean, I.S., Takami, H., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9147, p. 91470N. [Google Scholar] [CrossRef] [Green Version]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Prisinzano, L.; Magrini, L.; Damiani, F.; Sacco, G.; Bonito, R.; Venuti, L.; Casali, G.; Roccatagliata, V.; Randich, S.; Inno, L.; et al. Investigating the population of Galactic star formation regions and star clusters within a Wide-Fast-Deep Coverage of the Galactic Plane. arXiv 2018, arXiv:1812.03025. [Google Scholar]
1 | https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/MNRAS/503/3279 accessed on 5 December 2021. |
2 | Code available at https://github.com/fjaellet/abj2016 accessed on 5 December 2021. Our analysis is carried out using the default settings. |
3 | Code available at http://github.com/jobovy/galpy accessed on 5 December 2021. |
4 | Given a standard deviation measured over a population of size N, the standard error is defined as /. |
5 | However, L can also change when the particle interacts with non-axisymmetric perturbations of the Galactic potential, such as the bar, spirals and giant molecular clouds. |
Cluster | X_XYZ_low | X_XYZ_med | X_XYZ_up | Y_XYZ_low | Y_XYZ_med | Y_XYZ_up | … |
---|---|---|---|---|---|---|---|
[kpc] | [kpc] | [kpc] | [kpc] | [kpc] | [kpc] | … | |
Blanco 1 | 8.1352 | 8.1353 | 8.1354 | 0.0117 | 0.0117 | 0.0117 | … |
Gulliver 24 | 8.9004 | 8.9070 | 8.9137 | 1.3807 | 1.3934 | 1.4061 | … |
King 1 | 9.1289 | 9.1338 | 9.1386 | 1.6636 | 1.6721 | 1.6805 | … |
FSR 0494 | 10.3318 | 10.4072 | 10.4863 | 3.7180 | 3.8480 | 3.9846 | … |
FSR 0496 | 8.9418 | 8.9485 | 8.9555 | 1.3116 | 1.3232 | 1.3351 | … |
… | … | … | … | … | … | … |
Parameter | Mean | 95% C.I. | |
---|---|---|---|
[Fe/H]—R | |||
a | 0.53 | 0.06 | 0.42–0.64 |
b [kpc] | −0.064 | 0.007 | −0.076–−0.053 |
b [kpc] | −0.019 | 0.008 | −0.033–−0.001 |
k [kpc] | 12.1 | 1.1 | 10.6–14.9 |
0.091 | 0.005 | 0.082–0.102 | |
[Fe/H]—L | |||
a | 0.57 | 0.04 | 0.49–0.66 |
b [10 km kpc s] | −0.31 | 0.02 | −0.35–−0.26 |
b [10 km kpc s] | −0.07 | 0.05 | −0.167–−0.048 |
k [km kpc s] | 2769 | 177 | 2429–3156 |
0.087 | 0.005 | 0.077–0.098 | |
[Fe/H]—R, warped disk | |||
a | 0.49 | 0.05 | 0.41–0.59 |
b [kpc] | −0.060 | 0.005 | −0.071–−0.050 |
b [kpc] | −0.012 | 0.003 | −0.019–−0.005 |
k [kpc] | 12.3 | 0.5 | 11.1–13.3 |
0.090 | 0.005 | 0.080–0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spina, L.; Magrini, L.; Cunha, K. Mapping the Galactic Metallicity Gradient with Open Clusters: The State-of-the-Art and Future Challenges. Universe 2022, 8, 87. https://doi.org/10.3390/universe8020087
Spina L, Magrini L, Cunha K. Mapping the Galactic Metallicity Gradient with Open Clusters: The State-of-the-Art and Future Challenges. Universe. 2022; 8(2):87. https://doi.org/10.3390/universe8020087
Chicago/Turabian StyleSpina, Lorenzo, Laura Magrini, and Katia Cunha. 2022. "Mapping the Galactic Metallicity Gradient with Open Clusters: The State-of-the-Art and Future Challenges" Universe 8, no. 2: 87. https://doi.org/10.3390/universe8020087
APA StyleSpina, L., Magrini, L., & Cunha, K. (2022). Mapping the Galactic Metallicity Gradient with Open Clusters: The State-of-the-Art and Future Challenges. Universe, 8(2), 87. https://doi.org/10.3390/universe8020087