Science with Neutrino Telescopes in Spain
Abstract
:1. Introduction
2. Astrophysical Neutrinos
3. Searching for Dark Matter
4. Neutrino Physics and Search for New Physics
5. Design and Instrumentation of the Detectors
5.1. Time Calibration Instrumentation for Neutrino Telescopes
5.2. KM3NeT Acquisition Electronics
5.3. Reliability
5.4. KM3NeT Positioning System
6. Associated Sciences
7. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANTARES | Astronomy with a Neutrino Telescope and Abyss Environmental RESearch |
APS | Acoustic Positioning System |
ARCA | Astronomy Research with Cosmics in the Abyss |
BSM | Beyond Standard Model |
CC | Charged Current |
CLB | Central Logic Board |
CR | Cosmic Ray |
DM | Dark Matter |
DOM | Digital Optical Module |
EFT | Effective Field Theory |
FPGA | Field Programmable Gate Arrays |
GES | Good Environmental Status (GES) |
GRB | Gamma-Ray Burst |
GW | Gravitational Wave |
LED | Light Emission Diode |
LVDS | Low Voltage Differential Signal |
MSFG | Marine Strategy Framework Directive |
NC | Neutral Current |
NSI | Non-Standard Interaction |
ORCA | Oscillation Research with Cosmics in the Abyss |
PB | Power Board |
PMT | Photomultiplier Tube |
PTP | Precision Time Protocol |
SA | Solar Atmospheric Neutrino |
SFP | Small Form Factor Pluggable |
SPI | Serial Peripheral Interface |
TDC | Time-to-Digital Converter |
TDE | Tidal Disruption Event |
WIMP | Weakly Interacting Massive Particle |
References
- Aartsen, M.G. et al. [IceCube Collaboration] Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] The IceCube Neutrino Observatory: Instrumentation and Online Systems. JINST 2017, 12, P03012. [Google Scholar] [CrossRef]
- Markov, M.A.; Zheleznykh, I.M. On high energy neutrino physics in cosmic rays. Nucl. Phys. 1961, 27, 385–394. [Google Scholar] [CrossRef]
- Ageron, M. et al. [ANTARES Collaboration] ANTARES: The first undersea neutrino telescope. Nucl. Instrum. Meth. A 2011, 656, 11–38. [Google Scholar] [CrossRef]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G 2016, 43, 084001. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann, M. et al. [The Fermi LAT collaboration] The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef] [Green Version]
- Fenu, F. The cosmic ray energy spectrum measured using the Pierre Auger Observatory. PoS 2017, 2017, 9–16. [Google Scholar] [CrossRef]
- Belolaptikov, I.; Dzhilkibaev, Z. Neutrino Telescope in Lake Baikal: Present and Nearest Future. PoS 2021, 2021, 2. [Google Scholar] [CrossRef]
- Aguilar, J.A. et al. [The ANTARES Collaboration] Study of large hemispherical photomultiplier tubes for the antares neutrino telescope. Nucl. Instrum. Meth. A 2005, 555, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Ageron, M. et al. [ANTARES Collaboration] The ANTARES Optical Beacon System. Nucl. Instrum. Meth. A 2007, 578, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.A. et al. [The ANTARES Collaboration] Time Calibration of the ANTARES Neutrino Telescope. Astropart. Phys. 2011, 34, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; et al. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope. Astropart. Phys. 2016, 78, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Emanuele, E.; Real, D.; Urbano, F.; de Dios Zornoza, J.; Zuniga, J. Development of a new laser beacon for time calibration in the ANTARES neutrino telescope. In Proceedings of the 8th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2011, Valencia, Spain, 17–21 October 2011; Volume 6076706, pp. 904–909. [Google Scholar] [CrossRef]
- Real, D.; Calvo, D. Nanobeacon and Laser Beacon: KM3NeT Time Calibration Devices. PoS 2015, 2014, 365. [Google Scholar] [CrossRef] [Green Version]
- Real, D. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope. AIP Conf. Proc. 2015, 1630, 130–133. [Google Scholar] [CrossRef]
- Saldaña, M.; Adrián-Martínez, S.; Bou-Cabo, M.; Felis, I.; Larosa, G.; Llorens, C.D.; Martínez-Mora, J.A.; Ardid, M. Ultrasonic Transmitter for Positioning of the Large Underwater Neutrino Telescope KM3NeT. Phys. Procedia 2015, 63, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Ardid, M.; Martínez-Mora, J.A.; Bou-Cabo, M.; Larosa, G.; Adrián-Martínez, S.; Llorens, C.D. Acoustic Transmitters for Underwater Neutrino Telescopes. Sensors 2012, 12, 4113–4132. [Google Scholar] [CrossRef]
- Ardid, M.; Bou-Cabo, M.; Camarena, F.; Espinosa, V.; Larosa, G.; Llorens, C.D.; Martinez-Mora, J.A. A prototype for the acoustic triangulation system of the KM3NeT deep sea neutrino telescope. Nucl. Instrum. Meth. A 2010, 617, 459–461. [Google Scholar] [CrossRef]
- Saldaña, M.; Llorens, C.D.; Felis, I.; Martínez-Mora, J.A.; Ardid, M. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration. Sensors 2016, 16, 1210. [Google Scholar] [CrossRef] [Green Version]
- Calvo, D.; Real, D. Status of the central logic board (CLB) of the KM3NeT neutrino telescope. JINST 2015, 10, C12027. [Google Scholar] [CrossRef]
- Real, D.; Calvo, D.; Musico, P.; Jansweijer, P.; van Beveren, V.; Colonges, S.; Pellegrini, G.; Díaz, A.F. KM3NeT Acquisition Electronics: New Developments and Advances in Reliability. PoS 2021, 2021, 1108. [Google Scholar] [CrossRef]
- Real, D.; Bozza, C.; Calvo, D.; Musico, P.; Jansweijer, P.; Colonges, S.; van Beveren, V.; Versari, F.; Chiarusi, T.; Carriò, F.; et al. KM3NeT acquisition: The new version of the Central Logic Board and its related Power Board, with highlights and evolution of the Control Unit. JINST 2020, 15, C03024. [Google Scholar] [CrossRef]
- Calvo, D.; Real, D.; Carrió, F. Sub-nanosecond synchronization node for high-energy astrophysics: The KM3NeT White Rabbit Node. Nucl. Instrum. Meth. A 2020, 958, 162777. [Google Scholar] [CrossRef]
- Llorens, C.D.; Ardid, M.; Sogorb, T.; Bou-Cabo, M.; Martinez-Mora, J.A.; Larosa, G.; Adrian-Martinez, S. The Sound Emission Board of the KM3NeT Acoustic Positioning System. JINST 2012, 7, C01001. [Google Scholar] [CrossRef]
- Real, D.; Calvo, D.; Illuminati, G.; Colonges, S. Reliability studies for KM3NeT electronics: The FIDES method. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2018; Volume 2017, p. 1003. [Google Scholar] [CrossRef] [Green Version]
- Real, D.; Calvo, D.; Musico, P.; Jansweijer, P.; Colonges, S.; van Beveren, V.; Carriò, F.; Pellegrini, G.; Díaz, A.F. Reliability studies for the White Rabbit Switch in KM3NeT: FIDES and Highly Accelerated Life Tests. JINST 2020, 15, C02042. [Google Scholar] [CrossRef]
- Illuminati, G. Searches for point-like sources of cosmic neutrinos with 13 years of ANTARES data. PoS 2021, 2021, 1161. [Google Scholar]
- Aublin, J.; Illuminati, G.; Navas, S. Searches for point-like sources of cosmic neutrinos with 11 years of ANTARES data. PoS 2020, 2019, 920. [Google Scholar] [CrossRef]
- Salesa-Greus, F. Search for point-like sources with the ANTARES neutrino telescope. In Proceedings of the 2nd Roma International Conference on Astroparticle Physics (RICAP 2009), Rome, Italy, 13–15 May 2011; Volume 630, pp. 214–217. [Google Scholar] [CrossRef]
- Adrian-Martinez, S. et al. [ANTARES Collaboration] Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope. Astrophys. J. 2012, 760, 53. [Google Scholar] [CrossRef] [Green Version]
- Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martì, J.; Basa, S.; Bertin, V.; et al. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. JCAP 2014, 11, 17. [Google Scholar] [CrossRef]
- Adrian-Martinez, S. et al. [ANTARES Collaboration] Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope. Astrophys. J. Lett. 2014, 786, L5. [Google Scholar] [CrossRef] [Green Version]
- Albert, A. et al. [ANTARES Collaboration] First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Phys. Rev. D 2017, 96, 082001. [Google Scholar] [CrossRef] [Green Version]
- Adrian-Martinez, S. et al. [ANTARES Collaboration] The First Combined Search for Neutrino Point-sources in the Southern Hemisphere With the Antares and Icecube Neutrino Telescopes. Astrophys. J. 2016, 823, 65. [Google Scholar] [CrossRef]
- Albert, A. et al. [ANTARES Collaboration] ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. Astrophys. J. 2020, 892, 92. [Google Scholar] [CrossRef]
- Albert, A. et al. [ANTARES Collaboration] All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. Astrophys. J. Lett. 2018, 853, L7. [Google Scholar] [CrossRef]
- Eberl, T.; Navas, S.; Versari, F.; Fusco, L.A. Search for a diffuse flux of cosmic neutrinos with the ANTARES telescope. PoS 2018, 2017, 993. [Google Scholar] [CrossRef] [Green Version]
- Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; et al. Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope. Astropart. Phys. 2012, 36, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Adrian-Martinez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; et al. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope. JCAP 2015, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; et al. Time-dependent search for neutrino emission from x-ray binaries with the ANTARES telescope. JCAP 2017, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Albert, A. et al. [ANTARES Collaboration] ANTARES neutrino search for time and space correlations with IceCube high-energy neutrino events. Astrophys. J. 2019, 879, 108. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Andrè, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martì, J.; et al. The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope. Astrophys. J. Lett. 2018, 863, L30. [Google Scholar] [CrossRef]
- Palacios González, J. KM3NeT/ARCA sensitivity to transient neutrino sources. PoS 2021, 2021, 1162. [Google Scholar]
- Alves Garre, S. ANTARES offline study of three alerts after Baikal-GVD follow-up found coincident cascade neutrino events. PoS 2021, 2021, 1121. [Google Scholar]
- Adrian-Martinez, S. et al. [ANTARES Collaboration] First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. JCAP 2013, 11, 32. [Google Scholar] [CrossRef]
- Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. JCAP 2016, 5, 16. [Google Scholar] [CrossRef]
- Adrian-Martinez, S. et al. [ANTARES Collaboration] Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope. Phys. Lett. B 2016, 759, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Coto, D.; Navas, S.; Zornoza, J.D. Dark Matter Searches from the Sun with the KM3NeT-ORCA detector. PoS 2020, 2019, 536. [Google Scholar] [CrossRef]
- Hernandez-Rey, J.J.; Lambard, G. Indirect search for dark matter with the ANTARES neutrino telescope. In Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013; p. 0613. [Google Scholar]
- Adrian-Martinez, S. et al. [ANTARES Collaboration] Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope. JCAP 2015, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. Search for dark matter towards the Galactic Centre with 11 years of ANTARES data. Phys. Lett. B 2020, 805, 135439. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; Bertin, V.; et al. Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Phys. Rev. D 2020, 102, 082002. [Google Scholar] [CrossRef]
- Gozzini, S.R.; Iovine, N.; Sánchez, J.A.A.; Baur, S.; de Dios Zornoza Gómez, J. Combined search for dark matter from the Galactic Centre with the ANTARES and IceCube neutrino telescopes. EPJ Web Conf. 2019, 207, 04007. [Google Scholar] [CrossRef]
- Gozzini, S.; Sala, F.; Zornoza, J.D. Search for heavy secluded dark matter with ANTARES. In Proceedings of the Neutrino 2020, Chicago, IL, USA, 21–27 June 2020. [Google Scholar]
- Manczak, J.; Chowdhury, N.R.K.; Hernández-Rey, J.J. Neutrino non-standard interactions with the KM3NeT/ORCA detector. PoS 2021, 2021, 1165. [Google Scholar] [CrossRef]
- Hernández Rey, J.J.; Khan Chowdhury, N.R.; Manczak, J.; Navas, S.; Zornoza, J.D. Search for neutrino non-standard interactions with ANTARES and KM3NeT-ORCA. JINST 2021, 16, C09016. [Google Scholar] [CrossRef]
- Khan Chowdhury, N.R. Neutrino Oscillations and Non-standard Interactions with KM3NeT-ORCA. In Proceedings of the Prospects in Neutrino Physics, London, UK, 16–18 December 2020. [Google Scholar]
- de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tórtola, M. Constraining the invisible neutrino decay with KM3NeT-ORCA. Phys. Lett. B 2019, 789, 472–479. [Google Scholar] [CrossRef]
- Zyla, P.A.; Amsler, C.D.; Asner, D.M.; Bamett, R.M.; Beringer, J.; Burchat, P.R.; Carone, C.D.; Caso, C.; Dahl, O.I.; D’Ambrosio, G.; et al. Review of Particle Physics. PTEP 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Engel, R. Highlights from the Pierre Auger Observatory. PoS 2021, 2021, 021. [Google Scholar]
- Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. Astrophys. J. Lett. 1973, 182, L85–L88. [Google Scholar] [CrossRef]
- Wakely, S.P.; Horan, D. TeVCat: An online catalog for Very High Energy Gamma-Ray Astronomy. In Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, 3–11 July 2007; Volume 3, pp. 1341–1344. [Google Scholar]
- Abbott, B.P. et al. [The LIGO Scientific Collaboration] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Asada, H.; Aso, Y.; Atsuta, S.; et al. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nature Astron. 2019, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Greus, F.S.; Losa, A.S. Multimessenger Astronomy with Neutrinos. Universe 2021, 7, 397. [Google Scholar] [CrossRef]
- Fusco, L.A. Search for a diffuse flux of cosmic neutrinos with the ANTARES neutrino telescope. PoS 2021, 2021, 1126. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, R.; Heijboer, A.; Soto, A.G.; Caiffi, B.; Sanguineti, M.; Kulikovskiy, V. Sensitivity estimates for diffuse, point-like and extended neutrino sources with KM3NeT/ARCA. PoS 2021, 2021, 1077. [Google Scholar]
- Aartsen, M.G. et al. [The IceCube] Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikonomou, F. High-energy neutrino emission from blazars. PoS 2021, 2021, 30. [Google Scholar]
- Plavin, A.V.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars. Astrophys. J. 2021, 908, 157. [Google Scholar] [CrossRef]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophys. J. 2021, 911, 48. [Google Scholar] [CrossRef]
- Illuminati, G. ANTARES search for neutrino flares from the direction of radio-bright blazars. PoS 2021, 2021, 972. [Google Scholar]
- Stein, R.; van Velzen, S.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nature Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, R.Y.; Dai, Z.G.; Cheng, K.S. Probing the tidal disruption flares of massive black holes with high-energy neutrinos. Phys. Rev. D 2011, 84, 081301. [Google Scholar] [CrossRef] [Green Version]
- Stein, R. Tidal Disruption Events and High-Energy Neutrinos. PoS 2021, 2021, 9. [Google Scholar]
- Albert, A. et al. [ANTARES Collaboration] Search for neutrinos from the tidal disruption events AT2019dsg and AT2019fdr with the ANTARES telescope. Astrophys. J. 2021, 920, 50. [Google Scholar] [CrossRef]
- Waxman, E.; Bahcall, J.N. High-energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 1997, 78, 2292–2295. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.S.; Murase, K.; Bartos, I.; Ioka, K.; Heng, I.S.; Mészáros, P. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 2018, 98, 043020. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P. et al. [LIGO Scientific Collaboration] Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Coleiro, A.; Colomer Molla, M.; Dornic, D.; Lincetto, M.; Kulikovskiy, V. Combining neutrino experimental light-curves for pointing to the next galactic core-collapse supernova. Eur. Phys. J. C 2020, 80, 856. [Google Scholar] [CrossRef]
- Aiello, S. et al. [KM3NeT Collaboration] The KM3NeT potential for the next core-collapse supernova observation with neutrinos. Eur. Phys. J. C 2021, 81, 445. [Google Scholar] [CrossRef]
- Albert, A.; Andre, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; et al. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett. 2017, 850, L35. [Google Scholar] [CrossRef]
- Avrorin, A.D. et al. [Baikal-GVD Collaboration] Search for High-Energy Neutrinos from GW170817 with the Baikal-GVD Neutrino Telescope. JETP Lett. 2018, 108, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Albert, A. et al. [ANTARES Collaboration] All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope. Eur. Phys. J. C 2017, 77, 911. [Google Scholar] [CrossRef] [Green Version]
- Albert, A. et al. [ANTARES Collaboration] Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope. Eur. Phys. J. C 2020, 80, 487. [Google Scholar] [CrossRef]
- Albert, A. et al. [ANTARES Collaboration] ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs. JCAP 2021, 3, 92. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Amenomori, M.; Bao, Y.W.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Chen, X.; Chen, Y.; Cirennima; Cui, S.W.; et al. First Detection of sub-PeV Diffuse Gamma Rays from the Galactic Disk: Evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies. Phys. Rev. Lett. 2021, 126, 141101. [Google Scholar] [CrossRef] [PubMed]
- Adrian-Martinez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; et al. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope. Phys. Lett. B 2016, 760, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Fusco, L. Search for correlations between high-energy gamma rays and neutrinos with the HAWC and ANTARES detectors. PoS 2021, 2021, 962. [Google Scholar]
- Niro, V.; Neronov, A.; Fusco, L.; Gabici, S.; Semikoz, D. Neutrinos from the gamma-ray source eHWC J1825-134: Predictions for Km3 detectors. Phys. Rev. D 2021, 104, 023017. [Google Scholar] [CrossRef]
- Zornoza, J.D.D. Review on Indirect Dark Matter Searches with Neutrino Telescopes. Universe 2021, 7, 415. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore. Eur. Phys. J. C 2017, 77, 627. [Google Scholar] [CrossRef]
- Abdallah, H. et al. [H.E.S.S. Collaboration] Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett. 2016, 117, 111301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archambault, S. et al. [VERITAS Collaboration] Dark Matter Constraints from a Joint Analysis of Dwarf Spheroidal Galaxy Observations with VERITAS. Phys. Rev. D 2017, 95, 082001. [Google Scholar] [CrossRef] [Green Version]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies. JCAP 2016, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of cold dark matter halos. Astrophys. J. 1996, 462, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Pospelov, M.; Ritz, A.; Voloshin, M.B. Secluded WIMP Dark Matter. Phys. Lett. B 2008, 662, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Ardid, M.; Felis, I.; Herrero, A.; Martínez-Mora, J.A. Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun. JCAP 2017, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Frankiewicz, K. Searching for Dark Matter Annihilation into Neutrinos with Super-Kamiokande. arXiv 2015, arXiv:1510.07999. [Google Scholar]
- Amole, C.; Ardid, M.; Arnquist, I.J.; Asner, D.M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Campion, P.; et al. Dark Matter Search Results from the PICO-60 C3F8 Bubble Chamber. Phys. Rev. Lett. 2017, 118, 251301. [Google Scholar] [CrossRef] [Green Version]
- Moskalenko, I.V.; Karakula, S. Very high-energy neutrinos from the sun. J. Phys. G 1993, 19, 1399–1406. [Google Scholar] [CrossRef]
- Ardid., M.; Felis, I.; Lotze, M.; Tönnis, C. Neutrinos from Cosmic Ray Interactions in the Sun as background for dark matter searches. PoS 2018, 2017, 907. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Coto, D.; Navas, S.; Zornoza, J.D. Solar Atmospheric Neutrinos searches with ANTARES neutrino telescope. PoS 2021, 2021, 1122. [Google Scholar] [CrossRef]
- Gaisser, T.K. Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio. Astropart. Phys. 2012, 35, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Gaisser, T.K.; Stanev, T.; Tilav, S. Cosmic Ray Energy Spectrum from Measurements of Air Showers. Front. Phys. 2013, 8, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Serenelli, A.M.; Basu, S.; Ferguson, J.W.; Asplund, M. New solar composition: The problem with solar models revisited. Astrophys. J. Lett. 2009, 705, L123–L127. [Google Scholar] [CrossRef]
- Grevesse, N.; Sauval, A.J. Standard Solar Composition. Space Sci. Rev. 1998, 85, 161–174. [Google Scholar] [CrossRef]
- Bischer, I.; Rodejohann, W. General neutrino interactions from an effective field theory perspective. Nucl. Phys. B 2019, 947, 114746. [Google Scholar] [CrossRef]
- Ohlsson, T. Status of non-standard neutrino interactions. Rept. Prog. Phys. 2013, 76, 044201. [Google Scholar] [CrossRef] [Green Version]
- Miranda, O.G.; Nunokawa, H. Non standard neutrino interactions: Current status and future prospects. New J. Phys. 2015, 17, 095002. [Google Scholar] [CrossRef]
- Fornengo, N.; Maltoni, M.; Tomas, R.; Valle, J.W.F. Probing neutrino nonstandard interactions with atmospheric neutrino data. Phys. Rev. D 2002, 65, 013010. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Garcia, M.C.; Maltoni, M. Atmospheric neutrino oscillations and new physics. Phys. Rev. D 2004, 70, 033010. [Google Scholar] [CrossRef] [Green Version]
- Farzan, Y.; Tortola, M. Neutrino oscillations and Non-Standard Interactions. Front. Phys. 2018, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Dev, P.S.; Babu, K.S.; Denton, P.B.; Machado, P.A.; Argüelles, C.A.; Barrow, J.L.; Chatterjee, S.S.; Chen, M.C.; de Gouvêa, A.; Dutta, B.; et al. Neutrino Non-Standard Interactions: A Status Report. Sci. Post Phys. Proc. 2019, 2019, 1. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Martinez-Soler, I.; Salvado, J. Updated constraints on non-standard interactions from global analysis of oscillation data. JHEP 2018, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Albert, A. et al. [ANTARES Collaboration] Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data. JHEP 2019, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Mitsuka, G.; Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande I and II. Phys. Rev. 2011, D84, 113008. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G. et al. [IceCube Collaboration] Search for Nonstandard Neutrino Interactions with IceCube DeepCore. Phys. Rev. 2018, D97, 072009. [Google Scholar] [CrossRef] [Green Version]
- Schechter, J.V.J. Neutrino decay and spontaneous violation of lepton number. Phys. Rev. D 1982, 25, 774. [Google Scholar] [CrossRef]
- Acker, A.; Pantaleone, S.P.J. Decaying Dirac neutrinos. Phys. Rev. D 1992, 45, 1. [Google Scholar] [CrossRef]
- Kapustinsky, J.; DeVries, R.; DiGiacomo, N.; Sondheim, W.; Sunier, J.; Coombes, H. A fast timing light pulser for scintillation detectors. In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment; Elsevier: Amsterdam, The Netherlands, 1985; Volume 241, pp. 612–613. [Google Scholar] [CrossRef]
- Ricobenne, G. NEMO: NEutrino Mediterranean Observatory. In Astrophysical Sources of High Energy Particles and Radiation; Springer: Berlin, Germany, 2001; Volume 44, pp. 355–361. [Google Scholar] [CrossRef]
- Martinez-S, A.; Aiello, S.; Ameli, F.; Anghinolfi, M.; Ardid, M.; Barbarino, G.; Barbarito, E.; Barbato, F.C.T.; Beverini, N.; Biagi, S.; et al. Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype. Eur. Phys. J. C 2016, 76, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aiello, S.; Albert, A.; Alshamsi, M.; Garre, S.A.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Nanobeacon: A time calibration device for the KM3NeT neutrino telescope. arXiv 2021, arXiv:2111.00223. [Google Scholar]
- Real, D. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node. AIP Conf. Proc. 2015, 1630, 102–105. [Google Scholar] [CrossRef]
- Aiello, S. et al. [The KM3NeT Collaboration] KM3NeT front-end and readout electronics system: Hardware, firmware and software. J. Astron. Telesc. Instrum. Syst. 2019, 5, 046001. [Google Scholar] [CrossRef] [Green Version]
- Real, D.; Calvo, D. Digital optical module electronics of KM3NeT. Phys. Part. Nucl. 2016, 47, 918–925. [Google Scholar] [CrossRef]
- Aiello, S.; Albert, A.; Garre, S.A.; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anguita, M.; Anton, G.; et al. Architecture and performance of the KM3NeT front-end firmware. J. Astron. Telesc. Instrum. Syst. 2021, 7, 016001. [Google Scholar] [CrossRef]
- Real, D.; Calvo, D.; van Beveren, V.; Musico, P.; Pellegini, G.; Jansweijer, P.; Colonges, S.; Chiarusi, T.; Bozza, C.; Nicolau, C.; et al. Status of the DOM electronics. JINST 2021, 16, C10009. [Google Scholar] [CrossRef]
- Real, D.; Calvo, D.; Musico, P.; Jansweijer, P.; Van Elewyck, V. KM3NeT Front-end electronics upgrade: CLBv3 and PBv3. PoS 2018, 2017, 1004. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, M.; Wlostowski, T.; Alvarez, P.J.S. White Rabbit: A PTP Application for Robust Sub-nanosecond Synchronization. In Proceedings of the IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, Munich, Germany, 14–16 September 2011; pp. 25–30. [Google Scholar] [CrossRef]
- Colonges, S.; Real, D.; Calvo, D.; Musico, P.; Pellegini, G.; Jansweijer, P.; van Beveren, V.; Chiarusi, T.; Bozza, C.; Nicolau, C.; et al. Electronics reliability methods for neutrinos telescopes: The KM3NeT case. JINST 2021, 16, C10010. [Google Scholar] [CrossRef]
- Ardid, M. Positioning system of the ANTARES neutrino telescope. Nucl. Instrum. Meth. A 2009, 602, 174–176. [Google Scholar] [CrossRef]
- Adrian-Martinez, S.; Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; et al. The Positioning System of the ANTARES Neutrino Telescope. JINST 2012, 7, T08002. [Google Scholar] [CrossRef]
- Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C.D. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope. Nucl. Instrum. Meth. A 2013, 725, 207–210. [Google Scholar] [CrossRef]
- Poirè, C. et al. [KM3NeT Collaboration] KM3NeT Detection Unit Line Fit reconstruction using positioning sensors data. PoS 2021, 2021, 1052. [Google Scholar] [CrossRef]
- Tortosa, D.D. Monitoring and Reconstruction of the Shape of the Detection Units in KM3NeT Using Acoustic and Compass Sensors. Sensors 2020, 20, 5116. [Google Scholar] [CrossRef] [PubMed]
- Guidi, C.; Bou-Cabo, M.; Lara, G. Passive acoustic monitoring of cetaceans with KM3NeT acoustic receivers. J. Instrum. 2021, 16, C10004. [Google Scholar] [CrossRef]
- Farina, A.; Gage, S.H. Ecoacoustics: The Ecological Role of Sounds, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Andre, M.; Caballé, A.; Van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A.M.; Castell, J.V.; Solé, M.; Vila, F.; et al. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope. Sci. Rep. 2017, 7, 45517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tournadre, J. Anthropogenic pressure on the open ocean: The growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett. 2014, 41, 7924–7932. [Google Scholar] [CrossRef] [Green Version]
- Notarbartolo-di-Sciara, G.; Agardy, T.; Hyrenbach, D.; Scovazzi, T.; Van Klaveren, P. The Pelagos Sanctuary for Mediterranean marine mammals. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 367–391. [Google Scholar] [CrossRef]
Board | MTTF (Million of Hours) |
---|---|
CLB | 2.8 |
PB | 1.5 |
DC/DC converter | 2.5 |
Overall | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Rey, J.J.; Ardid, M.; Bou Cabo, M.; Calvo, D.; Díaz, A.F.; Gozzini, S.R.; Martínez-Mora, J.A.; Navas, S.; Real, D.; Greus, F.S.; et al. Science with Neutrino Telescopes in Spain. Universe 2022, 8, 89. https://doi.org/10.3390/universe8020089
Hernández-Rey JJ, Ardid M, Bou Cabo M, Calvo D, Díaz AF, Gozzini SR, Martínez-Mora JA, Navas S, Real D, Greus FS, et al. Science with Neutrino Telescopes in Spain. Universe. 2022; 8(2):89. https://doi.org/10.3390/universe8020089
Chicago/Turabian StyleHernández-Rey, Juan José, Miguel Ardid, Manuel Bou Cabo, David Calvo, Antonio F. Díaz, Sara Rebecca Gozzini, Juan A. Martínez-Mora, Sergio Navas, Diego Real, Francisco Salesa Greus, and et al. 2022. "Science with Neutrino Telescopes in Spain" Universe 8, no. 2: 89. https://doi.org/10.3390/universe8020089
APA StyleHernández-Rey, J. J., Ardid, M., Bou Cabo, M., Calvo, D., Díaz, A. F., Gozzini, S. R., Martínez-Mora, J. A., Navas, S., Real, D., Greus, F. S., Losa, A. S., Zornoza, J. d. D., & Zúñiga, J. (2022). Science with Neutrino Telescopes in Spain. Universe, 8(2), 89. https://doi.org/10.3390/universe8020089