Topological Effects of a Spiral Dislocation on Quantum Revivals
Abstract
:1. Introduction
2. Effects of a Cut-Off Point Yield by the Spiral Dislocation Topology on the Harmonic Oscillator
Quantum Revivals
3. Effects of the Spiral Dislocation Topology on Quantum Revivals in a One-Dimensional Ring
4. Effects of the Spiral Dislocation Topology on Quantum Revivals in a Two-Dimensional Ring
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bezerra, V.B.; Marques, G.D.A.; Khusnutdinov, N.R. Some remarks on topological defects and their gravitational consequences. Int. J. Mod. Phys. A 2002, 17, 4365. [Google Scholar] [CrossRef]
- Carvalho, A.M.d.M.; Moraes, F.; Furtado, C. The self-energy of a charged particle in the presence of a topological defect distribution. Int. J. Mod. Phys. A 2004, 19, 2113. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, M.E.X.; Oliveira, A.L.N. Quantum effects in the spacetime of a magnetic flux cosmic string. Int. J. Mod. Phys. A 2003, 18, 2093. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.d.A.; Bezerra, V.B.; Furtado, C.; Moraes, F. Quantum effects due to a magnetic flux associated to a topological defect. Int. J. Mod. Phys. A 2005, 20, 6051. [Google Scholar] [CrossRef]
- de Montigny, M.; Hosseinpour, M.; Hassanabadi, H. The spin-zero Duffin-Kemmer-Petiau equation in a cosmic-string space-time with the Cornell interaction. Int. J. Mod. Phys. A 2016, 31, 1650191. [Google Scholar] [CrossRef]
- Duan, Y.S.; Zhao, L. Topological structure and evolution of space–time dislocations and disclinations. Int. J. Mod. Phys. A 2007, 22, 1335. [Google Scholar] [CrossRef]
- Bennett, D.L.; Das, C.R.; Laperashvili, L.V.; Nielsen, H.B. The relation between the model of a crystal with defects and Plebanski’s theory of gravity. Int. J. Mod. Phys. A 2013, 28, 1350044. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, A. Space-time defects as a source of curvature and torsion. Int. J. Mod. Phys. A 2005, 20, 2336. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cai, H.; Xu, C. Geometric phase for a two-level atom immersed in a thermal bath in the global monopole space–time. Int. J. Mod. Phys. A 2019, 34, 1950023. [Google Scholar] [CrossRef]
- Rahaman, F.; Ghosh, P.; Kalam, M.; Mandal, S. Multidimensional global monopole in presence of Electromagnetic Field. Int. J. Mod. Phys. A 2005, 20, 993. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-Q.; Long, Z.-W.; Long, C.-Y.; Wu, S.-R. The study of a half-spin relativistic particle in the rotating cosmic string space–time. Int. J. Mod. Phys. A 2018, 33, 1850158. [Google Scholar] [CrossRef]
- Cavalcanti de Oliveira, A.L.; Bezerra de Mello, E.R. Nonrelativistic charged particle-magnetic monopole scattering in the global monopole background. Int. J. Mod. Phys. A 2003, 18, 3175. [Google Scholar] [CrossRef] [Green Version]
- Hun, M.A.; Candemir, N. Relativistic quantum motion of the scalar bosons in the background space–time around a chiral cosmic string. Int. J. Mod. Phys. A 2019, 34, 1950056. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Marques, G.d.A. On a result concerning the behavior of a relativistic quantum system in the cosmic string spacetime. Int. J. Mod. Phys. A 2009, 24, 1549. [Google Scholar] [CrossRef]
- de Assis, J.G.; Furtado, C.; Bezerra, V.B. Gravitational Berry’s quantum phase. Phys. Rev. D 2000, 62, 045003. [Google Scholar] [CrossRef]
- Ahmed, F. Relativistic scalar charged particle in a rotating cosmic string space-time with Cornell-type potential and Aharonov-Bohm effect. Adv. High Energy Phys. 2020, 2020, 5691025. [Google Scholar] [CrossRef]
- Arbuzov, A.B.; Cirilo-Lombardo, D.J. Dynamical breaking of symmetries beyond the standard model and supergeometry. Phys. Scr. 2019, 94, 125302. [Google Scholar] [CrossRef] [Green Version]
- Vitória, R.L.L. Noninertial effects on a scalar field in a spacetime with a magnetic screw dislocation. Eur. Phys. J. C 2019, 79, 844. [Google Scholar] [CrossRef] [Green Version]
- Bakke, K.; Furtado, C. Relativistic Landau–Aharonov–Casher quantization in topological defect space–time. Int. J. Mod. Phys. D 2010, 19, 85. [Google Scholar] [CrossRef]
- Bakke, K.; Furtado, C. On an attractive inverse-square potential in an elastic medium with a screw dislocation. Int. J. Mod. Phys. A 2021, 36, 2150066. [Google Scholar] [CrossRef]
- Maia, A.V.D.M.; Bakke, K. Harmonic oscillator in an elastic medium with a spiral dislocation. Phys. B Condens. Matter 2018, 531, 213. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.V.D.M.; Bakke, K. Topological and rotating effects on the Dirac field in the spiral dislocation spacetime. Eur. Phys. J. C 2019, 79, 551. [Google Scholar] [CrossRef]
- Maia, A.V.D.M.; Bakke, K. Relativistic Landau quantization in the spiral dislocation spacetime. Commun. Theor. Phys. 2021, 73, 025103. [Google Scholar] [CrossRef]
- Hassanabadi, H.; Zare, S.; Kříž, J.; Lütfüoğlu, B.C. Electric quadrupole moment of a neutral non-relativistic particle in the presence of screw dislocation. EPL 2020, 132, 60005. [Google Scholar] [CrossRef]
- Lütfüoglu, B.C.; Kříž, J.; Sedaghatnia, P.; Hassanabadi, H. The generalized Klein–Gordon oscillator in a cosmic space-time with a space-like dislocation and the Aharonov–Bohm effect. Eur. Phys. J. Plus 2020, 135, 691. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Hassanabadi, H.; Andrade, F.M. The DKP oscillator with a linear interaction in the cosmic string space-time. Eur. Phys. J. C 2018, 78, 93. [Google Scholar] [CrossRef]
- Lütfüoglu, B.C.; Kříž, J.; Zare, S.; Hassanabadi, H. Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in the background of screw dislocations with a rotating frame. Phys. Scr. 2021, 96, 015005. [Google Scholar] [CrossRef]
- Montigny, M.; Hassanabadi, H.; Pinfold, J.; Zare, S. Exact solutions of the generalized Klein–Gordon oscillator in a global monopole space-time. Eur. Phys. J. Plus 2021, 136, 788. [Google Scholar] [CrossRef]
- Bragança, E.A.F.; Vitória, R.L.L.; Belich, H.; Bezerra de Mello, E.R. Relativistic quantum oscillators in the global monopole spacetime. Eur. Phys. J. C 2020, 80, 206. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.-F.; Long, C.-Y.; Long, Z.-W.; Xu, T. The generalized KG oscillator in the cosmic string space-time. Eur. Phys. J. Plus 2019, 134, 355. [Google Scholar] [CrossRef]
- Ahmed, F. Relativistic quantum dynamics of a spin-0 massive charged particle in the presence of external fields in a Gödel-type space-time with Coulomb potentials and Aharonov–Bohm effect. Eur. Phys. J. Plus 2020, 135, 108. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F. Aharonov-Bohm effect on a generalized Klein-Gordon oscillator with uniform magnetic field in a spinning cosmic string space-time. EPL 2020, 130, 40003. [Google Scholar] [CrossRef]
- Ahmed, F. Quantum influence of magnetic flux on spin-0 scalar charged particles in the presence of external field in a spinning cosmic string space-time. Mod. Phys. Lett. A 2020, 35, 2050220. [Google Scholar] [CrossRef]
- Katanaev, M.O.; Volovich, I.V. Theory of defects in solids and three-dimensional gravity. Ann. Phys. 1992, 216, 1. [Google Scholar] [CrossRef]
- Puntigam, R.A.; Soleng, H.H. Volterra distortions, spinning strings, and cosmic defects. Class. Quantum Grav. 1997, 14, 1129. [Google Scholar] [CrossRef]
- Furtado, C.; Moraes, F.; Carvalho, A.M.d.M. Geometric phases in graphitic cones. Phys. Lett. A 2008, 372, 5368. [Google Scholar] [CrossRef] [Green Version]
- Bueno, M.J.; Furtado, C.; Carvalho, A.M.d.M. Landau levels in graphene layers with topological defects. Eur. Phys. J. B 2012, 85, 53. [Google Scholar] [CrossRef]
- Neto, J.A.; Oliveira, J.R.d.S.; Furtado, C.; Sergeenkov, S. Quantum ring in gapped graphene layer with wedge disclination in the presence of a uniform magnetic field. Eur. Phys. J. Plus 2018, 133, 185. [Google Scholar] [CrossRef]
- Neto, J.A.; Bueno, M.J.; Furtado, C. Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov–Bohm flux. Ann. Phys. 2016, 373, 273. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, E.; Furtado, C. Geometric model of a fullerene molecule in the presence of Aharonov–Bohm flux. J. Phys. Chem. Solid. 2014, 75, 1265. [Google Scholar] [CrossRef]
- Dexter, D.L.; Seitz, F. Effects of dislocations on mobilities in semiconductors. Phys. Rev. 1952, 86, 964. [Google Scholar] [CrossRef]
- Figielski, T. On an electron in an elastic medium with a spiral dislocation. J. Phys. Condens. Matter 2012, 14, 12665. [Google Scholar] [CrossRef]
- Jaszek, R. Carrier scattering by dislocations in semiconductors. J. Mater. Sci. Mater. Electron. 2001, 12, 1. [Google Scholar] [CrossRef]
- Aurell, E. Torsion and electron motion in quantum dots with crystal lattice dislocations. J. Phys. A Math. Gen. 1999, 32, 571. [Google Scholar] [CrossRef] [Green Version]
- Valanis, K.C.; Panoskaltsis, V.P. Material metric, connectivity and dislocations in continua. Acta Mech. 2005, 175, 77. [Google Scholar] [CrossRef]
- Marques, G.d.A.; Furtado, C.; Bezerra, V.B.; Moraes, F. Landau levels in the presence of topological defects. J. Phys. A Math. Gen. 2001, 34, 5945. [Google Scholar] [CrossRef] [Green Version]
- Furtado, C.; Moraes, F. Harmonic oscillator interacting with conical singularities. J. Phys. A Math. Gen. 2000, 33, 5513. [Google Scholar] [CrossRef]
- Filgueiras, C.; Silva, E.O. 2DEG on a cylindrical shell with a screw dislocation. Phys. Lett. A 2015, 379, 2110. [Google Scholar] [CrossRef] [Green Version]
- Netto, A.L.S.; Chesman, C.; Furtado, C. Influence of topology in a quantum ring. Phys. Lett. A 2008, 372, 3894. [Google Scholar] [CrossRef]
- Dantas, L.; Furtado, C.; Netto, A.L.S. Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 2015, 379, 11. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.R.S. Topological and noninertial effects in an Aharonov–Bohm ring. Gen. Relativ. Gravit. 2019, 51, 120. [Google Scholar] [CrossRef] [Green Version]
- da Silva, W.C.F.; Bakke, K. Topological effects of a spiral dislocation on quantum rings. Ann. Phys. 2020, 421, 168277. [Google Scholar] [CrossRef]
- Soheibi, N.; Hamzavi, M.; Eshghi, M.; Ikhdair, S.M. Screw dislocation and external fields effects on the Kratzer pseudodot. Eur. Phys. J. B 2017, 90, 212. [Google Scholar] [CrossRef]
- Furtado, C.; da Cunha, B.G.C.; Moraes, F.; Bezerra de Mello, E.R.; Bezerra, V.B. Landau levels in the presence of disclinations. Phys. Lett. A 1994, 195, 90. [Google Scholar] [CrossRef]
- Furtado, C.; Moraes, F. Landau levels in the presence of a screw dislocation. Europhys. Lett. 1999, 45, 279. [Google Scholar] [CrossRef]
- Netto, A.L.S.; Furtado, C. Elastic landau levels. J. Phys. Condens. Matter 2008, 20, 125209. [Google Scholar] [CrossRef]
- Filgueiras, C.; Rojas, M.; Aciole, G.; Silva, E.O. Landau quantization, Aharonov–Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation. Phys. Lett. A 2016, 380, 3847. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485. [Google Scholar] [CrossRef]
- Peshkin, M.; Tonomura, A. The Aharonov-Bohm Effect. In Lecture Notes in Physics; Springer: Berlin, Germany, 1989; Volume 340. [Google Scholar]
- Furtado, C.; Bezerra, V.B.; Moraes, F. Quantum scattering by a magnetic flux screw dislocation. Phys. Lett. A 2001, 289, 160. [Google Scholar] [CrossRef]
- Furtado, C.; de Lima Ribeiro, C.A.; Azevedo, S. Aharonov–Bohm effect in the presence of a density of defects. Phys. Lett. A 2002, 296, 171. [Google Scholar] [CrossRef]
- Robinett, R.W. Quantum wave packet revivals. Phys. Rep. 2004, 392, 1. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Tudose, B. Wave-packet revivals for quantum systems with nondegenerate energies. Phys. Lett. A 1996, 222, 220. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Porter, J.A. The evolution and revival structure of localized quantum wave packets. Am. J. Phys. 1996, 64, 944. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W. Visualizing the collapse and revival of wave packets in the infinite square well using expectation values. Am. J. Phys. 2000, 68, 410. [Google Scholar] [CrossRef] [Green Version]
- Zare, S.; Hassanabadi, H.; Rampho, J.P.; Ikot, A.N. Spin and pseudospin symmetries of a relativistic fermion in an elastic medium with spiral dislocations. Eur. Phys. J. Plus 2020, 135, 748. [Google Scholar] [CrossRef]
- Hassanabadi, S.; Zare, S.; Lütfüoğlu, B.C.; Kříž, J.; Hassanabadi, H. Duffin–Kemmer–Petiau particles in the presence of the spiral dislocatio. Int. J. Mod. Phys. A 2021, 36, 2150100. [Google Scholar] [CrossRef]
- Zare, S.; Hassanabadi, H.; de Montigny, M. Relativistic free fermions in an elastic medium with screw dislocations. Eur. Phys. J. Plus 2020, 135, 122. [Google Scholar] [CrossRef]
- Bezerra, V.B. Global effects due to a chiral cone. J. Math. Phys. 1997, 38, 2553. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegum, I.A. Handbook of Mathematical Functions; Dover Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, the Nonrelativistic Theory, 3rd ed.; Pergamon: Oxford, UK, 1977. [Google Scholar]
- Camblong, H.E.; Epele, L.N.; Fanchiotti, H.; García Canal, C.A. Renormalization of the inverse square potential. Phys. Rev. Lett. 2000, 85, 1590. [Google Scholar] [CrossRef] [Green Version]
- Coon, S.A.; Holstein, B.R. Anomalies in quantum mechanics: The 1/r2 potential. Am. J. Phys. 2002, 70, 513. [Google Scholar] [CrossRef] [Green Version]
- Essin, A.M.; Griffths, D.J. Quantum mechanics of the 1/x2 potential. Am. J. Phys. 2006, 74, 109. [Google Scholar] [CrossRef]
- Gupta, K.S.; Rajeev, S.G. Renormalization in quantum mechanics. Phys. Rev. D 1993, 48, 5940. [Google Scholar] [CrossRef] [Green Version]
- Ridley, B.K. Hybrid Phonons in Nanostructures; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Razeghi, M. Fundamentals of Solid State Engineering; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
- Styer, D.F. Quantum revivals versus classical periodicity in the infinite square well. Am. J. Phys. 2001, 69, 56. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W. Wave packet revivals and quasirevivals in one-dimensional power law potentials. J. Math. Phys. 2001, 41, 1801. [Google Scholar] [CrossRef]
- Aronstein, D.L.; Stroud, C.R. Fractional wave-function revivals in the infinite square well. J. Phys. Rev. A 1997, 55, 4526. [Google Scholar] [CrossRef] [Green Version]
- Doncheskia, M.A.; Robinett, R.W. Wave packet revivals and the energy eigenvalue spectrum of the quantum pendulum. Ann. Phys. 2003, 308, 578. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.G.M.; Azeredo, A.D.; Gusso, A. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass. Phys. Lett. A 2008, 372, 2774. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A. Quantum defects and the long-term behavior of radial Rydberg wave packets. Phys. Rev. A 1994, 50, R4445. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A. Long-term evolution and revival structure of Rydberg wave packets for hydrogen and alkali-metal atoms. Phys. Rev. A 1995, 51, 4767. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A. Long-term evolution and revival structure of Rydberg wave packets. Phys. Lett. A 1995, 200, 308. [Google Scholar] [CrossRef] [Green Version]
- Sinha, D.; Berche, B. Quantum oscillations and wave packet revival in conical graphene structure. Eur. Phys. J. B 2016, 89, 57. [Google Scholar] [CrossRef] [Green Version]
- García, T.; Rodríguez-Bolívar, S.; Cordero, N.A.; Romera, E. Wavepacket revivals in monolayer and bilayer graphene rings. J. Phys. Condens. Matter 2013, 25, 235301. [Google Scholar] [CrossRef] [PubMed]
- Doncheski, M.A.; Heppelmann, S.; Robinett, R.W.; Tussey, D.C. Wave packet construction in two-dimensional quantum billiards: Blueprints for the square, equilateral triangle, and circular cases. Am. J. Phys. 2003, 71, 541. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Tudose, B. Revival structure of Stark wave packets. Phys. Rev. A 1997, 55, 819. [Google Scholar] [CrossRef] [Green Version]
- Robinett, R.W.; Heppelmann, S. Quantum wave-packet revivals in circular billiards. Phys. Rev. A 2002, 65, 062103. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.C.T. Quantum mechanics of a constrained particle. Phys. Rev. A 1981, 23, 182. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, A.V.D.M.; Bakke, K. Topological Effects of a Spiral Dislocation on Quantum Revivals. Universe 2022, 8, 168. https://doi.org/10.3390/universe8030168
Maia AVDM, Bakke K. Topological Effects of a Spiral Dislocation on Quantum Revivals. Universe. 2022; 8(3):168. https://doi.org/10.3390/universe8030168
Chicago/Turabian StyleMaia, Anderson V. D. M., and Knut Bakke. 2022. "Topological Effects of a Spiral Dislocation on Quantum Revivals" Universe 8, no. 3: 168. https://doi.org/10.3390/universe8030168
APA StyleMaia, A. V. D. M., & Bakke, K. (2022). Topological Effects of a Spiral Dislocation on Quantum Revivals. Universe, 8(3), 168. https://doi.org/10.3390/universe8030168