The NuGrid AGB Evolution and Nucleosynthesis Data Set
Abstract
:1. Introduction
2. Computational Methods
3. Recommended Stellar Models Data Set
3.1. Low-Mass AGB stars
3.2. Massive AGB Stars
4. Ejected Stellar Yields
- \vspace{−12pt}
- %pylab ipympl
- from nugridpy import nugridse as~mp
- data_dir1 = “/data/ASDR/NuGrid”
- mp.set_nugrid_path(data_dir1)
- pt = mp.se(mass = 2,Z = 0.02)
- use_updated_model = True
- if use_updated_model:
- data = “/data/nugrid/data/set1upd”
- data_dir2 = data+“/set1.1/ppd_wind/RUN_set1upd_m2z1m2/H5_out”
- pt = mp.se(data_dir2)
- species = [’H-1’,’He-4’,’C-12’,’C-13’,’N-14’,’O-16’]
- ifig = 108; close(ifig); figure(ifig)
- pt.abu_profile(isos = species, ifig = ifig, fname = 18000,
- logy = True)
- ylim(−7,0); xlim(0.551,0.555)
5. Conclusions and Future Plans
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mollá, M.; Cavichia, O.; Gavilán, M.; Gibson, B.K. Galactic chemical evolution: Stellar yields and the initial mass function. Mon. Not. R. Astron. Soc. 2015, 451, 3693–3708. [Google Scholar] [CrossRef] [Green Version]
- Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S.A.; Kovtyukh, V.V.; Wehmeyer, B.; et al. Observing the metal-poor solar neighbourhood: A comparison of galactic chemical evolution predictions. Mon. Not. R. Astron. Soc. 2017, 469, 4378–4399. [Google Scholar] [CrossRef] [Green Version]
- Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S. Chemical evolution with rotating massive star yields-I. The solar neighbourhood and the s-process elements. Mon. Not. R. Astron. Soc. 2018, 476, 3432–3459. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Matteucci, F. Modelling the chemical evolution of the Milky Way. Astron. Astrophys. Rev. 2021, 29, 5. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, 30. [Google Scholar] [CrossRef] [Green Version]
- José, J.; Hernanz, M. TOPICAL REVIEW: Nucleosynthesis in classical nova explosions. J. Phys. G Nucl. Phys. 2007, 34, 431. [Google Scholar] [CrossRef]
- Denissenkov, P.A.; Truran, J.W.; Pignatari, M.; Trappitsch, R.; Ritter, C.; Herwig, F.; Battino, U.; Setoodehnia, K.; Paxton, B. MESA and NuGrid simulations of classical novae: CO and ONe nova nucleosynthesis. Mon. Not. R. Astron. Soc. 2014, 442, 2058–2074. [Google Scholar] [CrossRef] [Green Version]
- Romano, D.; Matteucci, F.; Zhang, Z.Y.; Ivison, R.J.; Ventura, P. The evolution of CNO isotopes: The impact of massive stellar rotators. Mon. Not. R. Astron. Soc. 2019, 490, 2838–2854. [Google Scholar] [CrossRef] [Green Version]
- Menon, A.; Herwig, F.; Denissenkov, P.A.; Clayton, G.C.; Staff, J.; Pignatari, M.; Paxton, B. Reproducing the Observed Abundances in RCB and HdC Stars with Post-double-degenerate Merger Models—Constraints on Merger and Post-merger Simulations and Physics Processes. Astrophys. J. 2013, 772, 59. [Google Scholar] [CrossRef] [Green Version]
- Munson, B.; Chatzopoulos, E.; Frank, J.; Clayton, G.C.; Crawford, C.L.; Denissenkov, P.A.; Herwig, F. R Coronae Borealis Star Evolution: Simulating 3D Merger Events to 1D Stellar Evolution Including Large-scale Nucleosynthesis. Astrophys. J. 2021, 911, 103. [Google Scholar] [CrossRef]
- Hillebrandt, W.; Kromer, M.; Röpke, F.K.; Ruiter, A.J. Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Front. Phys. 2013, 8, 116–143. [Google Scholar] [CrossRef]
- Kobayashi, C.; Leung, S.C.; Nomoto, K. New Type Ia Supernova Yields and the Manganese and Nickel Problems in the Milky Way and Dwarf Spheroidal Galaxies. Astrophys. J. 2020, 895, 138. [Google Scholar] [CrossRef]
- Lach, F.; Röpke, F.K.; Seitenzahl, I.R.; Coté, B.; Gronow, S.; Ruiter, A.J. Nucleosynthesis imprints from different Type Ia supernova explosion scenarios and implications for galactic chemical evolution. Astron. Astrophys. 2020, 644, A118. [Google Scholar] [CrossRef]
- Gronow, S.; Côté, B.; Lach, F.; Seitenzahl, I.R.; Collins, C.E.; Sim, S.A.; Röpke, F.K. Metallicity-dependent nucleosynthetic yields of Type Ia supernovae originating from double detonations of sub-MCh white dwarfs. Astron. Astrophys. 2021, 656, A94. [Google Scholar] [CrossRef]
- Palmerini, S.; La Cognata, M.; Cristallo, S.; Busso, M. Deep Mixing in Evolved Stars. I. The Effect of Reaction Rate Revisions from C to Al. Astrophys. J. 2011, 729, 3. [Google Scholar] [CrossRef] [Green Version]
- Doherty, C.L.; Gil-Pons, P.; Lau, H.H.B.; Lattanzio, J.C.; Siess, L. Super and massive AGB stars-II. Nucleosynthesis and yields-Z = 0.02, 0.008 and 0.004. Mon. Not. R. Astron. Soc. 2014, 437, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; Karakas, A.I.; Dell’Agli, F.; Boyer, M.L.; García-Hernández, D.A.; Di Criscienzo, M.; Schneider, R. The Large Magellanic Cloud as a laboratory for hot bottom burning in massive asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2015, 450, 3181–3190. [Google Scholar] [CrossRef] [Green Version]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process. Astrophys. J. 1998, 497, 388. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Lambert, D.L.; Travaglio, C.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances. Astrophys. J. 2001, 557, 802–821. [Google Scholar] [CrossRef] [Green Version]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–194. [Google Scholar] [CrossRef] [Green Version]
- The, L.; El Eid, M.F.; Meyer, B.S. s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars. Astrophys. J. 2007, 655, 1058–1078. [Google Scholar] [CrossRef] [Green Version]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weak s-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Travaglio, C.; Gallino, R.; Arnone, E.; Cowan, J.; Jordan, F.; Sneden, C. Galactic Evolution of Sr, Y, And Zr: A Multiplicity of Nucleosynthetic Processes. Astrophys. J. 2004, 601, 864–884. [Google Scholar] [CrossRef] [Green Version]
- Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure. Astrophys. J. 2014, 787, 10. [Google Scholar] [CrossRef] [Green Version]
- Straniero, O.; Gallino, R.; Busso, M.; Chiefei, A.; Raiteri, C.M.; Limongi, M.; Salaris, M. Radiative C-13 burning in asymptotic giant branch stars and s-processing. ApJ Lett. 1995, 440, L85–L87. [Google Scholar] [CrossRef]
- Herwig, F. The evolution of AGB stars with convective overshoot. Astron. Astrophys. 2000, 360, 952–968. [Google Scholar]
- Goriely, S.; Mowlavi, N. Neutron-capture nucleosynthesis in AGB stars. Astron. Astrophys. 2000, 362, 599–614. [Google Scholar]
- Karakas, A.I.; Lattanzio, J.C.; Pols, O.R. Parameterising the Third Dredge-up in Asymptotic Giant Branch Stars. Publ. Astron. Soc. Aust. 2002, 19, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Gallino, R.; Straniero, O. Self-consistent 13C pocket in low mass AGB stars and related nucleosynthesis. Mem. Della Soc. Astron. Ital. 2004, 75, 174. [Google Scholar]
- Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J.W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; et al. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis. Astrophys. J. 2016, 827, 30. [Google Scholar] [CrossRef]
- Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M.C. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing. Astrophys. J. 2016, 818, 125. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Rose, W.K. Production of C-14 and neutrons in red giants. Astrophys. J. 1977, 212, 149–158. [Google Scholar] [CrossRef]
- Jones, S.; Ritter, C.; Herwig, F.; Fryer, C.; Pignatari, M.; Bertolli, M.G.; Paxton, B. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon. Not. R. Astron. Soc. 2016, 455, 3848–3863. [Google Scholar] [CrossRef] [Green Version]
- Abia, C.; Domínguez, I.; Gallino, R.; Busso, M.; Masera, S.; Straniero, O.; de Laverny, P.; Plez, B.; Isern, J. s-Process Nucleosynthesis in Carbon Stars. Astrophys. J. 2002, 579, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Zamora, O.; Abia, C.; Plez, B.; Domínguez, I.; Cristallo, S. The chemical composition of carbon stars. The R-type stars. Astron. Astrophys. 2009, 508, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Sterling, N.C.; Dinerstein, H.L. The Abundances of Light Neutron-Capture Elements in Planetary Nebulae. II. s-Process Enrichments and Interpretation. Astrophys. J. Suppl. Ser. 2008, 174, 158–201. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; van Raai, M.A.; Lugaro, M.; Sterling, N.C.; Dinerstein, H.L. Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae. Astrophys. J. 2009, 690, 1130–1144. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A.I.; Manick, R. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb). Astron. Astrophys. 2016, 587, A6. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Herwig, F.; Lattanzio, J.C.; Gallino, R.; Straniero, O. s-Process Nucleosynthesis in Asymptotic Giant Branch Stars: A Test for Stellar Evolution. Astrophys. J. 2003, 586, 1305–1319. [Google Scholar] [CrossRef] [Green Version]
- Barzyk, J.G.; Savina, M.R.; Davis, A.M.; Gallino, R.; Gyngard, F.; Amari, S.; Zinner, E.; Pellin, M.J.; Lewis, R.S.; Clayton, R.N. Constraining the 13C neutron source in AGB stars through isotopic analysis of trace elements in presolar SiC. Meteorit. Planet. Sci. 2007, 42, 1103–1119. [Google Scholar] [CrossRef]
- Zinner, E. Presolar Grains. Treatise Geochem. 2014, 1, 181–213. [Google Scholar] [CrossRef]
- Liu, N.; Gallino, R.; Bisterzo, S.; Davis, A.M.; Savina, M.R.; Pellin, M.J. The 13C-Pocket Structure in AGB Models: Constraints from Zirconium Isotope Abundances in Single Mainstream SiC Grains. Astrophys. J. 2014, 788, 163. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Savina, M.R.; Gallino, R.; Davis, A.M.; Bisterzo, S.; Gyngard, F.; Käppeler, F.; Cristallo, S.; Dauphas, N.; Pellin, M.J.; et al. Correlated Strontium and Barium Isotopic Compositions of Acid-cleaned Single Mainstream Silicon Carbides from Murchison. Astrophys. J. 2015, 803, 12. [Google Scholar] [CrossRef] [Green Version]
- Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F.X.; Ritter, C.; Heger, A.; Jones, S.; et al. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01. Astrophys. J. Suppl. Ser. 2016, 225, 24. [Google Scholar] [CrossRef]
- Ritter, C.; Herwig, F.; Jones, S.; Pignatari, M.; Fryer, C.; Hirschi, R. NuGrid stellar data set-II. Stellar yields from H to Bi for stellar models with MZAMS = 1–25 M⊙ and Z = 0.0001–0.02. Mon. Not. R. Astron. Soc. 2018, 480, 538–571. [Google Scholar] [CrossRef] [Green Version]
- Battino, U.; Tattersall, A.; Lederer-Woods, C.; Herwig, F.; Denissenkov, P.; Hirschi, R.; Trappitsch, R.; den Hartogh, J.W.; Pignatari, M.; NuGrid Collaboration. NuGrid stellar data set-III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03. Mon. Not. R. Astron. Soc. 2019, 489, 1082–1098. [Google Scholar] [CrossRef]
- Denissenkov, P.A.; Herwig, F. The abundnace evolution of oxygen, sodium and magnesium in extremely metal-poor intermediate mass stars: Implications for the self-pollution scenario in globular clusters. ApJ Lett. 2003, 590, L99–L102. [Google Scholar] [CrossRef]
- Battino, U.; Lederer-Woods, C.; Cseh, B.; Denissenkov, P.; Herwig, F. Mixing Uncertainties in Low-Metallicity AGB Stars: The Impact on Stellar Structure and Nucleosynthesis. Universe 2021, 7, 25. [Google Scholar] [CrossRef]
- Cristallo, S.; Abia, C.; Straniero, O.; Piersanti, L. On the need of the Light Elements Primary Process (LEPP). Astrophys. J. 2015, 801, 53. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F.; Freytag, B.; Fuchs, T.; Hansen, J.P.; Hueckstaedt, R.M.; Porter, D.H.; Timmes, F.X.; Woodward, P.R. Convective and Non-Convective Mixing in AGB Stars. In Why Galaxies Care About AGB Stars: Their Importance as Actors and Probes; Astronomical Society of the Pacific Conference, Series; Kerschbaum, F., Charbonnel, C., Wing, R.F., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 378, p. 43. [Google Scholar]
- Paxton, B.; Bildsten, L.; Timmes, F.; Nelson, L.; Lesaffre, P.; Herwig, F.; Dotter, A.; VandenBerg, D.; Sigurson, S.; Hirschi, R.; et al. MESA: Modules for Experiments in Stellar Astrophysics. 2010. Available online: http://mesa.sourceforge.net (accessed on 1 March 2022).
- Grevesse, N.; Noels, A. Cosmic abundances of the elements. In Origin and Evolution of the Elements; Prantzos, N., Vangioni-Flam, E., Casse, M., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 15–25. [Google Scholar]
- Heil, M.; Winckler, N.; Dababneh, S.; Käppeler, F.; Wisshak, K.; Bisterzo, S.; Gallino, R.; Davis, A.M.; Rauscher, T. 176Lu/176Hf: A Sensitive Test of s-Process Temperature and Neutron Density in AGB Stars. Astrophys. J. 2008, 673, 434–444. [Google Scholar] [CrossRef]
- Jaeger, M.; Kunz, R.; Mayer, A.; Hammer, J.W.; Staudt, G.; Kratz, K.L.; Pfeiffer, B. 22Ne(α,n)25Mg: The Key Neutron Source in Massive Stars. Phys. Rev. Lett. 2001, 87, 202501. [Google Scholar] [CrossRef] [PubMed]
- Angulo, C.; Arnould, M.; Rayet, M.; Descouvemont, P.; Baye, D.; Leclercq-Willain, C.; Coc, A.; Barhoumi, S.; Aguer, P.; Rolfs, C.; et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 1999, 656, 3–183. [Google Scholar] [CrossRef]
- Adsley, P.; Battino, U.; Best, A.; Caciolli, A.; Guglielmetti, A.; Imbriani, G.; Jayatissa, H.; La Cognata, M.; Lamia, L.; Masha, E.; et al. Reevaluation of the 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg reaction rates. Phys. Rev. C 2021, 103, 015805. [Google Scholar] [CrossRef]
- Dillmann, I.; Heil, M.; Käppeler, F.; Plag, R.; Rauscher, T.; Thielemann, F.K. KADoNiS- The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars. AIP Conf. Proc. 2006, 819, 123–127. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Amthor, A.M.; Ferguson, R.; Meisel, Z.; Smith, K.; Warren, S.; Heger, A.; Hoffman, R.D.; Rauscher, T.; Sakharuk, A.; et al. The JINA REACLIB Database: Its Recent Updates and Impact on Type-I X-ray Bursts. Astrophys. J. Suppl. Ser. 2010, 189, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Oda, T.; Hino, M.; Muto, K.; Takahara, M.; Sato, K. Rate Tables for the Weak Processes of sd-Shell Nuclei in Stellar Matter. At. Data Nucl. Data Tables 1994, 56, 231. [Google Scholar] [CrossRef]
- Fuller, G.M.; Fowler, W.A.; Newman, M.J. Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values. Astrophys. J. 1985, 293, 1–16. [Google Scholar] [CrossRef]
- Langanke, K.; Martínez-Pinedo, G. Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range /A = 45-65 in supernovae environments. Nucl. Phys. A 2000, 673, 481–508. [Google Scholar] [CrossRef] [Green Version]
- Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K. BRUSLIB and NETGEN: The Brussels nuclear reaction rate library and nuclear network generator for astrophysics. Astron. Astrophys. 2005, 441, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Sackmann, I.J.; Boothroyd, A.I. The Creation of Superrich Lithium Giants. Astrophys. J. 1992, 392, L71. [Google Scholar] [CrossRef]
- Lattanzio, J.; Frost, C.; Cannon, R.; Wood, P. Hot bottom burning in intermediate mass stars. Mem. Della Soc. Astron. Ital. 1996, 67, 729. [Google Scholar]
- Doherty, C.L.; Siess, L.; Lattanzio, J.C.; Gil-Pons, P. Super asymptotic giant branch stars. I-Evolution code comparison. Mon. Not. R. Astron. Soc. 2010, 401, 1453–1464. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.G.W.; Fowler, W.A. Lithium and the s-PROCESS in Red-Giant Stars. Astrophys. J. 1971, 164, 111. [Google Scholar] [CrossRef]
- Cseh, B.; Lugaro, M.; D’Orazi, V.; de Castro, D.B.; Pereira, C.B.; Karakas, A.I.; Molnár, L.; Plachy, E.; Szabó, R.; Pignatari, M.; et al. The s process in AGB stars as constrained by a large sample of barium stars. Astron. Astrophys. 2018, 620, A146. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.B.; Drake, N.A. High-resolution spectroscopic observations of two chemically peculiar metal-poor stars: HD 10613 and BD+04°2466. Astron. Astrophys. 2009, 496, 791–804. [Google Scholar] [CrossRef]
Z | M/M | Reference | Notes |
---|---|---|---|
0.03 | 2, 3 | [49] | Repostprocessed with Ne+ from [59] |
0.02 | 1, 1.65 | [48] | - |
0.02 | 2, 3 | [49] | Repostprocessed with Ne+ from [59] |
0.02 | 4, 5, 6, 7 | [48] | - |
0.01 | 1, 1.65 | [48] | - |
0.01 | 2, 3 | [49] | Repostprocessed with Ne+ from [59] |
0.01 | 4, 5, 6, 7 | [48] | - |
0.001 | 1, 1.65 | [48] | - |
0.001 | 2, 3 | [51] | Ne+ from [59] |
0.001 | 4, 5, 6, 7 | [48] | - |
0.0001 | 1, 1.65, 4, 5, 6, 7 | [48] | - |
Isotope | Z = 0.03 | Z = 0.02 | Z = 0.01 | Z = 0.001 |
---|---|---|---|---|
C 12 | 4.126 × 10 | 3.728 × 10 | 3.083 × 10 | 4.481 × 10 |
C 13 | 3.071 × 10 | 2.227 × 10 | 1.104 × 10 | 4.974 × 10 |
N 14 | 9.125 × 10 | 7.024 × 10 | 3.740 × 10 | 7.028 × 10 |
O 16 | 4.246 × 10 | 3.414 × 10 | 2.354 × 10 | 1.969 × 10 |
F 19 | 6.240 × 10 | 4.595 × 10 | 2.762 × 10 | 8.850 × 10 |
Ne 20 | 5.733 × 10 | 4.221 × 10 | 2.128 × 10 | 1.229 × 10 |
Ne 22 | 5.027 × 10 | 3.480 × 10 | 1.929 × 10 | 1.571 × 10 |
Na 23 | 2.517 × 10 | 1.718 × 10 | 8.325 × 10 | 2.319 × 10 |
Mg 24 | 1.844 × 10 | 1.352 × 10 | 6.738 × 10 | 3.222 × 10 |
Mg 25 | 3.039 × 10 | 2.407 × 10 | 1.252 × 10 | 2.289 × 10 |
Mg 26 | 3.699 × 10 | 2.838 × 10 | 1.553 × 10 | 3.554 × 10 |
Al 26 | 4.262 × 10 | 1.182 × 10 | 7.119 × 10 | 2.598 × 10 |
Al 27 | 2.076 × 10 | 1.523 × 10 | 7.712 × 10 | 1.714 × 10 |
Fe 56 | 4.118 × 10 | 3.019 × 10 | 1.503 × 10 | 2.759 × 10 |
Rb 87 | 2.372 × 10 | 2.166 × 10 | 9.925 × 10 | 5.467 × 10 |
Sr 88 | 5.785 × 10 | 4.263 × 10 | 1.402 × 10 | 5.333 × 10 |
Y 89 | 1.479 × 10 | 1.150 × 10 | 3.771 × 10 | 1.540 × 10 |
Zr 90 | 1.622 × 10 | 1.272 × 10 | 4.202 × 10 | 1.652 × 10 |
Zr 96 | 3.767 × 10 | 3.968 × 10 | 1.871 × 10 | 8.409 × 10 |
Ba 138 | 1.505 × 10 | 2.570 × 10 | 1.310 × 10 | 6.036 × 10 |
Pb 208 | 3.108 × 10 | 3.635 × 10 | 1.043 × 10 | 9.500 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battino, U.; Pignatari, M.; Tattersall, A.; Denissenkov, P.; Herwig, F. The NuGrid AGB Evolution and Nucleosynthesis Data Set. Universe 2022, 8, 170. https://doi.org/10.3390/universe8030170
Battino U, Pignatari M, Tattersall A, Denissenkov P, Herwig F. The NuGrid AGB Evolution and Nucleosynthesis Data Set. Universe. 2022; 8(3):170. https://doi.org/10.3390/universe8030170
Chicago/Turabian StyleBattino, Umberto, Marco Pignatari, Ashley Tattersall, Pavel Denissenkov, and Falk Herwig. 2022. "The NuGrid AGB Evolution and Nucleosynthesis Data Set" Universe 8, no. 3: 170. https://doi.org/10.3390/universe8030170
APA StyleBattino, U., Pignatari, M., Tattersall, A., Denissenkov, P., & Herwig, F. (2022). The NuGrid AGB Evolution and Nucleosynthesis Data Set. Universe, 8(3), 170. https://doi.org/10.3390/universe8030170