Are Quantum-Classical Hybrids Compatible with Ontological Cellular Automata?
Abstract
:1. Introduction
1.1. Quantum-Classical Hybrids—A Reminder
1.2. Cellular Automaton Interpretation of QM in a Nutshell
2. Permutations of Ontological States
3. Ising Spin Chains
3.1. Extracting the Spin-Exchange Hamiltonian
3.2. Remarks
4. Inconsistency of Quantum-Classical Hybrids in CAI
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
1 | |
2 |
References
- ’t Hooft, G. The Cellular Automaton Interpretation of Quantum Mechanics; Fundamental Theories of Physics; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Volume 185. [Google Scholar]
- ’t Hooft, G. Deterministic Quantum Mechanics: The Mathematical Equations. Front. Phys. 2020, 8, 253. [Google Scholar] [CrossRef]
- ’t Hooft, G. Fast Vacuum Fluctuations and the Emergence of Quantum Mechanics. Found. Phys. 2021, 51, 63. [Google Scholar] [CrossRef]
- Elze, H.-T. Qubit exchange interactions from permutations of classical bits. Int. J. Quant. Info. (IJQI) 2019, 17, 1941003. [Google Scholar] [CrossRef]
- Elze, H.-T. A Baker-Campbell-Hausdorff formula for the logarithm of permutations. Int. J. Geom. Meth. Mod. Phys. (IJGMMP) 2020, 17, 2050052. [Google Scholar] [CrossRef]
- Elze, H.-T. Are quantum spins but small perturbations of ontological Ising spins? Found. Phys. 2020, 50, 1875–1893. [Google Scholar] [CrossRef]
- Elze, H.-T. Linear dynamics of quantum-classical hybrids. Phys. Rev. A 2012, 85, 052109. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. The Principles of Quantum Mechanics, 3rd ed.; Oxford University Press: Oxford, UK, 1947. [Google Scholar]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Born, M.; Oppenheimer, J.R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457. (In German) [Google Scholar] [CrossRef]
- Sherry, T.N.; Sudarshan, E.C.G. Interaction between classical and quantum systems: A new approach to quantum measurement. I. Phys. Rev. D 1978, 18, 4580. [Google Scholar] [CrossRef]
- Sherry, T.N.; Sudarshan, E.C.G. Interaction between classical and quantum systems: A new approach to quantum measurement. II. Theoretical considerations. Phys. Rev. D 1979, 20, 857. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Understanding quantum measurement from the solution of dynamical models. Phys. Rep. 2013, 525, 1–666. [Google Scholar] [CrossRef] [Green Version]
- Konishi, K. Quantum fluctuations, particles, entanglement and measurements. arXiv 2021, arXiv:2111.14723. [Google Scholar]
- Lampo, A.; Fratino, L.; Elze, H.-T. Mirror-induced decoherence in hybrid quantum-classical theory. Phys. Rev. A 2014, 90, 042120. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.L.; Verdaguer, E. Stochastic Gravity: Theory and Applications. Living Rev. Relat. 2008, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Bassi, A.; Grossardt, A.; Ulbricht, H. Gravitational Decoherence. Class. Quant. Grav. 2017, 34, 193002. [Google Scholar] [CrossRef]
- Asprea, L.; Bassi, A.; Ulbricht, H.; Gasbarri, G. On the decoherence effect of a stochastic gravitational perturbation on scalar matter and the possibility of its interferometric detection. Phys. Rev. Lett. 2021, 126, 200403. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V. When can gravity path-entangle two spatially superposed masses? Phys. Rev. D 2018, 98, 046001. [Google Scholar] [CrossRef] [Green Version]
- Heslot, A. Quantum mechanics as a classical theory. Phys. Rev. D 1985, 31, 1341. [Google Scholar] [CrossRef]
- Salcedo, L.L. Absence of classical and quantum mixing. Phys. Rev. A 1996, 54, 3657. [Google Scholar] [CrossRef] [Green Version]
- Elze, H.-T. Four questions for quantum-classical hybrid theory. J. Phys. Conf. Ser. 2012, 361, 012004. [Google Scholar] [CrossRef]
- Diósi, L. Classical-Quantum Coexistence: A ‘Free Will’ Test. J. Phys. Conf. Ser. 2012, 361, 012028. [Google Scholar] [CrossRef] [Green Version]
- Diósi, L. Hybrid Quantum-Classical Master Equations. Phys. Scr. 2014, 163, 014004. [Google Scholar] [CrossRef] [Green Version]
- Elze, H.-T.; Schipper, O. Time without time: A stochastic clock model. Phys. Rev. D 2002, 66, 044020. [Google Scholar] [CrossRef] [Green Version]
- Elze, H.-T. Emergent discrete time and quantization: Relativistic particle with extradimensions. Phys. Lett. A 2003, 310, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Elze, H.-T. Action principle for cellular automata and the linearity of quantum mechanics. Phys. Rev. A 2014, 89, 012111. [Google Scholar] [CrossRef] [Green Version]
- Margolus, N. Mechanical systems that are both classical and quantum. arXiv 2008, arXiv:0805.3357v2. [Google Scholar]
- Haba, Z.; Kleinert, H. Towards a simulation of quantum computers by classical systems. Phys. Lett. A 2002, 294, 139. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Generalizations of quantum mechanics induced by classical statistical field theory. Found. Phys. Lett. 2005, 18, 637–650. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Scardigli, F.; Vitiello, G. Dissipation and quantization for composite systems. Phys. Lett. A 2009, 373, 4106–4112. [Google Scholar] [CrossRef]
- Sakellariadou, M.; Stabile, A.; Vitiello, G. Noncommutative spectral geometry, algebra doubling and the seeds of quantization. Phys. Rev. D 2011, 84, 045026. [Google Scholar] [CrossRef] [Green Version]
- Acosta, D.; Fernandez de Cordoba, P.; Isidro, J.M.; Santander, J.L.G. An entropic picture of emergent quantum mechanics. Int. J. Geom. Meth. Mod. Phys. 2012, 9, 1250048. [Google Scholar] [CrossRef]
- Bisio, A.; D’Ariano, G.M.; Tosini, A. Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension. Ann. Phys. 2015, 354, 244–264. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Quantum mechanics from classical statistics. Ann. Phys. 2010, 325, 852–898. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Probabilistic cellular automata for interacting fermionic quantum field theories. Nucl. Phys. B 2021, 963, 115296. [Google Scholar] [CrossRef]
- Rovelli, C. An argument against the realistic interpretation of the wave function. Found. Phys. 2016, 46, 1229–1237. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, L. Bell’s Theorem: Two Neglected Solutions. Found. Phys. 2013, 43, 769–791. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, L. Probability theory as a physical theory points to superdeterminism. Entropy 2019, 21, 848. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, V.; Vervoort, L. Aspects of Superdeterminism Made Intuitive. 2022; Submitted for publication. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elze, H.-T. Are Quantum-Classical Hybrids Compatible with Ontological Cellular Automata? Universe 2022, 8, 207. https://doi.org/10.3390/universe8040207
Elze H-T. Are Quantum-Classical Hybrids Compatible with Ontological Cellular Automata? Universe. 2022; 8(4):207. https://doi.org/10.3390/universe8040207
Chicago/Turabian StyleElze, Hans-Thomas. 2022. "Are Quantum-Classical Hybrids Compatible with Ontological Cellular Automata?" Universe 8, no. 4: 207. https://doi.org/10.3390/universe8040207
APA StyleElze, H. -T. (2022). Are Quantum-Classical Hybrids Compatible with Ontological Cellular Automata? Universe, 8(4), 207. https://doi.org/10.3390/universe8040207