Tidal Quality of the Hot Jupiter WASP-12b
Abstract
:1. Introduction
2. Classification of the Star
3. Tidal Parameters of the WASP-12 System
3.1. Tidal Dissipation in the Star
3.2. Tidal Dissipation in the Planet
4. Tidal Rate of the Semimajor Axis
5. The Rate of the Orbital Period
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | We remind that the tidal modes in a perturbed body are given by [29]:
|
2 | |
3 | Several studies advocate models alternative to that containing a solid core. Recent Juno observations [38] indicate that the heavy elements are likely to be distributed throughout a large portion of the interior (possibly, out to 0.5 to 0.6 of the planetary radius), and a core considered in the old interior model may not exist. Other mechanisms capable of producing high dissipation are gravity waves in stably-stratified layers of the planet [39,40], and inertial waves in the convective envelope [37]. The idea of resonance locking of these two types of modes has also been proposed [39]. |
4 | An additional argument in favour of the universality of Jupiters’ structure comes from the recent observations of the close-in Jupiter WASP-103b whose quadrupole Love number turned out to be close to that of our Jupiter [41]. |
5 | |
6 | We used and . |
7 | We used: and . |
References
- Hebb, L.; Collier-Cameron, A.; Loeillet, B.; Pollacco, D.; Hébrard, G.; Street, R.A.; Bouchy, F.; Stempels, H.C.; Moutou, C.; Simpson, E.; et al. WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered. Astrophys. J. 2009, 693, 1920–1928. [Google Scholar] [CrossRef]
- Hebb, L.; Collier-Cameron, A.; Triaud, A.H.M.J.; Lister, T.A.; Smalley, B.; Maxted, P.F.L.; Hellier, C.; Anderson, D.R.; Pollacco, D.; Gillon, M.; et al. WASP-19b: The Shortest Period Transiting Exoplanet Yet Discovered. Astrophys. J. 2010, 708, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Patra, K.C.; Winn, J.N.; Holman, M.J.; Yu, L.; Deming, D.; Dai, F. The Apparently Decaying Orbit of WASP-12b. Astron. J. 2017, 154, 4. [Google Scholar] [CrossRef]
- Maciejewski, G.; Dimitrov, D.; Fernández, M.; Sota, A.; Nowak, G.; Ohlert, J.; Nikolov, G.; Bukowiecki, Ł.; Hinse, T.C.; Pallé, E.; et al. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12. Astron. Astrophys. 2016, 588, L6. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Ridden-Harper, A.; Jayawardhana, R. Decaying Orbit of the Hot Jupiter WASP-12b: Confirmation with TESS Observations. Astron. J. 2021, 161, 72. [Google Scholar] [CrossRef]
- Bailey, A.; Goodman, J. Understanding WASP-12b. Mon. Not. R. Astron. Soc. 2018, 482, 1872–1882. [Google Scholar] [CrossRef]
- Yee, S.W.; Winn, J.N.; Knutson, H.A.; Patra, K.C.; Vissapragada, S.; Zhang, M.M.; Holman, M.J.; Shporer, A.; Wright, J.T. The Orbit of WASP-12b Is Decaying. Astrophys. J. Lett. 2020, 888, L5. [Google Scholar] [CrossRef]
- Millholland, S.; Laughlin, G. Obliquity Tides May Drive WASP-12b’s Rapid Orbital Decay. Astrophys. J. Lett. 2018, 869, L15. [Google Scholar] [CrossRef]
- Ibgui, L.; Burrows, A.; Spiegel, D.S. Tidal Heating Models for the Radii of the Inflated Transiting Giant Planets WASP-4b, WASP-6b, WASP-12b, WASP-15b, and TrES-4. Astrophys. J. 2010, 713, 751–763. [Google Scholar] [CrossRef]
- Croll, B.; Lafreniere, D.; Albert, L.; Jayawardhana, R.; Fortney, J.J.; Murray, N. Near-infrared Thermal Emission from WASP-12b: Detections of the Secondary Eclipse in Ks, H, and J. Astron. J. 2011, 141, 30. [Google Scholar] [CrossRef] [Green Version]
- Campo, C.J.; Harrington, J.; Hardy, R.A.; Stevenson, K.B.; Nymeyer, S.; Ragozzine, D.; Lust, N.B.; Anderson, D.R.; Collier-Cameron, A.; Blecic, J.; et al. On the Orbit of Exoplanet WASP-12b. Astrophys. J. 2011, 727, 125. [Google Scholar] [CrossRef] [Green Version]
- Husnoo, N.; Pont, F.; Hébrard, G.; Simpson, E.; Mazeh, T.; Bouchy, F.; Moutou, C.; Arnold, L.; Boisse, I.; Díaz, R.F.; et al. Orbital eccentricity of WASP-12 and WASP-14 from new radial velocity monitoring with SOPHIE. Mon. Not. R. Astron. Soc. 2011, 413, 2500–2508. [Google Scholar] [CrossRef] [Green Version]
- Bergfors, C.; Brandner, W.; Daemgen, S.; Biller, B.; Hippler, S.; Janson, M.; Kudryavtseva, N.; Geißler, K.; Henning, T.; Köhler, R. Stellar companions to exoplanet host stars: Lucky Imaging of transiting planet hosts. Mon. Not. R. Astron. Soc. 2013, 428, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Crossfield, I.J.M.; Barman, T.; Hansen, B.M.S.; Tanaka, I.; Kodama, T. Re-evaluating WASP-12b: Strong Emission at 2.315 μm, Deeper Occultations, and an Isothermal Atmosphere. Astrophys. J. 2012, 760, 140. [Google Scholar] [CrossRef] [Green Version]
- Bechter, E.B.; Crepp, J.R.; Ngo, H.; Knutson, H.A.; Batygin, K.; Hinkley, S.; Muirhead, P.S.; Johnson, J.A.; Howard, A.W.; Montet, B.T.; et al. WASP-12b and HAT-P-8b are Members of Triple Star Systems. Astrophys. J. 2014, 788, 2. [Google Scholar] [CrossRef] [Green Version]
- Hamers, A.S.; Lai, D. Secular chaotic dynamics in hierarchical quadruple systems, with applications to hot Jupiters in stellar binaries and triples. Mon. Not. R. Astron. Soc. 2017, 470, 1657–1672. [Google Scholar] [CrossRef] [Green Version]
- Hamers, A.S. On the formation of hot and warm Jupiters via secular high-eccentricity migration in stellar triples. Mon. Not. R. Astron. Soc. 2017, 466, 4107–4120. [Google Scholar] [CrossRef] [Green Version]
- Chernov, S.V.; Ivanov, P.B.; Papaloizou, J.C.B. Dynamical tides in exoplanetary systems containing hot Jupiters: Confronting theory and observations. Mon. Not. R. Astron. Soc. 2017, 470, 2054–2068. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, N.N.; Sun, M.; Arras, P.; Essick, R. Tidal Dissipation in WASP-12. Astrophys. J. Lett. 2017, 849, L11. [Google Scholar] [CrossRef] [Green Version]
- Prusti, T.; De Bruijne, J.H.J.; Brown, A.G.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. The Gaia Mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.G.; Vallenari, A.; Prusti, T.; De Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; Hutton, A.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Bressan, A.; Marigo, P.; Girardi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Bressan, A.; Rosenfield, P.; Slemer, A.; Marigo, P.; Girardi, L.; Bianchi, L. New PARSEC evolutionary tracks of massive stars at low metallicity: Testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astron. Soc. 2014, 445, 4287–4305. [Google Scholar] [CrossRef]
- Gontcharov, G.A.; Mosenkov, A.V. Verifying reddening and extinction for Gaia DR1 TGAS giants. Mon. Not. R. Astron. Soc. 2018, 475, 1121–1130. [Google Scholar] [CrossRef]
- Soubiran, C.; Le Campion, J.F.; Brouillet, N.; Chemin, L. The PASTEL catalogue: 2016 version. Astron. Astrophys. 2016, 591, A118. [Google Scholar] [CrossRef] [Green Version]
- Torres, G.; Fischer, D.A.; Sozzetti, A.; Buchhave, L.A.; Winn, J.N.; Holman, M.J.; Carter, J.A. Improved Spectroscopic Parameters for Transiting Planet Hosts. Astrophys. J. 2012, 757, 161. [Google Scholar] [CrossRef] [Green Version]
- Smart, R.L.; Sarro, L.M.; Rybizki, J.; Reyle, C.; Robin, A.C.; Hambly, N.C.; Abbas, U.; Barstow, M.A.; De Bruijne, J.H.J.; Bucciarelli, B.; et al. Gaia Early Data Release 3-The Gaia Catalogue of Nearby Stars. Astron. Astrophys. 2021, 649, A6. [Google Scholar] [CrossRef]
- Southworth, J. Homogeneous studies of transiting extrasolar planets–V. New results for 38 planets. Mon. Not. R. Astron. Soc. 2012, 426, 1291–1323. [Google Scholar] [CrossRef] [Green Version]
- Efroimsky, M.; Makarov, V.V. Tidal Friction and Tidal Lagging. Applicability Limitations of a Popular Formula for the Tidal Torque. Astrophys. J. 2013, 764, 26. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.V.; Berghea, C.T.; Efroimsky, M. Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System. Astrophys. J. 2018, 857, 142. [Google Scholar] [CrossRef]
- Barker, A.J. Tidal dissipation in evolving low-mass and solar-type stars with predictions for planetary orbital decay. Mon. Not. R. Astron. Soc. 2020, 498, 2270–2294. [Google Scholar] [CrossRef]
- Ivanov, P.B.; Papaloizou, J.C.B.; Chernov, S.V. A unified normal mode approach to dynamic tides and its application to rotating Sun-like stars. Mon. Not. R. Astron. Soc. 2013, 432, 2339–2365. [Google Scholar] [CrossRef] [Green Version]
- Lainey, V.; Arlot, J.E.; Karatekin, Ö.; van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 2009, 459, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Lainey, V.; Jacobson, R.A.; Tajeddine, R.; Cooper, N.J.; Murray, C.; Robert, V.; Tobie, G.; Guillot, T.; Mathis, S.; Remus, F.; et al. New constraints on Saturn’s interior from Cassini astrometric data. Icarus 2017, 281, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Remus, F.; Mathis, S.; Zahn, J.P.; Lainey, V. The surface signature of the tidal dissipation of the core in a two-layer planet. Astron. Astrophys. 2015, 573, A23. [Google Scholar] [CrossRef] [Green Version]
- Remus, F.; Mathis, S.; Zahn, J.P.; Lainey, V. Anelastic tidal dissipation in multi-layer planets. Astron. Astrophys. 2012, 541, A165. [Google Scholar] [CrossRef]
- Ogilvie, G.I.; Lin, D.N.C. Tidal Dissipation in Rotating Giant Planets. Astrophys. J. 2004, 610, 477–509. [Google Scholar] [CrossRef] [Green Version]
- Wahl, S.M.; Hubbard, W.B.; Militzer, B.; Guillot, T.; Miguel, Y.; Movshovitz, N.; Kaspi, Y.; Helled, R.; Reese, D.; Galanti, E.; et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 2017, 44, 4649–4659. [Google Scholar] [CrossRef]
- Fuller, J.; Luan, J.; Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 2016, 458, 3867–3879. [Google Scholar] [CrossRef] [Green Version]
- André, Q.; Mathis, S.; Barker, A.J. Layered semi-convection and tides in giant planet interiors-II. Tidal dissipation. Astron. Astrophys. 2019, 626, A82. [Google Scholar] [CrossRef]
- Barros, S.C.; Akinsanmi, B.; Boué, G.; Smith, A.M.S.; Laskar, J.; Ulmer-Moll, S.; Lillo-Box, J.; Queloz, D.; Cameron, A.C.; Sousa, S.G.; et al. Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS. Astron. Astrophys. 2022, 657, A52. [Google Scholar] [CrossRef]
- Ferraz-Mello, S.; Rodríguez, A.; Hussmann, H. Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited. Celest. Mech. Dyn. Astron. 2008, 101, 171–201. [Google Scholar] [CrossRef]
- Boué, G.; Efroimsky, M. Tidal evolution of the Keplerian elements. Celest. Mech. Dyn. Astron. 2019, 131, 30. [Google Scholar] [CrossRef] [Green Version]
- Maciejewski, G.; Niedzielski, A.; Villaver, E.; Konacki, M.; Pawłaszek, R.K. An Apparently Eccentric Orbit of the Exoplanet WASP-12 b as a Radial Velocity Signature of Planetary-induced Tides in the Host Star. Astrophys. J. 2020, 889, 54. [Google Scholar] [CrossRef]
- Arras, P.; Burkart, J.; Quataert, E.; Weinberg, N.N. The radial velocity signature of tides raised in stars hosting exoplanets. Mon. Not. R. Astron. Soc. 2012, 422, 1761–1766. [Google Scholar] [CrossRef] [Green Version]
- Dziembowski, W. Light and radial velocity variations in a nonradially oscillating star. Acta Astron. 1977, 27, 203–211. [Google Scholar]
- Cortés-Zuleta, P.; Rojo, P.; Wang, S.; Hinse, T.C.; Hoyer, S.; Sanhueza, B.; Correa-Amaro, P.; Albornoz, J. TraMoS. V. Updated ephemeris and multi-epoch monitoring of the hot Jupiters WASP-18Ab, WASP-19b, and WASP-77Ab. Astron. Astrophys. 2020, 636, A98. [Google Scholar] [CrossRef]
- Bunting, A.; Terquem, C. Tidally induced stellar oscillations: Converting modelled oscillations excited by hot Jupiters into observables. Mon. Not. R. Astron. Soc. 2021, 500, 2711–2731. [Google Scholar] [CrossRef]
- von Essen, C.; Stefansson, G.; Mallonn, M.; Pursimo, T.; Djupvik, A.A.; Mahadevan, S.; Kjeldsen, H.; Freudenthal, J.; Dreizler, S. First light of engineered diffusers at the Nordic Optical Telescope reveal time variability of the optical eclipse depth of WASP-12b. Astron. Astrophys. 2019, 628, A115. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.V.; Berghea, C.; Efroimsky, M. Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets: The Case of GJ 581d. Astrophys. J. 2012, 761, 83. [Google Scholar] [CrossRef]
- Makarov, V.V. Equilibrium Rotation of Semiliquid Exoplanets and Satellites. Astrophys. J. 2015, 810, 12. [Google Scholar] [CrossRef] [Green Version]
- Owens, N.; de Mooij, E.J.W.; Watson, C.A.; Hooton, M.J. Phase curve and variability analysis of WASP-12b using TESS photometry. Mon. Not. R. Astron. Soc. 2021, 503, L38–L46. [Google Scholar] [CrossRef]
- Nesvorný, D.; Kipping, D.; Terrell, D.; Hartman, J.; Bakos, G.Á.; Buchhave, L.A. KOI-142, The King of Transit Variations, is a Pair of Planets near the 2:1 Resonance. Astrophys. J. 2013, 777, 3. [Google Scholar] [CrossRef] [Green Version]
- Lissauer, J.J.; Ragozzine, D.; Fabrycky, D.C.; Steffen, J.H.; Ford, E.B.; Jenkins, J.M.; Shporer, A.; Holman, M.J.; Rowe, J.F.; Quintana, E.V.; et al. Architecture and Dynamics of Kepler’s Candidate Multiple Transiting Planet Systems. Astrophys. J. Suppl. 2011, 197, 8. [Google Scholar] [CrossRef] [Green Version]
- Grunblatt, S.K.; Huber, D.; Gaidos, E.; Hon, M.; Zinn, J.C.; Stello, D. Giant Planet Occurrence within 0.2 au of Low-luminosity Red Giant Branch Stars with K2. Astron. J. 2019, 158, 227. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efroimsky, M.; Makarov, V.V. Tidal Quality of the Hot Jupiter WASP-12b. Universe 2022, 8, 211. https://doi.org/10.3390/universe8040211
Efroimsky M, Makarov VV. Tidal Quality of the Hot Jupiter WASP-12b. Universe. 2022; 8(4):211. https://doi.org/10.3390/universe8040211
Chicago/Turabian StyleEfroimsky, Michael, and Valeri V. Makarov. 2022. "Tidal Quality of the Hot Jupiter WASP-12b" Universe 8, no. 4: 211. https://doi.org/10.3390/universe8040211
APA StyleEfroimsky, M., & Makarov, V. V. (2022). Tidal Quality of the Hot Jupiter WASP-12b. Universe, 8(4), 211. https://doi.org/10.3390/universe8040211