The Scale Invariant Vacuum Paradigm: Main Results and Current Progress
Abstract
:1. Motivation
1.1. Scale Invariance and Physical Reality
1.2. Einstein General Relativity (EGR) and Weyl Integrable Geometry (WIG)
2. Mathematical Framework
2.1. Weyl Integrable Geometry and Dirac Co-Calculus
2.1.1. Gauge Change and Derivatives within the EGR and WIG Context
2.1.2. Dirac Co-Calculus
2.2. Consequences of Going beyond the EGR
2.3. Scale Invariant Cosmology
2.3.1. The Einstein Equation for Weyl’s Geometry
2.3.2. The Scale Invariant Vacuum Gauge ( and )
3. Comparisons and Applications
3.1. Comparing the Scale Factor within CDM and SIV
3.2. Application to Scale-Invariant Dynamics of Galaxies
3.3. Growth of the Density Fluctuations within the SIV
3.4. SIV and the Inflation of the Early Universe
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gueorguiev, V.G.; Maeder, A. Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces. Symmetry 2021, 13, 379. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale invariance, horizons, and inflation. Mon. Not. R. Astronom. Soc. 2021, 504, 4005. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. The growth of the density fluctuations in the scale-invariant vacuum theory. Phys. Dark Univ. 2019, 25, 100315. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf spheroidals. Mon. Not. R. Astronom. Soc. 2019, 492, 2698. [Google Scholar] [CrossRef]
- Weyl, H. Raum, Zeit, Materie; Vorlesungen über Allgemeine Relativitätstheorie; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Carl, H. Brans Jordan-Brans-Dicke Theory. Scholarpedia 2014, 9, 31358. [Google Scholar]
- Faraoni, V.; Gunzig, E.; Nardone, P. Conformal transformations in classical gravitational theories and in cosmology. Fundam. Cosm. Phys. 1999, 20, 121–175. [Google Scholar]
- Xue, C.; Liu, J.P.; Li, Q.; Wu, J.F.; Yang, S.Q.; Liu, Q.; Shao, C.; Tu, L.; Hu, Z.; Luo, J. Precision measurement of the Newtonian gravitational constant. Natl. Sci. Rev. 2020, 7, 1803. [Google Scholar] [CrossRef] [PubMed]
- Dirac, P.A.M. Long Range Forces and Broken Symmetries. Proc. R. Soc. Lond. A 1973, 333, 403. [Google Scholar]
- Maeder, A.; Bouvier, P. Scale invariance, metrical connection and the motions of astronomical bodies. Astron. Astrophys. 1979, 73, 82–89. [Google Scholar]
- Bouvier, P.; Maeder, A. Consistency of Weyl’s Geometry as a Framework for Gravitation. Astrophys. Space Sci. 1978, 54, 497. [Google Scholar] [CrossRef]
- Canuto, V.; Adams, P.J.; Hsieh, S.-H.; Tsiang, E. Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 1977, 16, 1643. [Google Scholar] [CrossRef]
- Gueorguiev, V.; Maeder, A. Revisiting the Cosmological Constant Problem within Quantum Cosmology. Universe 2020, 5, 108. [Google Scholar] [CrossRef]
- Maeder, A. An Alternative to the LambdaCDM Model: The case of scale invariance. Astrophys. J. 2017, 834, 194. [Google Scholar] [CrossRef] [Green Version]
- Maeder, A.; Gueorguiev, V.G. The Scale-Invariant Vacuum (SIV) Theory: A Possible Origin of Dark Matter and Dark Energy. Universe 2020, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. Lectures on Inflationary Cosmology in Particle Physics and Cosmology. In Proceedings of the Ninth Lake Louise Winter Institute, Lake Louise, AB, Canada, 20–26 February 1994. [Google Scholar]
- Linde, A. Particle Physics and Inflationary Universe. Contemp. Concepts Phys. 2005, 5, 1–362. [Google Scholar]
- Weinberg, S. Cosmology; Oxford Univ. Press: Oxford, UK, 2008; p. 593. [Google Scholar]
- Maeder, A. Evolution of the early Universe in the scale invariant theory. arXiv 2019, arXiv:1902.10115. [Google Scholar]
- Skordis, C.; Złośnik, T. New Relativistic Theory for Modified Newtonian Dynamics. Phys. Rev. Lett. 2021, 127, 1302. [Google Scholar] [CrossRef] [PubMed]
- Skordis, C.; Mota, D.F.; Ferreira, P.G.; Boehm, C. Large Scale Structure in Bekenstein’s Theory of Relativistic Modified Newtonian Dynamics. Phys. Rev. Lett. 2006, 96, 11301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Co-Tensor Type | Mathematical Expression |
---|---|
co-scalar | , |
co-vector | , |
co-covector | . |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueorguiev, V.G.; Maeder, A. The Scale Invariant Vacuum Paradigm: Main Results and Current Progress. Universe 2022, 8, 213. https://doi.org/10.3390/universe8040213
Gueorguiev VG, Maeder A. The Scale Invariant Vacuum Paradigm: Main Results and Current Progress. Universe. 2022; 8(4):213. https://doi.org/10.3390/universe8040213
Chicago/Turabian StyleGueorguiev, Vesselin G., and Andre Maeder. 2022. "The Scale Invariant Vacuum Paradigm: Main Results and Current Progress" Universe 8, no. 4: 213. https://doi.org/10.3390/universe8040213
APA StyleGueorguiev, V. G., & Maeder, A. (2022). The Scale Invariant Vacuum Paradigm: Main Results and Current Progress. Universe, 8(4), 213. https://doi.org/10.3390/universe8040213