Does the GRB Duration Depend on Redshift?
Abstract
:1. Introduction
2. Duration versus Redshift Distribution Analyses
2.1. Comparison with the Whole Sample Redshifts
2.2. Comparison with the 421 Non-Short GRBs’ Redshifts
2.3. The Redshift vs. T90 Method
3. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | http://www.astro.caltech.edu/grbox/grbox.php (accessed on 19 February 2022). |
References
- Salvaterra, R.; Della Valle, M.; Campana, S.; Chincarini, G.; Covino, S.; D’Avanzo, P.; Fernández-Soto, A.; Guidorzi, C.; Mannucci, F.; Margutti, R.; et al. GRB090423 at a redshift of z ~ 8.1. Nature 2009, 461, 1258–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanvir, N.R.; Fox, D.B.; Levan, A.J.; Berger, E.; Wiersema, K.; Fynbo, J.P.U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J.S.; et al. A γ-ray burst at a redshift of z ~ 8.2. Nature 2009, 461, 1254–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucchiara, A.; Levan, A.J.; Fox, D.B.; Tanvir, N.R.; Ukwatta, T.N.; Berger, E.; Krühler, T.; Küpcü Yoldaş, A.; Wu, X.F.; Toma, K.; et al. A Photometric Redshift of z ~ 9.4 for GRB 090429B. Astrophys. J. 2011, 736, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Y.; Dai, Z.G.; Liang, E.W. Gamma-ray burst cosmology. New Astron. Rev. 2015, 67, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Wang, F.Y.; Cheng, K.S.; Dai, Z.G. Measuring dark energy with the Eiso-Ep correlation of gamma-ray bursts using model-independent methods. Astron. Astrophys. 2016, 585, A68. [Google Scholar] [CrossRef] [Green Version]
- Amati, L.; D’Agostino, R.; Luongo, O.; Muccino, M.; Tantalo, M. Addressing the circularity problem in the Ep-Eiso correlation of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2019, 486, L46–L51. [Google Scholar] [CrossRef] [Green Version]
- Khadka, N.; Ratra, B. Constraints on cosmological parameters from gamma-ray burst peak photon energy and bolometric fluence measurements and other data. Mon. Not. R. Astron. Soc. 2020, 499, 391–403. [Google Scholar] [CrossRef]
- Demianski, M.; Piedipalumbo, E.; Sawant, D.; Amati, L. Prospects of high redshift constraints on dark energy models with the Ep,i-Eiso correlation in long gamma ray bursts. Mon. Not. R. Astron. Soc. 2021, 506, 903–918. [Google Scholar] [CrossRef]
- Luongo, O.; Muccino, M. A Roadmap to Gamma-Ray Bursts: New Developments and Applications to Cosmology. Galaxies 2021, 9, 77. [Google Scholar] [CrossRef]
- Horváth, I. A Third Class of Gamma-Ray Bursts? Astrophys. J. 1998, 508, 757–759. [Google Scholar] [CrossRef] [Green Version]
- Hakkila, J.; Haglin, D.J.; Pendleton, G.N.; Mallozzi, R.S.; Meegan, C.A.; Roiger, R.J. Gamma-Ray Burst Class Properties. Astrophys. J. 2000, 538, 165–180. [Google Scholar] [CrossRef]
- Horváth, I.; Mészáros, A.; Balázs, L.G.; Bagoly, Z. Where is the Third Subgroup of Gamma-Ray Bursts? Balt. Astron. 2004, 13, 217–220. [Google Scholar]
- Řípa, J.; Mészáros, A.; Wigger, C.; Huja, D.; Hudec, R.; Hajdas, W. Search for gamma-ray burst classes with the RHESSI satellite. Astron. Astrophys. 2009, 498, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Koen, C.; Bere, A. On multiple classes of gamma-ray bursts, as deduced from autocorrelation functions or bivariate duration/hardness ratio distributions. Mon. Not. R. Astron. Soc. 2012, 420, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, R.; Nakamura, T.; Yonetoku, D.; Takahashi, K.; Morihara, Y. Identifying Subclasses of Long Gamma-Ray Bursts with Cumulative Light-Curve Morphology of Prompt Emissions. Publ. Astron. Soc. Jpn. 2013, 65, 3. [Google Scholar] [CrossRef] [Green Version]
- Zitouni, H.; Guessoum, N.; Azzam, W.J.; Mochkovitch, R. Statistical study of observed and intrinsic durations among BATSE and Swift/BAT GRBs. Astrophys. Space Sci. 2015, 357, 7. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Analysis of Fermi gamma-ray burst duration distribution. Astron. Astrophys. 2015, 581, A29. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Analysis of the observed and intrinsic durations of Swift/BAT gamma-ray bursts. New Astron. 2016, 46, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Tóth, B.G.; Hakkila, J.; Tóth, L.V.; Balázs, L.G.; Rácz, I.I.; Pintér, S.; Bagoly, Z. Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane. Astrophys. Space Sci. 2018, 363, 53. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Analysis of the Duration-Hardness Ratio Plane of Gamma-Ray Bursts Using Skewed Distributions. Astrophys. J. 2019, 870, 105. [Google Scholar] [CrossRef]
- Tarnopolski, M. Graph-based clustering of gamma-ray bursts. Astron. Astrophys. 2022, 657, A13. [Google Scholar] [CrossRef]
- Mazets, E.P.; Golenetskii, S.V.; Ilinskii, V.N.; Panov, V.N.; Aptekar, R.L.; Gurian, I.A.; Proskura, M.P.; Sokolov, I.A.; Sokolova, Z.I.; Kharitonova, T.V. Catalog of cosmic gamma-ray bursts from the KONUS experiment data. I. Astrophys. Space Sci. 1981, 80, 3–83. [Google Scholar] [CrossRef]
- Norris, J.P.; Cline, T.L.; Desai, U.D.; Teegarden, B.J. Frequency of fast, narrow gamma-ray bursts. Nature 1984, 308, 434. [Google Scholar] [CrossRef]
- Mészáros, P.; Gehrels, N. Gamma-ray bursts and their links with supernovae and cosmology. Res. Astron. Astrophys. 2012, 12, 1139–1161. [Google Scholar] [CrossRef] [Green Version]
- Briggs, M.S.; Paciesas, W.S.; Pendleton, G.N.; Meegan, C.A.; Fishman, G.J.; Horack, J.M.; Brock, M.N.; Kouveliotou, C.; Hartmann, D.H.; Hakkila, J. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts. Astrophys. J. 1996, 459, 40. [Google Scholar] [CrossRef] [Green Version]
- Tegmark, M.; Hartmann, D.H.; Briggs, M.S.; Meegan, C.A. The Angular Power Spectrum of BATSE 3B Gamma-Ray Bursts. Astrophys. J. 1996, 468, 214. [Google Scholar] [CrossRef] [Green Version]
- Balázs, L.G.; Mészáros, A.; Horváth, I.; Vavrek, R. An intrinsic anisotropy in the angular distribution of gamma-ray bursts. Astron. Astrophys. Suppl. Ser. 1999, 138, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Mészáros, A.; Bagoly, Z.; Horváth, I.; Balázs, L.G.; Vavrek, R. A Remarkable Angular Distribution of the Intermediate Subclass of Gamma-Ray Bursts. Astrophys. J. 2000, 539, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Magliocchetti, M.; Ghirlanda, G.; Celotti, A. Evidence for anisotropy in the distribution of short-lived gamma-ray bursts. Mon. Not. R. Astron. Soc. 2003, 343, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Vavrek, R.; Balázs, L.G.; Mészáros, A.; Horváth, I.; Bagoly, Z. Testing the randomness in the sky-distribution of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2008, 391, 1741–1748. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Testing the anisotropy in the angular distribution of Fermi/GBM gamma-ray bursts. Mon. Not. R. Astron. Soc. 2017, 472, 4819–4831. [Google Scholar] [CrossRef]
- Clowes, R.G.; Harris, K.A.; Raghunathan, S.; Campusano, L.E.; Söchting, I.K.; Graham, M.J. A structure in the early Universe at z~1.3 that exceeds the homogeneity scale of the R-W concordance cosmology. Mon. Not. R. Astron. Soc. 2013, 429, 2910–2916. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Hakkila, J.; Bagoly, Z. Possible structure in the GRB sky distribution at redshift two. Astron. Astrophys. 2014, 561, L12. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Bagoly, Z.; Hakkila, J.; Tóth, L.V. New data support the existence of the Hercules-Corona Borealis Great Wall. Astron. Astrophys. 2015, 584, A48. [Google Scholar] [CrossRef] [Green Version]
- Balázs, L.G.; Bagoly, Z.; Hakkila, J.E.; Horváth, I.; Kóbori, J.; Rácz, I.I.; Tóth, L.V. A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Mon. Not. R. Astron. Soc. 2015, 452, 2236–2246. [Google Scholar] [CrossRef] [Green Version]
- Horvath, I.; Szécsi, D.; Hakkila, J.; Szabó, Á.; Racz, I.I.; Tóth, L.V.; Pinter, S.; Bagoly, Z. The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: The largest structure in the Universe? Mon. Not. R. Astron. Soc. 2020, 498, 2544–2553. [Google Scholar] [CrossRef]
- Řípa, J. Testing Isotropic Universe via Properties of Gamma-Ray Bursts Detected by Fermi/GBM. In Proceedings of the 7th International Fermi Symposium, Garmisch-Partenkirchen, Germany, 15–20 October 2017; p. 80. [Google Scholar]
- Řípa, J.; Shafieloo, A. Testing the Isotropic Universe Using the Gamma-ray Burst Data ofFermi/GBM. Astrophys. J. 2017, 851, 15. [Google Scholar] [CrossRef] [Green Version]
- Řípa, J.; Shafieloo, A. Update on testing the isotropy of the properties of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2019, 486, 3027–3040. [Google Scholar] [CrossRef]
- Cline, D.B.; Matthey, C.; Otwinowski, S. Study of Very Short Gamma-Ray Bursts. Astrophys. J. 1999, 527, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Litvin, V.F.; Matveev, S.A.; Mamedov, S.V.; Orlov, V.V. Anisotropy in the Sky Distribution of Short Gamma-Ray Bursts. Astron. Lett. 2001, 27, 416–420. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 1993, 405, 273–277. [Google Scholar] [CrossRef]
- Paczyński, B. Are Gamma-Ray Bursts in Star-Forming Regions? Astrophys. J. 1998, 494, L45–L48. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, J.; Sollerman, J.; Møller, P.; Fynbo, J.P.U.; Woosley, S.E.; Kouveliotou, C.; Tanvir, N.R.; Greiner, J.; Andersen, M.I.; Castro-Tirado, A.J.; et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 2003, 423, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Stanek, K.Z.; Matheson, T.; Garnavich, P.M.; Martini, P.; Berlind, P.; Caldwell, N.; Challis, P.; Brown, W.R.; Schild, R.; Krisciunas, K.; et al. Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. Astrophys. J. 2003, 591, L17–L20. [Google Scholar] [CrossRef] [Green Version]
- Totani, T. Cosmological Gamma-Ray Bursts and Evolution of Galaxies. Astrophys. J. 1997, 486, L71–L74. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. Gamma-Ray Bursts: Progress, problems–prospects. Int. J. Mod. Phys. A 2004, 19, 2385–2472. [Google Scholar] [CrossRef]
- Jakobsson, P.; Björnsson, G.; Fynbo, J.P.U.; Jóhannesson, G.; Hjorth, J.; Thomsen, B.; Møller, P.; Watson, D.; Jensen, B.L.; Östlin, G.; et al. Ly-α and ultraviolet emission from high-redshift gamma-ray burst hosts: To what extent do gamma-ray bursts trace star formation? Mon. Not. R. Astron. Soc. 2005, 362, 245–251. [Google Scholar] [CrossRef]
- Mészáros, A.; Bagoly, Z.; Balázs, L.G.; Horváth, I. Redshift distribution of gamma-ray bursts and star formation rate. Astron. Astrophys. 2006, 455, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. Gamma-Ray Bursts in the Swift Era. Chin. J. Astron. Astrophys. 2007, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Schulze, S.; Chapman, R.; Hjorth, J.; Levan, A.J.; Jakobsson, P.; Björnsson, G.; Perley, D.A.; Krühler, T.; Gorosabel, J.; Tanvir, N.R.; et al. The Optically Unbiased GRB Host (TOUGH) Survey. VII. The Host Galaxy Luminosity Function: Probing the Relationship between GRBs and Star Formation to Redshift ∼ 6. Astrophys. J. 2015, 808, 73. [Google Scholar] [CrossRef]
- Le Floc’h, E.; Duc, P.A.; Mirabel, I.F.; Sanders, D.B.; Bosch, G.; Diaz, R.J.; Donzelli, C.J.; Rodrigues, I.; Courvoisier, T.J.L.; Greiner, J.; et al. Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? Astron. Astrophys. 2003, 400, 499–510. [Google Scholar] [CrossRef]
- Palmerio, J.T.; Vergani, S.D.; Salvaterra, R.; Sand ers, R.L.; Japelj, J.; Vidal-García, A.; D’Avanzo, P.; Corre, D.; Perley, D.A.; Shapley, A.E.; et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. III. Stellar masses, star formation rates, and metallicities at z > 1. Astron. Astrophys. 2019, 623, A26. [Google Scholar] [CrossRef]
- Fruchter, A.S.; Levan, A.J.; Strolger, L.; Vreeswijk, P.M.; Thorsett, S.E.; Bersier, D.; Burud, I.; Castro Cerón, J.M.; Castro-Tirado, A.J.; Conselice, C.; et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 2006, 441, 463–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, P.K.; Berger, E.; Fong, W.f. The Offset and Host Light Distributions of Long Gamma-Ray Bursts: A New View From HST Observations of Swift Bursts. Astrophys. J. 2016, 817, 144. [Google Scholar] [CrossRef] [Green Version]
- Lyman, J.D.; Levan, A.J.; Tanvir, N.R.; Fynbo, J.P.U.; McGuire, J.T.W.; Perley, D.A.; Angus, C.R.; Bloom, J.S.; Conselice, C.J.; Fruchter, A.S.; et al. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 2017, 467, 1795–1817. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.P.; Nemiroff, R.J.; Scargle, J.D.; Kouveliotou, C.; Fishman, G.J.; Meegan, C.A.; Paciesas, W.S.; Bonnell, J.T. Detection of Signature Consistent with Cosmological Time Dilation in Gamma-Ray Bursts. Astrophys. J. 1994, 424, 540. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.T.; Petrosian, V. Distributions of Peak Flux and Duration for Gamma-Ray Bursts. Astrophys. J. 1996, 470, 479. [Google Scholar] [CrossRef]
- Sakamoto, T.; Barthelmy, S.D.; Baumgartner, W.H.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.M.; et al. The Second Swift Burst Alert Telescope Gamma-Ray Burst Catalog. Astrophys. J. Suppl. 2011, 195, 2. [Google Scholar] [CrossRef] [Green Version]
- Lien, A.; Sakamoto, T.; Barthelmy, S.D.; Baumgartner, W.H.; Cannizzo, J.K.; Chen, K.; Collins, N.R.; Cummings, J.R.; Gehrels, N.; Krimm, H.A.; et al. The Third Swift Burst Alert Telescope Gamma-Ray Burst Catalog. Astrophys. J. 2016, 829, 7. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Dainotti, M.; Ratra, B. Standardizing Platinum Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Mon. Not. R. Astron. Soc. 2022. [Google Scholar] [CrossRef] [PubMed]
- Amati, L.; Frontera, F.; Tavani, M.; in’t Zand, J.J.M.; Antonelli, A.; Costa, E.; Feroci, M.; Guidorzi, C.; Heise, J.; Masetti, N.; et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys. 2002, 390, 81–89. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Ghisellini, G.; Lazzati, D. The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFνSpectrum. Astrophys. J. 2004, 616, 331–338. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, R.; Inoue, A.K.; Ioka, K. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy–Peak Luminosity Relation. Astrophys. J. 2004, 609, 935–951. [Google Scholar] [CrossRef] [Green Version]
- Liang, E.; Zhang, B. Model-independent Multivariable Gamma-Ray Burst Luminosity Indicator and Its Possible Cosmological Implications. Astrophys. J. 2005, 633, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G. On the Hubble Constant Tension in the SNe Ia Pantheon Sample. Astrophys. J. 2021, 912, 150. [Google Scholar] [CrossRef]
- Littlejohns, O.M.; Butler, N.R. Investigating signatures of cosmological time dilation in duration measures of prompt gamma-ray burst light curves. Mon. Not. R. Astron. Soc. 2014, 444, 3948–3960. [Google Scholar] [CrossRef] [Green Version]
- Belczynski, K.; Holz, D.E.; Fryer, C.L.; Berger, E.; Hartmann, D.H.; O’Shea, B. On the Origin of the Highest Redshift Gamma-Ray Bursts. Astrophys. J. 2010, 708, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, N.R.; Le Floc’h, E.; Christensen, L.; Caruana, J.; Salvaterra, R.; Ghirlanda, G.; Ciardi, B.; Maio, U.; D’Odorico, V.; Piedipalumbo, E.; et al. Exploration of the high-redshift universe enabled by THESEUS. Exp. Astron. 2021, 52, 219–244. [Google Scholar] [CrossRef]
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of two classes of gamma-ray bursts. Astrophys. J. 1993, 413, L101–L104. [Google Scholar] [CrossRef]
- Koshut, T.M.; Paciesas, W.S.; Kouveliotou, C.; van Paradijs, J.; Pendleton, G.N.; Fishman, G.J.; Meegan, C.A. Systematic Effects on Duration Measurements of Gamma-Ray Bursts. Astrophys. J. 1996, 463, 570. [Google Scholar] [CrossRef] [Green Version]
- Poolakkil, S.; Preece, R.; Fletcher, C.; Goldstein, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burns, E.; Cleveland, W.H.; Giles, M.M.; et al. The Fermi-GBM Gamma-Ray Burst Spectral Catalog: 10 yr of Data. Astrophys. J. 2021, 913, 60. [Google Scholar] [CrossRef]
- Rácz, I.I.; Balázs, L.G.; Horvath, I.; Tóth, L.V.; Bagoly, Z. Statistical properties of Fermi GBM GRBs’ spectra. Mon. Not. R. Astron. Soc. 2018, 475, 306–320. [Google Scholar] [CrossRef]
- Racz, I.I.; Balázs, L.G.; Bagoly, Z.; Horvath, I.; Tóth, L.V. Fermi GBM GRBs’ multivariate statistics. Astron. Nachrichten 2018, 339, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Pinter, S.; Balázs, L.G.; Bagoly, Z.; Tóth, L.V.; Racz, I.I. Comparison of Fermi and Swift GRB Data. Universe 2022. submitted. [Google Scholar]
- Bagoly, Z.; Mészáros, A.; Balázs, L.G.; Horváth, I.; Klose, S.; Larsson, S.; Mészáros, P.; Ryde, F.; Tusnády, G. The Swift satellite and redshifts of long gamma-ray bursts. Astron. Astrophys. 2006, 453, 797–800. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, P.; Malesani, D.; Fynbo, J.P.U.; Hjorth, J.; Milvang-Jensen, B. GRB Redshifts & Host Galaxies: An Unbiased Sample. In Gamma-Ray Burst: Sixth Huntsville Symposium; American Institute of Physics Conference Series; Meegan, C., Kouveliotou, C., Gehrels, N., Eds.; American Institute of Physics: College Park, MD, USA, 2009; Volume 1133, pp. 455–463. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; de Ugarte Postigo, A.; Gorosabel, J.; Aloy, M.A.; Jóhannesson, G.; Guerrero, M.A.; Osborne, J.P.; Page, K.L.; Warwick, R.S.; Horváth, I.; et al. Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms. Astron. Astrophys. 2010, 510, A105. [Google Scholar] [CrossRef] [Green Version]
- Balázs, L.G.; Mészáros, A.; Horváth, I. Anisotropy of the sky distribution of gamma-ray bursts. Astron. Astrophys. 1998, 339, 1–6. [Google Scholar]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Mészáros, P.; et al. Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs. Astrophys. J. 2009, 703, 1696–1724. [Google Scholar] [CrossRef] [Green Version]
- Balázs, L.G.; Bagoly, Z.; Horváth, I.; Mészáros, A.; Mészáros, P. On the difference between the short and long gamma-ray bursts. Astron. Astrophys. 2003, 401, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Can the Cosmological Dilation Explain the Skewness in the Gamma-Ray Burst Duration Distribution? Astrophys. J. 2020, 897, 77. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, I.; Racz, I.I.; Bagoly, Z.; Balázs, L.G.; Pinter, S. Does the GRB Duration Depend on Redshift? Universe 2022, 8, 221. https://doi.org/10.3390/universe8040221
Horvath I, Racz II, Bagoly Z, Balázs LG, Pinter S. Does the GRB Duration Depend on Redshift? Universe. 2022; 8(4):221. https://doi.org/10.3390/universe8040221
Chicago/Turabian StyleHorvath, Istvan, Istvan I. Racz, Zsolt Bagoly, Lajos G. Balázs, and Sandor Pinter. 2022. "Does the GRB Duration Depend on Redshift?" Universe 8, no. 4: 221. https://doi.org/10.3390/universe8040221
APA StyleHorvath, I., Racz, I. I., Bagoly, Z., Balázs, L. G., & Pinter, S. (2022). Does the GRB Duration Depend on Redshift? Universe, 8(4), 221. https://doi.org/10.3390/universe8040221