Muon to Positron Conversion
Abstract
:1. Introduction
2. Theories and Past Results
2.1. Estimation of the Rate in the Extended SM with a Majorana Neutrino
2.2. Past Experiments
3. Future Experimental Searches
3.1. Upcoming Experimental Prospects
3.2. Background Consideration
3.3. RMC Status
3.4. RMC Considerations at Future Experiments
4. Concluding Remarks: Towards Future Measurements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. RMC Endpoint Calculation on Aluminum
Parameter | Value | Unit | Reference |
---|---|---|---|
105.6583745 | MeV/c | [66] | |
0.5109989461 | MeV/c | [66] | |
931.49410242 | MeV/c | [66] | |
0.464 | MeV | [67] | |
26.98153841 | u | [68] | |
25,126.501 | MeV/c | ||
26.98434063 | u | [68] | |
25,129.622 | MeV/c | ||
0.206 | MeV/c |
Nuclide | [MeV] | [MeV] | [ns] | [MeV] |
---|---|---|---|---|
92.30 | 101.36 | 864 | 104.97 | |
101.80 | 102.03 | 555 | 104.76 | |
103.55 | 102.06 | 333 | 104.39 | |
98.89 | 99.17 | 329 | 104.18 |
References
- Baldini, A.M. et al. [MEG collaboration]. Search for the lepton flavour violating decay μ+→e+γ with the full dataset of the MEG experiment. Eur. Phys. J. C 2016, 76, 434. [Google Scholar] [CrossRef] [Green Version]
- Baldini, A.M. et al. [MEG collaboration]. The Search for μ+→e+γ with 10−14 Sensitivity: The Upgrade of the MEG Experiment. Symmetry 2021, 13, 1591. [Google Scholar] [CrossRef]
- Arndt, K. et al. [Mu3e collaboration]. Technical design of the phase I Mu3e experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1014, 165679. [Google Scholar] [CrossRef]
- Abramishvili, R. et al. [COMET collaboration]. COMET Phase-I technical design report. Prog. Theor. Exp. Phys. 2020, 2020, 033C01. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, L. et al. [Mu2e collaboration]. Mu2e Technical Design Report. arXiv 2015, arXiv:1501.05241. [Google Scholar]
- Marciano, W.J.; Mori, T.; Roney, J.M. Charged Lepton Flavor Violation Experiments. Annu. Rev. Nucl. Part. Sci. 2008, 58, 315–341. [Google Scholar] [CrossRef]
- Gando, Y. First results of KamLAND-Zen 800. J. Phys. Conf. Ser. 2020, 1468, 012142. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W.F. Neutrinoless double-β decay in SU(2)×U(1) theories. Phys. Rev. D 1982, 25, 2951–2954. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J. Dirac and pseudo-Dirac neutrinos and neutrinoless double beta decay. Phys. Lett. B 1984, 147, 375–379. [Google Scholar] [CrossRef]
- Takasugi, E. Can the neutrinoless double beta decay take place in the case of Dirac neutrinos? Phys. Lett. B 1984, 149, 372–376. [Google Scholar] [CrossRef]
- Hirsch, M.; Kovalenko, S.; Schmidt, I. Extended Black box theorem for lepton number and flavor violating processes. Phys. Lett. B 2006, 642, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Berryman, J.M.; de Gouvêa, A.; Kelly, K.J.; Kobach, A. Lepton-number-violating searches for muon to positron conversion. Phys. Rev. D 2017, 95, 115010. [Google Scholar] [CrossRef] [Green Version]
- Geib, T.; Merle, A.; Zuber, K. μ− − e+ conversion in upcoming LFV experiments. Phys. Lett. B 2017, 764, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Geib, T.; Merle, A. μ− − e+ conversion from short-range operators. Phys. Rev. D 2017, 95, 055009. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.S.; Geng, C.Q.; Ng, J.N. Unconventional neutrino mass generation, neutrinoless double beta decays, and collider phenomenology. Phys. Rev. D 2007, 75, 053004. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Merle, A.; Panizzi, L. Effective theory of a doubly charged singlet scalar: Complementarity of neutrino physics and the LHC. J. High Energy Phys. 2014, 2014, 124. [Google Scholar] [CrossRef] [Green Version]
- Pritimita, P.; Dash, N.; Patra, S. Neutrinoless Double Beta Decay in LRSM with Natural Type-II seesaw Dominance. J. High Energy Phys. 2016, 2016, 147. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Kurylov, A.; Ramsey-Musolf, M.J.; Vogel, P. Neutrinoless Double Beta Decay and Lepton Flavor Violation. Phys. Rev. Lett. 2004, 93, 231802. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef]
- Miyazaki, Y. et al. [Belle collaboration]. Search for lepton-flavor and lepton-number-violating τ→ℓhh′ decay modes. Phys. Lett. B 2013, 719, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Cortina Gil, E. et al. [NA62 collaboration]. Searches for lepton number violating K+ decays. Phys. Lett. B 2019, 797, 134794. [Google Scholar] [CrossRef]
- Fuks, B.; Neundorf, J.; Peters, K.; Ruiz, R.; Saimpert, M. Probing the Weinberg operator at colliders. Phys. Rev. D 2021, 103, 115014. [Google Scholar] [CrossRef]
- Fuks, B.; Neundorf, J.; Peters, K.; Ruiz, R.; Saimpert, M. Majorana neutrinos in same-sign W±W± scattering at the LHC: Breaking the TeV barrier. Phys. Rev. D 2021, 103, 055005. [Google Scholar] [CrossRef]
- Cirigliano, V.; Dekens, W.; de Vries, J.; Fuyuto, K.; Mereghetti, E.; Ruiz, R. Leptonic anomalous magnetic moments in νSMEFT. J. High Energy Phys. 2021, 2021, 103. [Google Scholar] [CrossRef]
- Kaulard, J.; Dohmen, C.; Haan, H.; Honecker, W.; Junker, D.; Otter, G.; Starlinger, M.; Wintz, P.; Hofmann, J.; Bertl, W.; et al. Improved limit on the branching ratio of μ−→e+ conversion on titanium. Phys. Lett. B 1998, 422, 334–338. [Google Scholar] [CrossRef]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247. [Google Scholar]
- Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. JETP 1957, 6, 429. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the Unified Model of Elementary Particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, P. μ→eγ at a rate of one out of 109 muon decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Ramond, P.; Slansky, R. Complex Spinors and Unified Theories. Conf. Proc. C 1979, 790927, 315–321. [Google Scholar]
- Yanagida, T. Horizontal Symmetry and Masses of Neutrinos. Prog. Theor. Phys. 1980, 64, 1103–1105. [Google Scholar] [CrossRef]
- Glashow, S.L. The Future of Elementary Particle Physics. In Quarks and Leptons; Lévy, M., Basdevant, J.L., Speiser, D., Weyers, J., Gastmans, R., Jacob, M., Eds.; Springer: Boston, MA, USA, 1980; pp. 687–713. [Google Scholar]
- Mohapatra, R.N.; Senjanović, G. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett. 1980, 44, 912–915. [Google Scholar] [CrossRef] [Green Version]
- Schechter, J.; Valle, J.W.F. Neutrino masses in SU(2) ⨂ U(1) theories. Phys. Rev. D 1980, 22, 2227–2235. [Google Scholar] [CrossRef]
- Domin, P.; Kovalenko, S.; Faessler, A.; Šimkovic, F. Nuclear (μ−,e+) conversion mediated by Majorana neutrinos. Phys. Rev. C 2004, 70, 065501. [Google Scholar] [CrossRef] [Green Version]
- Atre, A.; Barger, V.; Han, T. Upper bounds on lepton-number violating processes. Phys. Rev. D 2005, 71, 113014. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Nuclear Matrix Elements for β and ββ Decays and Quenching of the Weak Coupling gA in QRPA. Front. Phys. 2019, 7, 30. [Google Scholar] [CrossRef]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Theory of neutrinoless double-beta decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [Green Version]
- Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Abela, R.; Backenstoss, G.; Kowald, W.; Wüest, J.; Seiler, H.; Seiler, M.; Simons, L. New upper limit for μ−→e+ conversion. Phys. Lett. B 1980, 95, 318–322. [Google Scholar] [CrossRef]
- Bertl, W.; Engfer, R.; Hermes, E.A.; Kurz, G.; Kozlowski, T.; Kuth, J.; Otter, G.; Rosenbaum, F.; Ryskulov, N.M.; van der Schaaf, A.; et al. A search for μ-e conversion in muonic gold. Eur. Phys. J. C—Part. Fields 2006, 47, 337–346. [Google Scholar] [CrossRef]
- Snover, K.A. Giant Resonances in Excited Nuclei. Annu. Rev. Nucl. Part. Sci. 1986, 36, 545–603. [Google Scholar] [CrossRef]
- Kaulard, J.Q. Suche nach der Verbotenen Ladungsaustauschenden Mye-konversion my- + Ti → e+ + Ca (Search for Forbidden Charge Exchaning μe Conversion μ−Ti→e+Ca). Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1997. [Google Scholar]
- Dohmen, C.; Groth, K.D.; Heer, B.; Honecker, W.; Otter, G.; Steinrücken, B.; Wintz, P.; Djordjadze, V.; Hofmann, J.; Kozlowski, T.; et al. Test of lepton-flavour conservation in μ→e conversion on titanium. Phys. Lett. B 1993, 317, 631–636. [Google Scholar] [CrossRef]
- Ahmad, S.; Azuelos, G.; Blecher, M.; Bryman, D.A.; Burnham, R.A.; Clifford, E.T.H.; Depommier, P.; Dixit, M.S.; Gotow, K.; Hargrove, C.K.; et al. Search for muon-electron and muon-positron conversion. Phys. Rev. D 1988, 38, 2102–2120. [Google Scholar] [CrossRef] [PubMed]
- Badertscher, A.; Borer, K.; Czapek, G.; Fluckiger, A.; Hanni, H.; Hahn, B.; Hugentobler, E.; Kaspar, H.; Markees, A.; Marti, T.; et al. New Upper Limits for Muon—Electron Conversion in Sulfur. Lett. Nuovo Cim. 1980, 28, 401–408. [Google Scholar] [CrossRef]
- Badertscher, A.; Borer, K.; Czapek, G.; Flückiger, A.; Hänni, H.; Hahn, B.; Hugentobler, E.; Kaspar, H.; Markees, A.; Moser, U.; et al. Search for μ−→e+ conversion on sulfur. Phys. Lett. B 1978, 79, 371–375, Erratum in Phys. Lett. B 1979, 46, 434. [Google Scholar] [CrossRef]
- Bryman, D.A.; Blecher, M.; Gotow, K.; Powers, R.J. Search for the Reaction μ−+Cu→e++Co. Phys. Rev. Lett. 1972, 28, 1469–1471. [Google Scholar] [CrossRef]
- Conforto, G.; Conversi, M.; di Lella, L.; Penso, G.; Rubbia, C.; Toller, M. Search for Neutrinoless Coherent Nuclear Capture of μ− Mesons. Il Nuovo Cimento 1962, 26, 261–281. [Google Scholar] [CrossRef]
- Abusalma, F.; Ambrose, D.; Artikov, A.; Bernstein, R.; Blazey, G.C.; Bloise, C.; Boi, S.; Bolton, T.; Bono, J.; Bonventre, R.; et al. Expression of Interest for Evolution of the Mu2e Experiment. arXiv 2018, arXiv:1802.02599. [Google Scholar]
- Bergbusch, P.C.; Armstrong, D.S.; Blecher, M.; Chen, C.Q.; Doyle, B.C.; Gorringe, T.P.; Gumplinger, P.; Hasinoff, M.D.; Jonkmans, G.; Macdonald, J.A.; et al. Radiative muon capture on O, Al, Si, Ti, Zr, and Ag. Phys. Rev. C 1999, 59, 2853–2864. [Google Scholar] [CrossRef]
- Edmonds, A. Latest Updates from the AlCap Experiment. In Proceedings of the 13th Conference on the Intersections of Particle and Nuclear Physics, Palm Springs, CA, USA, 29 May–3 June 2018. [Google Scholar]
- Yeo, B.; Kuno, Y.; Lee, M.; Zuber, K. Future experimental improvement for the search of lepton-number-violating processes in the eμ sector. Phys. Rev. D 2017, 96, 075027. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.S. Study of Negative Muon to Positron Conversion in the COMET Phase-I Experiment. Ph.D. Thesis, Osaka University, Osaka, Japan, 2020. [Google Scholar]
- Kroll, N.M.; Wada, W. Internal Pair Production Associated with the Emission of High-Energy Gamma Rays. Phys. Rev. 1955, 98, 1355–1359. [Google Scholar] [CrossRef]
- Joseph, D.W. Electron pair creation in π+p capture reactions from rest. Il Nuovo Cimento 1960, 16, 997–1013. [Google Scholar] [CrossRef]
- Plestid, R.; Hill, R.J. The high energy spectrum of internal positrons from radiative muon capture on nuclei. arXiv 2020, arXiv:2010.09509. [Google Scholar] [CrossRef]
- Armstrong, D.S.; Serna-Angel, A.; Ahmad, S.; Azuelos, G.; Bertl, W.; Blecher, M.; Chen, C.Q.; Depommier, P.; von Egidy, T.; Gorringe, T.P.; et al. Radiative muon capture on Al, Si, Ca, Mo, Sn, and Pb. Phys. Rev. C 1992, 46, 1094–1107. [Google Scholar] [CrossRef] [PubMed]
- Bergbusch, P.C. Radiative Muon Capture of Oxygen, Aluminum, Silicon, Titanium, Zirconium, and Silver. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1995. [Google Scholar] [CrossRef]
- Gorringe, T.P.; Armstrong, D.S.; Chen, C.Q.; Christy, E.; Doyle, B.C.; Gumplinger, P.; Fearing, H.W.; Hasinoff, M.D.; Kovash, M.A.; Wright, D.H. Isotope dependence of radiative muon capture on the 58,60,62Ni isotopes. Phys. Rev. C 1998, 58, 1767–1776. [Google Scholar] [CrossRef]
- Christillin, P.; Rosa-Clot, M.; Servadio, S. Radiative muon capture in medium-heavy nuclei. Nucl. Phys. A 1980, 345, 331–366. [Google Scholar] [CrossRef] [Green Version]
- Fearing, H.W.; Walker, G.E. Radiative muon capture in a relativistic mean field theory: Fermi gas model. Phys. Rev. C 1989, 39, 2349–2355. [Google Scholar] [CrossRef] [Green Version]
- Fearing, H.W.; Welsh, M.S. Radiative muon capture in medium heavy nuclei in a relativistic mean field theory model. Phys. Rev. C 1992, 46, 2077–2089. [Google Scholar] [CrossRef] [Green Version]
- Kitano, R.; Koike, M.; Okada, Y. Detailed calculation of lepton flavor violating muon-electron conversion rate for various nuclei. Phys. Rev. D 2002, 66, 096002. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Kitano, R.; Okada, Y.; Tuzon, P. Model discriminating power of μ→e conversion in nuclei. Phys. Rev. D 2009, 80, 013002. [Google Scholar] [CrossRef] [Green Version]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 2016, 88, 035009. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Garcia i Tormo, X.; Marciano, W.J. Muon decay in orbit: Spectrum of high-energy electrons. Phys. Rev. D 2011, 84, 013006. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Audi, G.; Kondev, F.G.; Huang, W.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- Suzuki, T.; Measday, D.F.; Roalsvig, J.P. Total nuclear capture rates for negative muons. Phys. Rev. C 1987, 35, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
Nuclei | Upper Limit | Year | Experiment | Detector | GS/GDR | Reference | |
---|---|---|---|---|---|---|---|
Ti | 1998 | SINDRUM II | Drift chamber | GDR | [25,43] | ||
GS | |||||||
1993 | SINDRUM II | Drift chamber | GDR | [44] | |||
GS | |||||||
1988 | (TRIUMF) | TPC | GDR | [45] | |||
1980 | SIN | Streamer chamber | GDR | [46] | |||
1978 | SIN | Streamer chamber | GDR | [47] | |||
Cu | 1972 | Spark chamber | GS/GDR | [48] | |||
1962 | (CERN) | Spark chamber | [49] | ||||
1980 | Radiochemical | GS | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; MacKenzie, M. Muon to Positron Conversion. Universe 2022, 8, 227. https://doi.org/10.3390/universe8040227
Lee M, MacKenzie M. Muon to Positron Conversion. Universe. 2022; 8(4):227. https://doi.org/10.3390/universe8040227
Chicago/Turabian StyleLee, MyeongJae, and Michael MacKenzie. 2022. "Muon to Positron Conversion" Universe 8, no. 4: 227. https://doi.org/10.3390/universe8040227
APA StyleLee, M., & MacKenzie, M. (2022). Muon to Positron Conversion. Universe, 8(4), 227. https://doi.org/10.3390/universe8040227