Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update
Abstract
:1. Introduction
2. Post-AGB Stars—Exquisite Tracers of AGB Nucleosynthesis
3. The -Process in Post-AGB Stars
3.1. Galaxy
3.2. Magellanic Clouds
3.3. An Example of an Extremely Enriched SMC Object: J004441.04-732136.4
4. The -Process in Post-AGB Stars: The Observational Findings
4.1. [hs/ls] versus [Fe/H] Relation
4.2. The Lead Problem
4.3. The i-Process
4.4. [s/H] versus [Fe/H] Relation: The Haves and Have-Nots
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sloan, G.C.; Kraemer, K.E.; Wood, P.R.; Zijlstra, A.A.; Bernard-Salas, J.; Devost, D.; Houck, J.R. The Magellanic Zoo: Mid-Infrared Spitzer Spectroscopy of Evolved Stars and Circumstellar Dust in the Magellanic Clouds. Astrophys. J. 2008, 686, 1056–1081. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The origin of elements from carbon to uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Iben, I., Jr.; Renzini, A. Asymptotic giant branch evolution and beyond. Annu. Rev. Astron. Astrophys. 1983, 21, 271–342. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef] [Green Version]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process. Astrophys. J. 1998, 497, 388. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef] [Green Version]
- Seeger, P.A.; Fowler, W.A.; Clayton, D.D. Nucleosynthesis of Heavy Elements by Neutron Capture. Astrophys. J. 1965, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 2010, 403, 1413–1425. [Google Scholar] [CrossRef] [Green Version]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weak s-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-Capture Elements in the Early Galaxy. Annu. Rev. Astron. Astrophys. 2008, 46, 241–288. [Google Scholar] [CrossRef]
- Boothroyd, A.I.; Sackmann, I.J.; Ahern, S.C. Prevention of High-Luminosity Carbon Stars by Hot Bottom Burning. Astrophys. J. 1993, 416, 762–768. [Google Scholar] [CrossRef]
- Ventura, P.; Karakas, A.I.; Dell’Agli, F.; Boyer, M.L.; García-Hernández, D.A.; Di Criscienzo, M.; Schneider, R. The Large Magellanic Cloud as a laboratory for hot bottom burning in massive asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2015, 450, 3181–3190. [Google Scholar] [CrossRef] [Green Version]
- van Zee, L.; Salzer, J.J.; Haynes, M.P.; O’Donoghue, A.A.; Balonek, T.J. Spectroscopy of Outlying H II Regions in Spiral Galaxies: Abundances and Radial Gradients. Astron. J. 1998, 116, 2805–2833. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; García-Lario, P.; Plez, B.; Manchado, A.; D’Antona, F.; Lub, J.; Habing, H. Lithium and zirconium abundances in massive Galactic O-rich AGB stars. Astron. Astrophys. 2007, 462, 711–730. [Google Scholar] [CrossRef]
- Hinkle, K.H.; Lebzelter, T.; Straniero, O. Carbon and oxygen isotopic ratios for nearby Miras. Astrophys. J. 2016, 825, 38. [Google Scholar] [CrossRef] [Green Version]
- Abia, C.; de Laverny, P.; Wahlin, R. Chemical analysis of carbon stars in the Local Group. II. The Carina dwarf spheroidal galaxy. Astron. Astrophys. 2008, 481, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Mesa, V.; Zamora, O.; García-Hernández, D.A.; Osorio, Y.; Masseron, T.; Plez, B.; Manchado, A.; Karakas, A.I.; Lugaro, M. Exploring circumstellar effects on the lithium and calcium abundances in massive Galactic O-rich AGB stars. Astron. Astrophys. 2019, 623, A151. [Google Scholar] [CrossRef]
- Reyniers, M.; Van Winckel, H. Detection of elements beyond the Ba-peak in VLT+UVES spectra of post-AGB stars. Astron. Astrophys. 2003, 408, L33–L37. [Google Scholar] [CrossRef] [Green Version]
- Vassiliadis, E.; Wood, P.R. Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. Astrophys. J. 1993, 413, 641–657. [Google Scholar] [CrossRef]
- Nie, J.D.; Wood, P.R.; Nicholls, C.P. Predicting the fate of binary red giants using the observed sequence E star population: Binary planetary nebula nuclei and post-RGB stars. Mon. Not. R. Astron. Soc. 2012, 423, 2764–2780. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Wood, P.R.; Van Winckel, H.; Nie, J.D. A newly discovered stellar type: Dusty post-red giant branch stars in the Magellanic Clouds. Astron. Astrophys. 2016, 586, L5. [Google Scholar] [CrossRef]
- Van Winckel, H. Post-AGB Stars. Annu. Rev. Astron. Astrophys. 2003, 41, 391–427. [Google Scholar] [CrossRef]
- De Smedt, K.; Van Winckel, H.; Karakas, A.I.; Siess, L.; Goriely, S.; Wood, P.R. Post-AGB stars in the SMC as tracers of stellar evolution: The extreme s-Process enrichment of the 21 μm star J004441.04-732136.4. Astron. Astrophys. 2012, 541, A67. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P.R. Chemical abundance study of two strongly s-Process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9. Astron. Astrophys. 2015, 583, A56. [Google Scholar] [CrossRef] [Green Version]
- van Aarle, E.; Van Winckel, H.; De Smedt, K.; Kamath, D.; Wood, P.R. Detailed abundance study of four s-Process enriched post-AGB stars in the Large Magellanic Cloud. Astron. Astrophys. 2013, 554, A106. [Google Scholar] [CrossRef]
- Kamath, D. Post-AGB stars as tracers of the origin of elements in the universe. J. Astrophys. Astron. 2020, 41, 42. [Google Scholar] [CrossRef]
- Kamath, D.; Van Winckel, H. The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars. Universe 2021, 7, 446. [Google Scholar] [CrossRef]
- Schönberner, D. Late stages of stellar evolution. II—Mass loss and the transition of asymptotic giant branch stars into hot remnants. Astrophys. J. 1983, 272, 708–714. [Google Scholar] [CrossRef]
- Vassiliadis, E.; Wood, P.R. Post-asymptotic giant branch evolution of low- to intermediate-mass stars. Astrophys. J. Suppl. Ser. 1994, 92, 125–144. [Google Scholar] [CrossRef]
- Kwok, S. Proto-planetary nebulae. Annu. Rev. Astron. Astrophys. 1993, 31, 63–92. [Google Scholar] [CrossRef]
- Habing, H.J.; Olofsson, H. Asymptotic Giant Branch Stars; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Renedo, I.; Althaus, L.G.; Miller Bertolami, M.M.; Romero, A.D.; Córsico, A.H.; Rohrmann, R.D.; García-Berro, E. New Cooling Sequences for Old White Dwarfs. Astrophys. J. 2010, 717, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Paczyiński, B.; Sienkiewicz, R. Evolution of Close Binaries VIII. Mass Exchange on the Dynamical Time Scale. Acta Astron. 1972, 22, 73–91. [Google Scholar]
- Iben, I., Jr.; Tutukov, A.V.; Yungelson, L.R. On the Origin of Hydrogen-deficient Supergiants and Their Relation to R Coronae Borealis Stars and Non-DA White Dwarfs. Astrophys. J. 1996, 456, 750. [Google Scholar] [CrossRef]
- Han, Z.; Podsiadlowski, P.; Eggleton, P.P. The formation of bipolar planetary nebulae and close white dwarf binaries. Mon. Not. R. Astron. Soc. 1995, 272, 800–820. [Google Scholar]
- van Winckel, H. Post-AGB Binaries as Tracers of Stellar Evolution. Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution. IAU Symp. 2017, 12, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Szczerba, R.; Siódmiak, N.; Stasińska, G.; Borkowski, J. An evolutionary catalogue of galactic post-AGB and related objects. Astron. Astrophys. 2007, 469, 799–806. [Google Scholar] [CrossRef] [Green Version]
- de Ruyter, S.; Van Winckel, H.; Maas, T.; Lloyd Evans, T.; Waters, L.B.F.M.; Dejonghe, H. Keplerian discs around post-AGB stars: A common phenomenon? Astron. Astrophys. 2006, 448, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Van Winckel, H. Post-Agb Binaries. Balt. Astron. 2007, 16, 112–119. [Google Scholar]
- Gielen, C.; Van Winckel, H.; Reyniers, M.; Zijlstra, A.; Lloyd Evans, T.; Gordon, K.D.; Kemper, F.; Indebetouw, R.; Marengo, M.; Matsuura, M.; et al. Chemical depletion in the Large Magellanic Cloud: RV Tauri stars and the photospheric feedback from their dusty discs. Astron. Astrophys. 2009, 508, 1391–1402. [Google Scholar] [CrossRef] [Green Version]
- Van Winckel, H.; Lloyd Evans, T.; Briquet, M.; De Cat, P.; Degroote, P.; De Meester, W.; De Ridder, J.; Deroo, P.; Desmet, M.; Drummond, R.; et al. Post-AGB stars with hot circumstellar dust: Binarity of the low-amplitude pulsators. Astron. Astrophys. 2009, 505, 1221–1232. [Google Scholar] [CrossRef]
- Oomen, G.M.; Van Winckel, H.; Pols, O.; Nelemans, G.; Escorza, A.; Manick, R.; Kamath, D.; Waelkens, C. Orbital properties of binary post-AGB stars. Astron. Astrophys. 2018, 620, A85. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: Candidate selection, spectral energy distributions and spectroscopic examination. Mon. Not. R. Astron. Soc. 2014, 439, 2211–2270. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Van Winckel, H.; Ventura, P.; Mohorian, M.; Hrivnak, B.J.; Dell’Agli, F.; Karakas, A. Luminosities and Masses of Single Galactic Post-asymptotic Giant Branch Stars with Distances from Gaia EDR3: The Revelation of an s-Process Diversity. Astrophys. J. 2022, 927, L13. [Google Scholar] [CrossRef]
- van Aarle, E.; Van Winckel, H.; Lloyd Evans, T.; Ueta, T.; Wood, P.R.; Ginsburg, A.G. The optically bright post-AGB population of the LMC. Astron. Astrophys. 2011, 530, A90. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2015, 454, 1468–1502. [Google Scholar] [CrossRef]
- Kamath, D.; Van Winckel, H.; Wood, P.R.; Asplund, M.; Karakas, A.I.; Lattanzio, J.C. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up. Astrophys. J. 2017, 836, 15. [Google Scholar] [CrossRef] [Green Version]
- Reyniers, M.; van Winckel, H. First detection of photospheric depletion in the Large Magellanic Cloud. Astron. Astrophys. 2007, 463, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Van Winckel, H. Extrinsically metal-poor stars: Photospheric chemical depletion in post-AGB/post-RGB stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2019, 486, 3524–3536. [Google Scholar] [CrossRef]
- Klochkova, V.G. Spectroscopy of F supergiants with infrared excess. Mon. Not. R. Astron. Soc. 1995, 272, 710–716. [Google Scholar]
- Van Winckel, H.; Oudmaijer, R.D.; Trams, N.R. HD 133656: A new high-latitude supergiant. Astron. Astrophys. 1996, 312, 553–559. [Google Scholar]
- Van Winckel, H.; Reyniers, M. A homogeneous study of the s-Process in the 21 micron carbon-rich post-AGB objects. Astron. Astrophys. 2000, 354, 135–149. [Google Scholar]
- Rao, S.S.; Giridhar, S.; Lambert, D.L. Chemical composition of a sample of candidate post-asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2012, 419, 1254–1270. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A.I.; Manick, R. Detailed homogeneous abundance studies of 14 Galactic s-Process enriched post-AGB stars: In search of lead (Pb). Astron. Astrophys. 2016, 587, A6. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S.; Volk, K.M.; Hrivnak, B.J. A 21 micron emission feature in four proto-planetary nebulae. Astrophys. J. 1989, 345, L51–L54. [Google Scholar] [CrossRef]
- Volk, K.; Sloan, G.C.; Kraemer, K.E. The 21 μm and 30 μm emission features in carbon-rich objects. Astrophys. Space Sci. 2020, 365, 88. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.; Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Griest, K.; Lawson, W.A.; et al. The MACHO Project LMC Variable Star Inventory. VII. The Discovery of RV Tauri Stars and New Type II Cepheids in the Large Magellanic Cloud. Astron. J. 1998, 115, 1921–1933. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.; Gordon, K.D.; Indebetouw, R.; Hora, J.L.; Whitney, B.; Blum, R.; Reach, W.; Bernard, J.; Meade, M.; Babler, B.; et al. Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy’s Evolution (SAGE). I. Overview and Initial Results. Astron. J. 2006, 132, 2268–2288. [Google Scholar] [CrossRef] [Green Version]
- Bolatto, A.D.; Simon, J.D.; Stanimirović, S.; van Loon, J.T.; Shah, R.Y.; Venn, K.; Leroy, A.K.; Sandstrom, K.; Jackson, J.M.; Israel, F.P.; et al. The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wave Bands. Astrophys. J. 2007, 655, 212–232. [Google Scholar] [CrossRef] [Green Version]
- Gordon, K.D.; Meixner, M.; Meade, M.R.; Whitney, B.; Engelbracht, C.; Bot, C.; Boyer, M.L.; Lawton, B.; Sewiło, M.; Babler, B.; et al. Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview. Astron. J. 2011, 142, 102. [Google Scholar] [CrossRef] [Green Version]
- Reyniers, M.; Van Winckel, H.; Biémont, E.; Quinet, P. Cerium: The lithium substitute in post-AGB stars. Astron. Astrophys. 2002, 395, L35–L38. [Google Scholar] [CrossRef]
- Goriely, S.; Mowlavi, N. Neutron-capture nucleosynthesis in AGB stars. Astron. Astrophys. 2000, 362, 599–614. [Google Scholar]
- Lugaro, M.; Karakas, A.I.; Stancliffe, R.J.; Rijs, C. The s-Process in Asymptotic Giant Branch Stars of Low Metallicity and the Composition of Carbon-enhanced Metal-poor Stars. Astrophys. J. 2012, 747, 2. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, K. The Chemical Diversity of Post-AGB Stars in the Galaxy and the Magellanic Clouds. Ph.D. Thesis, Institute of Astronomy, KU Leuven, Leuven, Belgium, 2015. [Google Scholar]
- Van Eck, S.; Goriely, S.; Jorissen, A.; Plez, B. Discovery of three lead-rich stars. Nature 2001, 412, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Masseron, T.; Johnson, J.A.; Plez, B.; van Eck, S.; Primas, F.; Goriely, S.; Jorissen, A. A holistic approach to carbon-enhanced metal-poor stars. Astron. Astrophys. 2010, 509, A93. [Google Scholar] [CrossRef]
- Cowan, J.J.; Rose, W.K. Production of 14C and neutrons in red giants. Astrophys. J. 1977, 212, 149–158. [Google Scholar] [CrossRef]
- Hampel, M.; Stancliffe, R.J.; Lugaro, M.; Meyer, B.S. The Intermediate Neutron-capture Process and Carbon-enhanced Metal-poor Stars. Astrophys. J. 2016, 831, 171. [Google Scholar] [CrossRef] [Green Version]
- Hampel, M.; Karakas, A.I.; Stancliffe, R.J.; Meyer, B.S.; Lugaro, M. Learning about the Intermediate Neutron-capture Process from Lead Abundances. Astrophys. J. 2019, 887, 11. [Google Scholar] [CrossRef] [Green Version]
- Karinkuzhi, D.; Van Eck, S.; Goriely, S.; Siess, L.; Jorissen, A.; Merle, T.; Escorza, A.; Masseron, T. Low-mass low-metallicity AGB stars as an efficient i-process site explaining CEMP-rs stars. Astron. Astrophys. 2021, 645, A61. [Google Scholar] [CrossRef]
- Lugaro, M.; Campbell, S.W.; Van Winckel, H.; De Smedt, K.; Karakas, A.I.; Käppeler, F. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars. Astron. Astrophys. 2015, 583, A77. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-Processing in AGB Stars Revisited. III. Neutron Captures from MHD Mixing at Different Metallicities and Observational Constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Goriely, S.; Siess, L.; Choplin, A. The intermediate neutron capture process. II. Nuclear uncertainties. Astron. Astrophys. 2021, 654, A129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamath, D.; Van Winckel, H. Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update. Universe 2022, 8, 233. https://doi.org/10.3390/universe8040233
Kamath D, Van Winckel H. Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update. Universe. 2022; 8(4):233. https://doi.org/10.3390/universe8040233
Chicago/Turabian StyleKamath, Devika, and Hans Van Winckel. 2022. "Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update" Universe 8, no. 4: 233. https://doi.org/10.3390/universe8040233
APA StyleKamath, D., & Van Winckel, H. (2022). Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update. Universe, 8(4), 233. https://doi.org/10.3390/universe8040233