Analogue Quantum Gravity in Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Methods: Acoustic Waves in Hyperbolic Materials as Analogues of Gravitational Waves
3. Discussion: Analogue Quantum Gravity Effects in Hyperbolic Metamaterials
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, Z.; Alekseyev, L.V.; Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Optics Express 2006, 14, 8247–8256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.R.; Kolinko, P.; Schurig, D. Negative refraction in indefinite media. JOSA B 2004, 21, 1032–1043. [Google Scholar] [CrossRef]
- Smolyaninov, I.I.; Narimanov, E.E. Metric signature transitions in optical metamaterials. Phys. Rev. Lett. 2010, 105, 067402. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.S.N.; Jacob, Z.; Narimanov, E.; Kretzschmarand, I.; Menon, V.M. Topological transitions in metamaterials. Science 2012, 336, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolyaninov, I.I.; Hung, Y.J.; Davis, C.C. Magnifying superlens in the visible frequency range. Science 2007, 315, 1699–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Z.; Smolyaninov, I.I.; Narimanov, E.E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 2012, 100, 181105. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Z.; Kim, J.-Y.; Naik, G.V.; Boltasseva, A.; Narimanov, E.E.; Shalaev, V.M. Engineering photonic density of states using metamaterials. App. Phys. B 2010, 100, 215. [Google Scholar] [CrossRef] [Green Version]
- Noginov, M.A.; Li, H.; Barnakov, Y.A.; Dryden, D.; Nataraj, G.; Zhu, G.; Bonner, C.E.; Mayy, M.; Jacob, Z.; Narimanov, E.E. Controlling spontaneous emission with metamaterials. Opt. Lett. 2010, 35, 1863. [Google Scholar] [CrossRef] [Green Version]
- Narimanov, E.; Noginov, M.A.; Li, H.; Barnakov, Y. Darker than black: Radiation-absorbing metamaterial. In Proceedings of the Quantum Electronics and Laser Science Conference, San Jose, CA, USA, 16–21 May 2010. OSA Technical Digest (CD) (Optical Society of America, 2010), Paper QPDA6. [Google Scholar]
- Narimanov, E.E.; Smolyaninov, I.I. Beyond Stefan-Boltzmann law: Thermal hyper-conductivity. arXiv 2011, arXiv:1109.5444. [Google Scholar]
- Smolyaninov, I.I. Quantum topological transition in hyperbolic metamaterials based on high Tc superconductors. J. Phys. Condens. Matter 2014, 26, 305701. [Google Scholar] [CrossRef] [PubMed]
- Smolyaninov, I.I. Analogue gravity in hyperbolic metamaterials. Phys. Rev. A 2013, 88, 033843. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, I.I.; Yost, B.; Bates, E.; Smolyaninova, V.N. Experimental demonstration of metamaterial “multiverse” in a ferrofluid. Opt. Express 2013, 21, 14918–14925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedov, E.S.; Iorsh, I.V.; Arakelian, S.M.; Alodjants, A.P.; Kavokin, A. Hyperbolic metamaterials with Bragg Polaritons. Phys. Rev. Lett. 2015, 114, 237402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekin, B. Hyperbolic metamaterials and massive Klein-Gordon equation in (2 + 1)-dimensional de Sitter spacetime. Phys. Rev. D 2021, 104, 105004. [Google Scholar] [CrossRef]
- Narimanov, E.E.; Kildishev, A.V. Metamaterials: Naturally hyperbolic. Nat. Photonics 2015, 9, 214–216. [Google Scholar] [CrossRef]
- Smolyaninov, I.I. Vacuum in strong magnetic field as a hyperbolic metamaterial. Phys. Rev. Lett. 2011, 107, 253903. [Google Scholar] [CrossRef] [Green Version]
- Chernodub, M.N. “Spontaneous electromagnetic superconductivity of vacuum in a strong magnetic field: Evidence from the Nambu–Jona-Lasinio model. Phys. Rev. Lett. 2011, 106, 142003. [Google Scholar] [CrossRef]
- Wangberg, R.; Elser, J.; Narimanov, E.E.; Podolskiy, V.A. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J. Opt. Soc. Am. B 2006, 23, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Korzeb, K.; Gajc, M.; Pawlak, D.A. Compendium of natural hyperbolic materials. Opt. Express 2015, 23, 25406–25424. [Google Scholar] [CrossRef]
- Smolyaninov, I.I.; Smolyaninova, V.N. Fine tuning and MOND in a metamaterial “multiverse”. Sci. Rep. 2017, 7, 8023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rysselberghe, P.V. Remarks concerning the Clausius–Mossotti law. J. Phys. Chem. 1932, 36, 1152–1155. [Google Scholar] [CrossRef]
- Misra, P.K. §2.1.3 Normal modes of a one-dimensional chain with a basis. In Physics of Condensed Matter; Academic Press: Cambridge, MA, USA, 2010; p. 44. [Google Scholar]
- Shen, C.; Xie, Y.; Sui, N.; Wang, W.; Cummer, S.A.; Jing, Y. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 2015, 115, 254301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolyaninov, I.I.; Smolyaninova, V.N. Hybrid acousto-electromagnetic metamaterial superconductors. Physica C 2020, 577, 1353730. [Google Scholar] [CrossRef]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Rowley, S.E.; Spalek, L.J.; Smith, R.P.; Dean, M.P.M.; Lonzarich, G.G.; Scott, J.F.; Saxena, S.S. Quantum criticality in ferroelectrics. Nat. Phys. 2014, 10, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Barber, B.P.; Putterman, S.J. Observation of synchronous picosecond sonoluminescence. Nature 1991, 352, 318. [Google Scholar] [CrossRef]
- Brenner, M.P.; Hilgenfeldt, S.; Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys. 2002, 74, 425. [Google Scholar] [CrossRef] [Green Version]
- Barber, B.P.; Hiller, R.A.; Löfstedt, R.; Putterman, S.J.; Weninger, K.R. Defining the unknowns of sonoluminescence. Phys. Rep. 1997, 281, 65–143. [Google Scholar] [CrossRef]
- Prosperetti, A.; Hao, Y. Modelling of spherical gas bubble oscillations and sonoluminescence. Phil. Trans. Royal Soc. A 1999, 357, 203–223. [Google Scholar] [CrossRef]
- Wu, C.C.; Roberts, P.H. Shock-wave propagation in a sonoluminescing gas bubble. Phys. Rev. Lett. 1993, 70, 3424. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.Y.; Na, J.H. Hydrodynamic solutions for a sonoluminescing gas bubble. Phys. Rev. Lett. 1996, 77, 4454. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, H.P.; Nadim, A. On sonoluminescence of an oscillating gas bubble. Phys. Fluids A Fluid Dyn. 1993, 5, 1065. [Google Scholar] [CrossRef]
- Eberlein, C. Theory of quantum radiation observed as sonoluminescence. Phys. Rev. A 1996, 53, 2772–2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberlein, C. Sonoluminescence as quantum vacuum radiation. Phys. Rev. Lett. 1996, 76, 3842. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, I.I. Enhancement of Unruh effect near hyperbolic metamaterials. Euro. Phys. Lett. 2021, 133, 18001. [Google Scholar] [CrossRef]
- Pfender, E. Heat and momentum transfer to particles in thermal plasma flows. Pure Appl. Chem. 1985, 7, 1179–1195. [Google Scholar] [CrossRef]
- Tumkur, T.U.; Gu, L.; Kitur, J.K.; Narimanov, E.E.; Noginov, M.A. Control of absorption with hyperbolic metamaterials. Appl. Phys. Lett. 2012, 100, 161103. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, H.; Chen, H. Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 2020, 127, 071101. [Google Scholar] [CrossRef] [Green Version]
- Poddubny, A.; Iorsh, I.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 2015, 40, 1–40. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. On gravitational waves. J. Frankl. Inst. 1937, 223, 43–54. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975; pp. 356–357. [Google Scholar]
- Weber, J. Detection and generation of gravitational waves. Phys. Rev. 1960, 117, 306. [Google Scholar] [CrossRef]
- Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. A brief history of gravitational waves. Universe 2016, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Goldhaber, A.S.; Nieto, M.M. Photon and graviton mass limits. Rev. Mod. Phys. 2010, 82, 939. [Google Scholar] [CrossRef]
- Penrose, R. The nonlinear graviton. Gen. Relativ. Gravit. 1976, 7, 171–176. [Google Scholar] [CrossRef]
- Gross, D.J.; Jackiw, R. Low-energy theorem for graviton scattering. Phys. Rev. 1968, 166, 1287. [Google Scholar] [CrossRef] [Green Version]
- Zeldovich, Y.B.; Starobiskii, A.A. Rate of particle production in gravitational fields. JETP Lett. 1977, 26, 252–255. [Google Scholar]
- Martin, J. Inflationary perturbations: The cosmological Schwinger effect. Lect. Notes Phys. 2008, 738, 193–241. [Google Scholar]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. The back reaction effect in particle creation in curved spacetime. Commun. Math. Phys. 1977, 54, 1–19. [Google Scholar] [CrossRef]
- Grib, A.A.; Levitskii, B.A.; Mostepanenko, V.M. Particle creation from vacuum by a nonstationary gravitational field in the canonical formalism. Theoret. Math. Phys. 1974, 19, 349–361. [Google Scholar] [CrossRef]
- Parker, L. Particle creation in expanding universes. Phys. Rev. Lett. 1968, 21, 562. [Google Scholar] [CrossRef]
- Ford, L.H. Gravitational particle creation and inflation. Phys. Rev. D 1987, 35, 2955. [Google Scholar] [CrossRef]
- Sexl, R.U.; Urbantke, H.K. Production of particles by gravitational fields. Phys. Rev. 1969, 179, 1247. [Google Scholar] [CrossRef]
- Woodhouse, N.M.J. Particle creation by gravitational fields. Phys. Rev. Lett. 1976, 36, 999. [Google Scholar] [CrossRef]
- Mottola, E. Particle creation in de Sitter space. Phys. Rev. D 1985, 31, 754. [Google Scholar] [CrossRef]
- Rubakov, V.A. Particle creation in a tunneling universe. JETP Lett. 1984, 39, 107–110. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolyaninov, I.I.; Smolyaninova, V.N. Analogue Quantum Gravity in Hyperbolic Metamaterials. Universe 2022, 8, 242. https://doi.org/10.3390/universe8040242
Smolyaninov II, Smolyaninova VN. Analogue Quantum Gravity in Hyperbolic Metamaterials. Universe. 2022; 8(4):242. https://doi.org/10.3390/universe8040242
Chicago/Turabian StyleSmolyaninov, Igor I., and Vera N. Smolyaninova. 2022. "Analogue Quantum Gravity in Hyperbolic Metamaterials" Universe 8, no. 4: 242. https://doi.org/10.3390/universe8040242
APA StyleSmolyaninov, I. I., & Smolyaninova, V. N. (2022). Analogue Quantum Gravity in Hyperbolic Metamaterials. Universe, 8(4), 242. https://doi.org/10.3390/universe8040242