How the Big Bang Ends Up Inside a Black Hole
Abstract
:1. Introduction
2. Observational Evidence for CDM
2.1. The Expansion of the Universe and the FLRW Metric
2.2. Nucleosynthesis and CMB
2.3. Cosmic Inflation and the Horizon Problem
2.4. Structure Formation and Dark Matter
2.5. Cosmic Acceleration, Dark Energy and the Static Universe
3. Inside a Black Hole (BH)
3.1. What Is a BH?
3.2. Inside a Black Hole
3.3. The Black Hole Universe (BHU)
3.4. How Did We End Up Inside a BH?
3.5. The Big Crunch
3.6. The Big Bounce
3.7. The Horizon Problem
3.8. Dark Energy
4. Discusion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Exact solution in General Relativity
Appendix A.1. Dual Frame: FLRW in the Physical Frame
Appendix A.2. The BHU Solution
Appendix A.3. Junction Conditions
Appendix B. The Action of GR and the Λ term
Appendix C. Outside Our BHU: A Rotating Cloud
References
- Dodelson, S. Modern Cosmology; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Dyson, L.; Kleban, M.; Susskind, L. Disturbing Implications of a Cosmological Constant. J. High Energy Phys. 2002, 2002, 011. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Before the big bang: An outrageous new perspective and its implications for particle physics. Conf. Proc. C 2006, 060626, 2759–2767. [Google Scholar]
- Durrer, R.; Kunz, M.; Sakellariadou, M. Why do we live in 3+1 dimensions? Phys. Lett. B 2005, 614, 125–130. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Ogushi, S. A Dynamical Brane in the Gravitational Dual of Superconformal Field Theory. Prog. Theor. Phys. 2001, 105, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Gaztañaga, E. The size of our causal Universe. Mon. Not. R. Astron. Soc. 2020, 494, 2766–2772. [Google Scholar] [CrossRef] [Green Version]
- Gaztañaga, E. The cosmological constant as a zero action boundary. Mon. Not. R. Astron. Soc. 2021, 502, 436–444. [Google Scholar] [CrossRef]
- Fosalba, P.; Gaztañaga, E. Explaining cosmological anisotropy: Evidence for causal horizons from CMB data. Mon. Not. R. Astron. Soc. 2021, 504, 5840–5862. [Google Scholar] [CrossRef]
- Gaztanaga, E. The Black Hole Universe (BHU) from an FLRW Cloud. Submitted to Physics of the Dark Universe. Available online: https://hal.archives-ouvertes.fr/hal-03344159 (accessed on 14 September 2021).
- Gaztanaga, E. The Cosmological Constant as Event Horizon. Symmetry 2022, 14, 300. [Google Scholar] [CrossRef]
- Camacho, B.; Gaztañaga, E. A measurement of the scale of homogeneity in the Early Universe. JCAP 2022, in press. Available online: https://arxiv.org/abs/2106.14303 (accessed on 27 June 2021).
- Gaztañaga, E.; Fosalba, P. A peek outside our Universe. Symmetry 2022, 14, 285. [Google Scholar] [CrossRef]
- Bernardeau, F.; Colombi, S.; Gaztañaga, E.; Scoccimarro, R. Large-scale structure of the Universe and cosmological perturbation theory. Phys. Rep. 2002, 367, 1–248. [Google Scholar] [CrossRef] [Green Version]
- Hubble, E. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slipher, V.M. Radial velocity observations of spiral nebulae. Observatory 1917, 40, 304–306. [Google Scholar]
- Leavitt, H.S.; Pickering, E.C. Periods of 25 Variable Stars in the Small Magellanic Cloud. Harv. Coll. Obs. 1912, 173, 1–3. [Google Scholar]
- Opik, E. An estimate of the distance of the Andromeda Nebula. Astrophys. J. 1922, 55, 406–410. [Google Scholar] [CrossRef]
- Lemaître, G. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 1927, 47, 49–59. [Google Scholar]
- Elizalde, E. The True Story of Modern Cosmology: Origins, Main Actors and Breakthroughs; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; Franklin, J. Schwarzschild and Birkhoff a la Weyl. Am. J. Phys. 2005, 73, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Penzias, A.A.; Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. 1965, 142, 419–421. [Google Scholar] [CrossRef]
- Dicke, R.H.; Peebles, P.J.E.; Roll, P.G.; Wilkinson, D.T. Cosmic Black-Body Radiation. Astrophys. J. 1965, 142, 414–419. [Google Scholar] [CrossRef]
- Alpher, R.A.; Herman, R.C. On the Relative Abundance of the Elements. Phys. Rev. 1948, 74, 1737–1742. [Google Scholar] [CrossRef]
- Alpher, V.S. Predicting the CMB: The hazards of being first. Phys. Today 2015, 68, 10. [Google Scholar] [CrossRef]
- Steigman, G. Primordial Nucleosynthesis in the Precision Cosmology Era. Annu. Rev. Nucl. Part. Sci. 2007, 57, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Starobinskiǐ, A.A. Spectrum of relict gravitational radiation and the early state of the universe. Sov. JET Phys. Lett. 1979, 30, 682. [Google Scholar]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A new inflationary universe scenario. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for GUT with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Liddle, A.R. Observational tests of inflation. arXiv 1999, arXiv:9910110. [Google Scholar]
- Smoot, G.F.; Bennett, C.L.; Kogut, A.; Wright, E.L.; Aymon, J.; Boggess, N.W.; Cheng, E.S.; de Amici, G.; Gulkis, S.; Hauser, M.G.; et al. Structure in the COBE Differential Microwave Radiometer First-Year Maps. Astrophys. J. Lett. 1992, 396, L1. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, J.; Kogut, A.; et al. First year WMAP observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Aiola, S.; Calabrese, E.; Maurin, L.; Naess, S.; Schmitt, B.L.; Abitbol, M.H.; Addison, G.E.; Ade, P.A.R.; Alonso, D.; Amiri, M.; et al. The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. J. Cosmol. Astropart. Phys. 2020, 2020, 047. [Google Scholar] [CrossRef]
- Dutcher, D.; Balkenhol, L.; Ade, P.A.R.; Ahmed, Z.; Anderes, E.; Anderson, A.J.; Archipley, M.; Avva, J.S.; Aylor, K.; Barry, P.S.; et al. Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data. Phys. Rev. D 2021, 104, 022003. [Google Scholar] [CrossRef]
- Efstathiou, G.; Sutherland, W.J.; Maddox, S.J. The cosmological constant and cold dark matter. Nature 1990, 348, 705–707. [Google Scholar] [CrossRef]
- Gaztanaga, E.; Baugh, C.M. Testing deprojection algorithms on mock angular catalogues: Evidence for a break in the power spectrum. Mon. Not. R. Astron. Soc. 1998, 294, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Gawiser, E.; Silk, J. Extracting Primordial Density Fluctuations. Science 1998, 280, 1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DES Collaboration. DES Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Efstathiou, G.; Bond, J.R.; White, S.D.M. COBE background radiation anisotropies and large-scale structure in the universe. Mon. Not. R. Astron. Soc. 1992, 258, 1P–6P. [Google Scholar] [CrossRef] [Green Version]
- Tegmark, M.; Rees, M.J. Why Is the Cosmic Microwave Background Fluctuation Level 10−5? Astrophys. J. 1998, 499, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Fry, J.N.; Gaztanaga, E. Biasing and Hierarchical Statistics in Large-Scale Structure. Astrophys. J. 1993, 413, 447. [Google Scholar] [CrossRef] [Green Version]
- Gaztañaga, E.; Juszkiewicz, R. Gravity’s Smoking Gun? Astrophys. J. 2001, 558, L1–L4. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Hu, W. Baryonic Features in the Matter Transfer Function. Astrophys. J. 1998, 496, 605–614. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.-J.; Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560–574. [Google Scholar] [CrossRef]
- Gaztañaga, E.; Cabré, A.; Hui, L. Clustering of luminous red galaxies—IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon. Not. R. Astron. Soc. 2009, 399, 1663–1680. [Google Scholar] [CrossRef] [Green Version]
- Gaztañaga, E.; Miquel, R.; Sánchez, E. First Cosmological Constraints on Dark Energy from the Radial Baryon Acoustic Scale. Phys. Rev. Lett. 2009, 103, 091302. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 1985, 292, 371–394. [Google Scholar] [CrossRef]
- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J. 1937, 86, 217. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.; Kent, J. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Clowe, D.; Gonzalez, A.; Markevitch, M. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence of Dark Matter. Astrophys. J. 2004, 604, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Feldman, H.; Juszkiewicz, R.; Ferreira, P.; Davis, M.; Gaztañaga, E.; Fry, J.; Jaffe, A.; Chambers, S.; da Costa, L.; Bernardi, M.; et al. An Estimate of Ωm without Conventional Priors. Astrophys. J. Lett. 2003, 596, L131–L134. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Profumo, S.; Giani, L.; Piattella, O.F. An Introduction to Particle Dark Matter. Universe 2019, 5, 213. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshne, R.P. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Huterer, D.; Turner, M.S. Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D 1999, 60, 081301. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Kosmologische Betrachtungen zur Allgemeinen RelativitäTstheorie; Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften: Berlin, Germany, 1917; pp. 142–152. [Google Scholar]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Peebles, P.J.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Crittenden, R.G.; Turok, N. Looking for a Cosmological Constant with the Rees-Sciama Effect. Phys. Rev. Lett. 1996, 76, 575–578. [Google Scholar] [CrossRef]
- Fosalba, P.; Gaztañaga, E.; Castander, F.J. Detection of the Integrated Sachs-Wolfe and Sunyaev-Zeldovich Effects from the Cosmic Microwave Background-Galaxy Correlation. Astrophys. J. 2003, 597, L89–L92. [Google Scholar] [CrossRef] [Green Version]
- Seife, C. Illuminating the Dark Universe. Science 2003, 302, 2038–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaztañaga, E.; Manera, M.; Multamäki, T. New light on dark cosmos. Mon. Not. R. Astron. Soc. 2006, 365, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Freire, P. Masses, Radii, and the Equation of State of Neutron Stars. Annu. Rev. Astron. Astrophys. 2016, 54, 401–440. [Google Scholar] [CrossRef] [Green Version]
- Zel’Dovich, Y.B. Gravitational instability: An approximate theory for large density perturbations. Astron. Astrophys. 1970, 500, 13–18. [Google Scholar]
- Harrison, E.R. Fluctuations at the Threshold of Classical Cosmology. Phys. Rev. D 1970, 1, 2726–2730. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Yu, J.T. Primeval Adiabatic Perturbation in an Expanding Universe. Astrophys. J. 1970, 162, 815. [Google Scholar] [CrossRef]
- Baym, G.; Pethick, C. Physics of neutron stars. Annu. Rev. Astron. Astrophys. 1979, 17, 415–443. [Google Scholar] [CrossRef]
- Bera, P.; Jones, D.I.; Andersson, N. Does elasticity stabilize a magnetic neutron star? Mon. Not. R. Astron. Soc. 2020, 499, 2636–2647. [Google Scholar] [CrossRef]
- Carretero, J.; Castander, F.J.; Gaztañaga, E.; Crocce, M.; Fosalba, P. An algorithm to build mock galaxy catalogues using MICE simulations. Mon. Not. R. Astron. Soc. 2015, 447, 646–670. [Google Scholar] [CrossRef]
- Itoh, N. Hydrostatic Equilibrium of Hypothetical Quark Stars. Prog. Theor. Phys. 1970, 44, 291–292. [Google Scholar] [CrossRef] [Green Version]
- Carr, B.; Kühnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Annu. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Hinshaw, G.; Banday, A.J.; Bennett, C.L.; Górski, K.M.; Kogut, A.; Lineweaver, C.H.; Smoot, G.F.; Wright, E.L. Two-Point Correlations in the COBE DMR Four-Year Anisotropy Maps. Astrophys. J. Lett. 1996, 464, L25. [Google Scholar] [CrossRef] [Green Version]
- Gaztañaga, E.; Wagg, J.; Multamäki, T.; Montaña, A.; Hughes, D.H. Two-point anisotropies in WMAP and the cosmic quadrupole. Mon. Not. R. Astron. Soc. 2003, 346, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, G.; Ma, Y.Z.; Hanson, D. Large-angle correlations in the cosmic microwave background. Mon. Not. R. Astron. Soc. 2010, 407, 2530–2542. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.J.; Copi, C.J.; Huterer, D.; Starkman, G.D. CMB anomalies after Planck. Class. Quantum Gravity 2016, 33, 184001. [Google Scholar] [CrossRef]
- Yeung, S.; Chu, M.C. Directional Variations of Cosmological Parameters from the Planck CMB Data. arXiv 2022, arXiv:2201.03799. [Google Scholar] [CrossRef]
- York, J.W. Role of Conformal Three-Geometry in the Dynamics of Gravitation. Phys. Rev. Lett. 1972, 28, 1082–1085. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738–2751. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W.; Horowitz, G.T. The gravitational Hamiltonian, action, entropy and surface terms. Class Quantum Gravity 1996, 13, 1487–1498. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A. Interpretational conflicts between the static and non-static forms of the de Sitter metric. Nat. Sci. Rep. 2012, 2, 923. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Diaz, P.F. The space-time metric inside a black hole. Nuovo C. Lett. 1981, 32, 161–163. [Google Scholar] [CrossRef]
- Easson, D.A.; Brandenberger, R.H. Universe generation from black hole interiors. High Energy Phys. 2001, 2001, 024. [Google Scholar] [CrossRef] [Green Version]
- Daghigh, R.G.; Kapusta, J.I.; Hosotani, Y. False Vacuum Black Holes and Universes. arXiv 2000, arXiv:gr-qc/0008006. [Google Scholar]
- Firouzjahi, H. Primordial Universe Inside the Black Hole and Inflation. arXiv 2016, arXiv:1610.03767. [Google Scholar]
- Oshita, N.; Yokoyama, J. Creation of an inflationary universe out of a black hole. Phys. Lett. B 2018, 785, 197–200. [Google Scholar] [CrossRef]
- Dymnikova, I. Universes Inside a Black Hole with the de Sitter Interior. Universe 2019, 5, 111. [Google Scholar] [CrossRef] [Green Version]
- Blau, S.K.; Guendelman, E.I.; Guth, A.H. Dynamics of false-vacuum bubbles. Phys. Rev. D 1987, 35, 1747–1766. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Markov, M.A.; Mukhanov, V.F. Through a black hole into a new universe? Phys. Lett. B 1989, 216, 272–276. [Google Scholar] [CrossRef]
- Aguirre, A.; Johnson, M.C. Dynamics and instability of false vacuum bubbles. Phys. Rev. D 2005, 72, 103525. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.O.; Mottola, E. Surface tension and negative pressure interior of a non-singular ‘black hole’. Class. Quantum Gravity 2015, 32, 215024. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Vilenkin, A.; Zhang, J. Black Holes and the multiverse. J. Cosmol. Astropart. Phys. 2016, 2016, 064. [Google Scholar] [CrossRef] [Green Version]
- Kusenko, A.E. Exploring Primordial Black Holes from the Multiverse with Optical Telescopes. Phys. Rev. Lett. 2020, 125, 181304. [Google Scholar] [CrossRef] [PubMed]
- Pathria, R.K. The Universe as a Black Hole. Nature 1972, 240, 298–299. [Google Scholar] [CrossRef]
- Good, I.J. Chinese universes. Phys. Today 1972, 25, 15. [Google Scholar] [CrossRef]
- Popławski, N. Universe in a Black Hole in Einstein-Cartan Gravity. Astrophys. J. 2016, 832, 96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.X. The Principles and Laws of Black Hole Universe. J. Mod. Phys. 2018, 9, 1838–1865. [Google Scholar] [CrossRef] [Green Version]
- Smolin, L. The Life of the Cosmos; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Knutsen, H. The idea of the universe as a black hole revisited. Gravit. Cosmol. 2009, 15, 273–277. [Google Scholar] [CrossRef]
- Stuckey, W.M. The observable universe inside a black hole. Am. J. Phys. 1994, 62, 788–795. [Google Scholar] [CrossRef]
- Barriga, J.; Gaztañaga, E.; Santos, M.G.; Sarkar, S. On the APM power spectrum and the CMB anisotropy: Evidence for a phase transition during inflation? Mon. Not. R. Astron. Soc. 2001, 324, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Secrest, N.J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J. A Test of the Cosmological Principle with Quasars. Astrophys. J. Lett. 2021, 908, L51. [Google Scholar] [CrossRef]
- Riess, A.G. The expansion of the Universe is faster than expected. Nat. Rev. Phys. 2019, 2, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Castelvecchi, D. How fast is the Universe expanding? Cosmologists just got more confused. Nature 2019, 571, 458–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Dadhich, N. Singularity: Raychaudhuri equation once again. Pramana 2007, 69, 23. [Google Scholar] [CrossRef] [Green Version]
- Ellis, G. Opposing the multiverse. Astron. Geophys. 2008, 49, 2.33–2.35. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Gravitation; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Israel, W. Singular hypersurfaces and thin shells in General Relativity. Nuovo C. B Ser. 1967, 48, 463. [Google Scholar] [CrossRef] [Green Version]
- Barrabès, C.; Israel, W. Thin shells in general relativity and cosmology: The lightlike limit. Phys. Rev. D 1991, 43, 1129–1142. [Google Scholar] [CrossRef]
- Hilbert, D. Die Grundlage der Physick. Konigl. Gesell. Wiss. Gött. Math-Phys. K 1915, 3, 395–407. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Elsevier: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
Cosmic Observation | Big Bang (CDM) Explanation | BHU Explanation |
---|---|---|
Expansion law | FLRW metric | FLRW metric |
Element abundance | Nucleosynthesis | Nucleosynthesis |
Cosmic Microwave Background (CMB) | recombination | recombination |
All sky CMB uniformity | Inflation | Uniform Big Bounce |
Cosmic acceleration, BAO & ISW | Dark Energy | BH event horizon size |
14 Gyr age since | Dark Energy | BH event horizon size |
Rotational curves & Cosmic flows | Dark Matter | compact remnants (BHs, NS) of Big Bounce |
& gravitational lensing | Dark Matter | compact remnants (BHs, NS) of Big Bounce |
CMB fluctuations | free parameter | Big Crunch perturbations |
free parameter | fraction of compact to difuse renmants | |
free parameter | time to deSitter phase | |
Large scales anomalies in CMB | Cosmic Variance (bad luck) | super-horizon cutoff |
anomalies in cosmological parameters | Systematic effects | super-horizon perturbations |
flat universe | Inflation | topology of empty space |
monopole problem | Inflation | low energy Big Bounce |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaztanaga, E. How the Big Bang Ends Up Inside a Black Hole. Universe 2022, 8, 257. https://doi.org/10.3390/universe8050257
Gaztanaga E. How the Big Bang Ends Up Inside a Black Hole. Universe. 2022; 8(5):257. https://doi.org/10.3390/universe8050257
Chicago/Turabian StyleGaztanaga, Enrique. 2022. "How the Big Bang Ends Up Inside a Black Hole" Universe 8, no. 5: 257. https://doi.org/10.3390/universe8050257
APA StyleGaztanaga, E. (2022). How the Big Bang Ends Up Inside a Black Hole. Universe, 8(5), 257. https://doi.org/10.3390/universe8050257