Avoiding Bias in Measurements of Fundamental Constants from High Resolution Quasar Spectra †
Abstract
:1. Introduction
2. Wavelength Calibration
3. Absorption Profile Modelling
3.1. VPFIT and AI-VPFIT
- The Voigt profile 2-level atom approximation is good enough, even at very high spectral signal to noise, for non-damped column densities i.e., [22].
- Voigt function look-up tables must be sufficiently high resolution in the relevant parameter (u) to render non-linear effects negligible. Interpolation within those tables must also be sufficiently precise [10].
- It is most important to allow for non-linearity in the Voigt profile shape by computing model Voigt profiles in extremely fine bins [19].
- As far as possible, any blends/interlopers must be allowed for, whether they arise in identified species or not. Failure to do can significantly increase the measurement error and bias individual measurements [23].
- Fitting region selection is important. If line wings/continuum regions are truncated, best-fit models for exhibit an unnecessarily large scatter [24].
- How to select a “final” absorption system model, given non-uniqueness and alternative information criteria? [25].
- Using the correct instrumental profile for model calculations is important [14].
- All spectral regions used in the measurement must be carefully checked for potential contaminating atmospheric features [28].
3.2. Information Criterion or to Select Models?
3.3. Contributions to the Error Budget
- 1.
- Statistical error i.e., VPFIT covariance matrix error.
- 2.
- If turbulent broadening is used to model the system and if the true intrinsic broadening is compound (see Equation (3)), a systematic error is introduced.
- 3.
- Absorption system model non-uniqueness error.
- 4.
- Continuum estimate error.
- 5.
- Isotopic relative abundances.
- 6.
- Q coefficient uncertainties (these bias towards ).
- 7.
- Oscillator strength uncertainties.
- 8.
- Laboratory wavelength uncertainties.
- 9.
- Wavelength calibration error (for pre-LFC/FP data).
- 10.
- Bad pixels.
- 11.
- Flat-fielding errors.
- 12.
- Weak cosmic rays removal.
- 13.
- Significant point-spread function variations across the detector.
3.4. Future Measurements Require Monte Carlo AI
4. Spectral Simulations and Distortion-Blinding
4.1. Preliminary Illustration of How Distortion-Blinding + Turbulent Line Broadening Creates Bias
4.2. Detailed Calculations Using ai-vpfit
4.3. A Retrospective on Distortion-Blinding
5. Discussion
- When modelling/solving for , if fitting multiple species simultaneously, turbulent broadening should not be used. Instead only compound broadening should be used. If compound broadening is problematic because T is not sufficiently well constrained, either the measurement should be discarded, or possibly one could adopt a representative T as a fixed parameter, although in this case the uncertainty on may be artificially lowered. We have not investigated such an approach in this paper.
- Distortion-blinding biases results and should be avoided. Deliberately distorting a spectrum and then solving for its velocity structure with forced to be zero is most likely to create a result that is biased towards . Previous measurements carried out in this way should be repeated.
- Some absorption systems suffer from model non-uniqueness. Therefore it is desirable to model each absorption system multiple times to quantify this.
- In obtaining the observational data, wavelength coverage should be done using LFCs or FPs. If observations from different observing runs at different epochs are to be combined/jointly analysed, there should be calibration redundancy i.e., ideally calibrations always done with two LFCs or FPs. Accurate calibration reaching as blue as the atmospheric cutoff is essential to pick up lower rest-wavelength transitions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzuba, V.A.; Flambaum, V.V.; Webb, J.K. Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms. Phys. Rev. Lett. 1999, 82, 888–891. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.K.; Flambaum, V.V.; Churchill, C.W.; Drinkwater, M.J.; Barrow, J.D. Search for Time Variation of the Fine Structure Constant. Phys. Rev. Lett. 1999, 82, 884–887. [Google Scholar] [CrossRef] [Green Version]
- Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Cabral, A.; Di Marcantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; et al. ESPRESSO at VLT. On-sky performance and first results. Astron. Astrophys. 2021, 645, A96. [Google Scholar] [CrossRef]
- Marconi, A.; Marcantonio, P.D.; D’Odorico, V.; Cristiani, S.; Maiolino, R.; Oliva, E.; Origlia, L.; Riva, M.; Valenziano, L.; Zerbi, F.M.; et al. EELT-HIRES the high-resolution spectrograph for the E-ELT. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VI, Edinburgh, UK, 26 June–1 July 2016. [Google Scholar]
- Tamai, R.; Koehler, B.; Cirasuolo, M.; Biancat-Marchet, F.; Tuti, M.; Gonzáles Herrera, J.C. The ESO’s ELT construction status. In Proceedings of the Ground-Based and Airborne Telescopes VII, Austin, TX, USA, 10–15 June 2018. [Google Scholar]
- Molaro, P.; Levshakov, S.A.; Monai, S.; Centurión, M.; Bonifacio, P.; D’Odorico, S.; Monaco, L. UVES radial velocity accuracy from asteroid observations. I. Implications for fine structure constant variability. Astron. Astrophys. 2008, 481, 559–569. [Google Scholar] [CrossRef]
- Rahmani, H.; Wendt, M.; Srianand, R.; Noterdaeme, P.; Petitjean, P.; Molaro, P.; Whitmore, J.B.; Murphy, M.T.; Centurion, M.; Fathivavsari, H.; et al. The UVES large program for testing fundamental physics—II. Constraints on a change in μ towards quasar HE 0027-1836. Mon. Not. R. Astron. Soc. 2013, 435, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, J.B.; Murphy, M.T. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra. Mon. Not. R. Astron. Soc. 2015, 447, 446–462. [Google Scholar] [CrossRef]
- Dumont, V.; Webb, J.K. Modelling long-range wavelength distortions in quasar absorption echelle spectra. Mon. Not. R. Astron. Soc. 2017, 468, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.K.; Carswell, R.F.; Lee, C.C. Precision in high resolution absorption line modelling, analytic Voigt derivatives, and optimization methods. Mon. Not. R. Astron. Soc. 2021, 508, 3620–3633. [Google Scholar] [CrossRef]
- Hänsch, T.W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 2006, 78, 1297–1309. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, T.; Wilken, T.; Araujo-Hauck, C.; Holzwarth, R.; Hänsch, T.W.; Pasquini, L.; Manescau, A.; D’Odorico, S.; Murphy, M.T.; Kentischer, T.; et al. Laser Frequency Combs for Astronomical Observations. Science 2008, 321, 1335. [Google Scholar] [CrossRef]
- Hänsch, T.W.; Picqué, N. Laser Spectroscopy and Frequency Combs. J. Phys. Conf. Ser. 2013, 467, 12001. [Google Scholar] [CrossRef] [Green Version]
- Milaković, D.; Pasquini, L.; Webb, J.K.; Lo Curto, G. Precision and consistency of astrocombs. Mon. Not. R. Astron. Soc. 2020, 493, 3997–4011. [Google Scholar] [CrossRef]
- Probst, R.A.; Milaković, D.; Toledo-Padrón, B.; Lo Curto, G.; Avila, G.; Brucalassi, A.; Canto Martins, B.L.; de Castro Leão, I.; Esposito, M.; González Hernández, J.I.; et al. A crucial test for astronomical spectrograph calibration with frequency combs. Nat. Astron. 2020, 4, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.M.; Molaro, P.; Murphy, M.T.; Lovis, C.; Cupani, G.; Cristiani, S.; Pepe, F.A.; Rebolo, R.; Santos, N.C.; Abreu, M.; et al. Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant. Astron. Astrophys. 2021, 646, A144. [Google Scholar] [CrossRef]
- Mayor, M.; Pepe, F.; Queloz, D.; Bouchy, F.; Rupprecht, G.; Lo Curto, G.; Avila, G.; Benz, W.; Bertaux, J.L.; Bonfils, X.; et al. Setting New Standards with HARPS. Messenger 2003, 114, 20–24. [Google Scholar]
- Carswell, R.F. Bob Carswell’s Homepage. Available online: https://people.ast.cam.ac.uk/~rfc/ (accessed on 26 January 2022).
- Carswell, R.F.; Webb, J.K. VPFIT: Voigt Profile Fitting Program. Available online: http://ascl.net/1408.015 (accessed on 26 January 2022).
- Lee, C.C.; Webb, J.K.; Carswell, R.F. Addendum: Precision in high resolution absorption line modelling, analytic Voigt derivatives, and optimisation methods. arXiv 2021, arXiv:2112.14490. [Google Scholar] [CrossRef]
- Carswell, R.F.; Webb, J.K. VPFIT User Guide. Available online: https://www.overleaf.com/read/vbxkcfnfgksr (accessed on 26 January 2022).
- Lee, C.C.; Webb, J.K.; Carswell, R.F. Quantum mechanics at high redshift - modelling damped Lyman-α absorption systems. Mon. Not. R. Astron. Soc. 2020, 491, 5555–5571. [Google Scholar] [CrossRef]
- Lee, C.C.; Webb, J.K.; Carswell, R.F.; Milaković, D. Artificial intelligence and quasar absorption system modelling; application to fundamental constants at high redshift. Mon. Not. R. Astron. Soc. 2021, 504, 1787–1800. [Google Scholar] [CrossRef]
- Wilczynska, M.R.; Webb, J.K.; King, J.A.; Murphy, M.T.; Bainbridge, M.B.; Flambaum, V.V. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines. Mon. Not. R. Astron. Soc. 2015, 454, 3082–3093. [Google Scholar] [CrossRef]
- Lee, C.C.; Webb, J.K.; Milaković, D.; Carswell, R.F. Non-uniqueness in quasar absorption models and implications for measurements of the fine structure constant. Mon. Not. R. Astron. Soc. 2021, 507, 27–42. [Google Scholar] [CrossRef]
- Milaković, D.; Lee, C.C.; Carswell, R.F.; Webb, J.K.; Molaro, P.; Pasquini, L. A new era of fine structure constant measurements at high redshift. Mon. Not. R. Astron. Soc. 2021, 500, 1–21. [Google Scholar] [CrossRef]
- Noterdaeme, P.; Balashev, S.; Ledoux, C.; Duchoquet, G.; López, S.; Telikova, K.; Boissé, P.; Krogager, J.K.; De Cia, A.; Bergeron, J. Sharpening quasar absorption lines with ESPRESSO. Temperature of warm gas at z ∼ 2, constraints on the Mg isotopic ratio, and structure of cold gas at z ∼ 0.5. Astron. Astrophys. 2021, 651, A78. [Google Scholar] [CrossRef]
- European Southern Observatory. SKYCALC Sky Model Calculator. Available online: http://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME=SKYCALC (accessed on 26 January 2022).
- Bainbridge, M.B.; Webb, J.K. Evaluating the New Automatic Method for the Analysis of Absorption Spectra Using Synthetic Spectra. Universe 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Bainbridge, M.B.; Webb, J.K. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant. MNRAS 2017, 468, 1639–1670. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R. How many cosmological parameters? Mon. Not. R. Astron. Soc. 2004, 351, L49–L53. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 2007, 377, L74–L78. [Google Scholar] [CrossRef] [Green Version]
- Burnham, K.; Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Rossi, R.; Murari, A.; Gaudio, P.; Gelfusa, M. Upgrading Model Selection Criteria with Goodness of Fit Tests for Practical Applications. Entropy 2020, 22, 447. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.K.; Lee, C.C.; Carswell, R.F.; Milaković, D. Getting the model right: An information criterion for spectroscopy. Mon. Not. R. Astron. Soc. 2021, 501, 2268–2278. [Google Scholar] [CrossRef]
- Murphy, M.; Webb, J.; Flambaum, V.; Churchill, C.; Prochaska, J. Possible evidence for a variable fine-structure constant from QSO absorption lines: Systematic errors. Mon. Not. R. Astron. Soc. 2001, 327, 1223–1236. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B.; Wilczynska, M.R.; Koch, F.E. Spatial variation in the fine-structure constant—New results from VLT/UVES. Mon. Not. R. Astron. Soc. 2012, 422, 3370–3414. [Google Scholar] [CrossRef] [Green Version]
- Evans, T.M.; Murphy, M.T.; Whitmore, J.B.; Misawa, T.; Centurion, M.; D’Odorico, S.; Lopez, S.; Martins, C.J.A.P.; Molaro, P.; Petitjean, P.; et al. The UVES Large Program for testing fundamental physics—III. Constraints on the fine-structure constant from three telescopes. Mon. Not. R. Astron. Soc. 2014, 445, 128–150. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.T.; Cooksey, K.L. Subaru Telescope limits on cosmological variations in the fine-structure constant. Mon. Not. R. Astron. Soc. 2017, 471, 4930–4945. [Google Scholar] [CrossRef] [Green Version]
- Kotuš, S.M.; Murphy, M.T.; Carswell, R.F. High-precision limit on variation in the fine-structure constant from a single quasar absorption system. Mon. Not. R. Astron. Soc. 2017, 464, 3679–3703. [Google Scholar] [CrossRef]
- Murphy, M.T.; Molaro, P.; Leite, A.C.O.; Cupani, G.; Cristiani, S.; D’Odorico, V.; Génova Santos, R.; Martins, C.J.A.P.; Milaković, D.; Nunes, N.J.; et al. Fundamental physics with ESPRESSO: Precise limit on variations in the fine-structure constant towards the bright quasar HE 0515–4414. arXiv 2021, arXiv:2112.05819. [Google Scholar] [CrossRef]
Species | (km/s) | T ( K) | v (km/s) | () | ||
---|---|---|---|---|---|---|
Generating | Mg ii | 12.500 | 3.87 | 5.31 | 0.000 | 10.0 |
model | Fe ii | 12.000 | ||||
Fitting | Mg ii | 12.499 (0.002) | 3.70 | 5.53 | 0.000 | 10.1 |
(compound) | Fe ii | 12.000 (0.007) | (0.27) | (0.34) | (0.028) | (0.4) |
Mg ii | 12.493 (0.017) | 7.02 | - | −0.279 | ||
Fitting | Fe ii | - | (0.05) | (0.084) | - | |
(turbulent) | Mg ii | 10.682 (1.099) | 5.44 | - | −2.152 | |
Fe ii | 12.001 (0.007) | (0.10) | (0.070) |
log N(Mg ii) | log N(Fe ii) | (km/s) | T ( K) | |
---|---|---|---|---|
12.66 | 12.20 | 1.49 | 1.64 | 1.1469691 |
12.61 | 12.16 | 7.19 | 4.06 | 1.1469952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webb, J.K.; Lee, C.-C.; Milaković, D. Avoiding Bias in Measurements of Fundamental Constants from High Resolution Quasar Spectra. Universe 2022, 8, 266. https://doi.org/10.3390/universe8050266
Webb JK, Lee C-C, Milaković D. Avoiding Bias in Measurements of Fundamental Constants from High Resolution Quasar Spectra. Universe. 2022; 8(5):266. https://doi.org/10.3390/universe8050266
Chicago/Turabian StyleWebb, John K., Chung-Chi Lee, and Dinko Milaković. 2022. "Avoiding Bias in Measurements of Fundamental Constants from High Resolution Quasar Spectra" Universe 8, no. 5: 266. https://doi.org/10.3390/universe8050266
APA StyleWebb, J. K., Lee, C. -C., & Milaković, D. (2022). Avoiding Bias in Measurements of Fundamental Constants from High Resolution Quasar Spectra. Universe, 8(5), 266. https://doi.org/10.3390/universe8050266