Modified Supergravity Phenomenology in Gravitational Waves Era
Abstract
:1. Introduction
2. Model
3. Primordial Black Holes
4. Energy Density of Induced Gravitational Waves
5. Sound Speed Resonance (SSR)
6. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbot, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addensso, P.; Adhikari, R.X.; et al. LIGO Scientific and Virgo Collaborations—Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbot, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addensso, P.; Adhikari, R.X.; et al. LIGO Scientific and Virgo Collaborations—GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—Perspectives in gravitational wave astronomy. Class. Quantum Gravity 2018, 35, 063001. [Google Scholar] [CrossRef] [Green Version]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J.I. Constraints on Primordial Black Holes. Rep. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef]
- Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Annu. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Acquaviva, V.; Bartolo, N.; Matarrese, S.; Riotto, A. Second order cosmological perturbations from inflation. Nucl. Phys. B 2003, 667, 119–148. [Google Scholar] [CrossRef] [Green Version]
- Ananda, K.N.; Clarkson, C.; Wands, D. The Cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 2007, 75, 123518. [Google Scholar] [CrossRef] [Green Version]
- Aldabergenov, Y.; Addazi, A.; Ketov, S.V. Primordial black holes from modified supergravity. Eur. Phys. J. C 2020, 80, 917. [Google Scholar] [CrossRef]
- Aldabergenov, Y.; Addazi, A.; Ketov, S.V. Testing Primordial Black Holes as Dark Matter in Supergravity from Gravitational Waves. Phys. Lett. B 2021, 814, 136069. [Google Scholar] [CrossRef]
- Addazi, A.; Khlopov, M.Y. Dark matter and inflation in R + ζR2 supergravity. Phys. Lett. B 2017, 766, 17–22. [Google Scholar] [CrossRef]
- Addazi, A.; Khlopov, M.Y. Dark Matter from Starobinsky Supergravity. Mod. Phys. Lett. A 2017, 32, 1740002. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Ketov, S.V.; Khlopov, M.Y. Gravitino and Polonyi production in supergravity. Eur. Phys. J. C 2018, 78, 642. [Google Scholar] [CrossRef]
- Addazi, A.; Marciano, A.; Ketov, S.V.; Khlopov, M.Y. Physics of superheavy dark matter in supergravity. Int. J. Mod. Phys. D 2018, 27, 1841011. [Google Scholar] [CrossRef]
- Palma, G.A.; Sypsas, S.; Zenteno, C. Seeding primordial black holes in multifield inflation. Phys. Rev. Lett. 2020, 125, 121301. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.F.; Tong, X.; Wang, D.G.; Yan, S.F. Primordial Black Holes from Sound Speed Resonance during Inflation. Phys. Rev. Lett. 2018, 121, 081306. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Primordial Features as Evidence for Inflation. J. Cosmol. Astropart. Phys. JCAP 2012, 2012, 038. [Google Scholar] [CrossRef]
- Gao, X.; Langlois, D.; Mizuno, S. Oscillatory features in the curvature power spectrum after a sudden turn of the inflationary trajectory. J. Cosmol. Astropart. Phys. JCAP 2013, 2013, 023. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Capozziello, S.; Gan, Q. Induced Gravitational Waves from Multi-Sound Speed Resonances during Cosmological Inflation. arXiv 2022, arXiv:2204.07668. [Google Scholar]
- Wess, J.; Bagger, J. Supersymmetry and Supergravity; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Pi, S.; Zhang, Y.L.; Huang, Q.G.; Sasaki, M. Scalaron from R2-gravity as a heavy field. J. Cosmol. Astropart. Phys. JCAP 2018, 2018, 042. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S. Planck Collaboration—Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary Primordial Black Holes as All Dark Matter. Phys. Rev. D 2017, 96, 043504. [Google Scholar] [CrossRef] [Green Version]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Yanagida, T.T. Double inflation as a single origin of primordial black holes for all dark matter and LIGO observations. Phys. Rev. D 2018, 97, 043514. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, J.R.; Racco, D.; Riotto, A. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. J. Cosmol. Astropart. Phys. JCAP 2018, 2018, 012. [Google Scholar] [CrossRef] [Green Version]
- Auclair, P.; LISA Cosmology Working Group. Cosmology with the Laser Interferometer Space Antenna. arXiv 2022, arXiv:2204.05434. [Google Scholar]
- Nojiri, S.; Odintsov, S. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Ketov, S.V. Energy conditions in Starobinsky supergravity. J. Cosmol. Astropart. Phys. JCAP 2017, 2017, 061. [Google Scholar] [CrossRef] [Green Version]
- Maselli, A.; Pani, P.; Cardoso, V.; Abdelsalhin, T.; Gualtieri, L.; Ferrari, V. Probing Planckian corrections at the horizon scale with LISA binaries. Phys. Rev. Lett. 2018, 120, 081101. [Google Scholar] [CrossRef] [Green Version]
- Sennett, N.; Hinderer, T.; Steinhoff, J.; Buonanno, A.; Ossokine, S. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems. Phys. Rev. D 2017, 96, 024002. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Marcianò, A.; Yunes, N. Can we probe Planckian corrections at the horizon scale with gravitational waves? Phys. Rev. Lett. 2019, 122, 081301. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A. Evaporation/Antievaporation and energy conditions in alternative gravity. Int. J. Mod. Phys. A 2018, 33, 1850030. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Capozziello, S.; Odintsov, S. Chaotic solutions and black hole shadow in f (R) gravity. Phys. Lett. B 2021, 816, 136257. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Primordial gravitational waves predictions for GW170817-compatible Einstein–Gauss–Bonnet theory. Astropart. Phys. 2022, 141, 102718. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Myrzakulov, R. Spectrum of Primordial Gravitational Waves in Modified Gravities: A Short Overview. Symmetry 2022, 14, 729. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Amplification of Primordial Gravitational Waves by a Geometrically Driven non-canonical Reheating Era. Fortschr. Phys. 2022, 70, 2100167. [Google Scholar] [CrossRef]
10 | 17 | 20 | 23 | 10 | 17 | 20 | 23 | |
r | ||||||
---|---|---|---|---|---|---|
Case I | 0 | 20 | ||||
Case II | 0 | 19 | ||||
Case III | 0 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addazi, A.; Gan, Q. Modified Supergravity Phenomenology in Gravitational Waves Era. Universe 2022, 8, 280. https://doi.org/10.3390/universe8050280
Addazi A, Gan Q. Modified Supergravity Phenomenology in Gravitational Waves Era. Universe. 2022; 8(5):280. https://doi.org/10.3390/universe8050280
Chicago/Turabian StyleAddazi, Andrea, and Qingyu Gan. 2022. "Modified Supergravity Phenomenology in Gravitational Waves Era" Universe 8, no. 5: 280. https://doi.org/10.3390/universe8050280
APA StyleAddazi, A., & Gan, Q. (2022). Modified Supergravity Phenomenology in Gravitational Waves Era. Universe, 8(5), 280. https://doi.org/10.3390/universe8050280