GeV Proton Detection in the 8 November 2000 Solar Event
Abstract
:1. Introduction
2. The Solar Proton Event of 8 November 2000
3. The L3 + C Experiment
4. Data Analysis and Results
4.1. Event Selection
- Only a single muon track was present in the muon chamber;
- The track was composed of at least three segments of hits in P-chambers (wires parallel to the magnetic field) and two segments of hits in Z-chambers (wires perpendicular to the magnetic field), ensuring that it was a good muon track;
- The back-tracking of the track from the muon chambers to the surface was successful in order to ensure good pointing.
4.2. Time Binning and Sky Mapping
4.3. Background
4.4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOAA Space Environment Services Center. Available online: http://umbra.nascom.nasa.gov/SEP/seps.html (accessed on 29 March 2022).
- Oulu Cosmic Ray Station. Available online: https://gle.oulu.fi/ (accessed on 29 March 2022).
- Forbush, S.E. Three unusual cosmic-ray intensity increases due to charged particles from the Sun. Phys. Rev. 1946, 70, 771–772. [Google Scholar] [CrossRef]
- Chilingarian, A.A.; Reymers, A.E. Particle detectors in solar physics and space weather research. Astropart. Phys. 2007, 27, 465–472. [Google Scholar] [CrossRef]
- Cramp, J.L.; Duldig, M.L.; Flckiger, E.O.; Humble, J.E.; Shea, M.A.; Smart, D.F. The October 22, 1989, solar cosmic ray enhancement: An analysis of the anisotropy and spectral characteristics. J. Geophys. Res. Space Phys. 1997, 102, 24237–24248. [Google Scholar] [CrossRef] [Green Version]
- Tsyganenko, N.A. A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 1989, 37, 5–20. [Google Scholar] [CrossRef]
- Tsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry-2: Parameterization and fitting to observations. J. Geophys. Res. Space Phys. 2002, 107, SMP12-1–SMP12-15. [Google Scholar] [CrossRef] [Green Version]
- Duldig, M.L.; Bombardieri, D.J.; Humble, J.E. Further fine time resolution analysis of the bastille day 2000 GLE. In Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, 31 July–7 August 2003; SH1.4. pp. 3389–3392. [Google Scholar]
- Bieber, J.W.; Droge, W.; Evenson, P.A.; Pyle, R.; Ruffolo, D.; Pinsook, U.; Tooprakai, P.; Rujiwarodom, M.; Khumlumlert, T.; Krucker, S. Energetic particle observations during the 2000 July 14 solar event. Astrophys. J. 2002, 567, 622–634. [Google Scholar] [CrossRef]
- Bombardieri, D.J.; Duldig, M.L.; Michael, K.J.; Humble, J.E. Relativistic proton production during the 2000 July 14 solar event: The case for multiple source mechanisms. Astrophys. J. 2006, 644, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Cliver, E.W.; Kahler, S.W.; Shea, M.A.; Smart, D.F. Injection onsets of ~2 GeV protons, ~1 MeV electrons, and ~100 keV electrons in solar cosmic ray flares. Astrophys. J. 1982, 260, 362–370. [Google Scholar] [CrossRef]
- Cliver, E.W. The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J. 2006, 639, 1206–1217. [Google Scholar] [CrossRef]
- Wang, R.G. Statistical characteristics of solar energetic proton events from January 1997 to June 2005. Astropart. Phys. 2006, 26, 202–208. [Google Scholar] [CrossRef]
- Wang, R.G.; Wang, J.X. Investigation of the cosmic ray ground level enhancements during solar cycle 23. Adv. Space Res. 2006, 38, 489–492. [Google Scholar] [CrossRef]
- Wang, R.G. Large geomagnetic storms of extreme solar event periods in solar cycle 23. Adv. Space Res. 2007, 40, 1835–1841. [Google Scholar] [CrossRef]
- Cane, H.V.; Richardson, I.G.; Von Rosenvinge, T.T. A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 2010, 115, A08101. [Google Scholar] [CrossRef]
- Firoz, K.A.; Hwang, J.; Dorotovič, I.; Pintér, T.; Kaushik, S.C. Relationship of ground level enhancements with solar interplanetary and geophysical parameters. Astrophys. Space Sci. 2011, 331, 469–484. [Google Scholar] [CrossRef]
- Firoz, K.A.; Moon, Y.J.; Park, S.H.; Kudela, K.; Islam, J.N.; Dorman, L.I. On the possible mechanisms of two ground-level enhancement events. Astrophys. J. 2011, 743, 190. [Google Scholar] [CrossRef]
- Firoz, K.A.; Gan, W.Q.; Moon, Y.J.; Li, C. An interpretation of the possible mechanisms of two ground-level enhancement events. Astrophys. J. 2012, 758, 119. [Google Scholar] [CrossRef]
- Aschwanden, M.J. GeV particle acceleration in solar flares and ground level enhancementt (GLE) events. Space Sci. Rev. 2012, 171, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Parker, P.N. Acceleration of cosmic rays in solar flares. Phys. Rev. 1957, 107, 830–836. [Google Scholar] [CrossRef]
- Navia, C.E.; Augusto, C.R.A.; Robba, M.B.; Malheiro, M.; Shigueoka, H. Is there an enhancement of muons at sea level from transient events? Astrophys. J. 2005, 621, 1137–1145. [Google Scholar] [CrossRef]
- Wang, R.G.; Wang, J.X. Spectra and solar energetic protons over 20 GeV in Bastille Day event. Astropart. Phys. 2006, 25, 41–46. [Google Scholar] [CrossRef]
- The L3 Collaboration. The solar flare of the 14th July 2000 (L3 + C detector results). Astron. Astrophys. 2006, 456, 351–357. [Google Scholar] [CrossRef]
- Wang, R.G. Did the 2000 July 14 solar flare accelerate protons to ≥40 GeV? Astropart. Phys. 2009, 31, 149–155. [Google Scholar] [CrossRef]
- Alexeenko, V.V.; Chernyaev, A.B.; Chudakov, A.E.; Khaerdinov, N.S.; Semenov, A.M.; Szalbelski, J.; Voevodsky, A.V. 29 September 1989 GLE (ground level enhancement) at Baksan air shower array (BASA). In Proceedings of the 23rd ICRC, Calgary, AB, Canada, 19–30 July 1993; Volume 3, p. 163. [Google Scholar]
- Schindler, S.M.; Kearney, P.D. Evidence for solar particle production above 75 GeV. Nature 1971, 237, 503–505. [Google Scholar] [CrossRef]
- Adriani, O.; van den Akker, M.; Banerjee, S.; Bähr, J.; Betev, B.; Bourilkov, D.; Bottai, S.; Bobbink, G.; Cartacci, A.; Chemarin, M.; et al. The L3 + C detector, a unique tool-set to study cosmic rays. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 488, 209–225. [Google Scholar] [CrossRef]
- Adeva, B.; Aguilar-Benitez, M.; Akbari, H.; Alcaraz, J.; Aloisio, A.; Alvarez-Taviel, J.; Alverson, G.; Alviggi, M.G.; Anderhub, H.; Anderson, A.L.; et al. The construction of the L3 experiment Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1990, 289, 35–102. [Google Scholar] [CrossRef] [Green Version]
- CDAW Data Center. Available online: http://cdaw.gsfc.nasa.gov/meetings/2002sep/data/eventlist.html (accessed on 29 March 2022).
- Cane, H.V.; Erickson, W.C.; Prestage, N.P. Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res. Space Phys. 2002, 107, SSH 14-1–SSH 14-19. [Google Scholar] [CrossRef] [Green Version]
- Kurt, V.; Belov, A.; Mavromichalaki, H.; Gerontidou, M. Statistical analysis of solar proton events. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2004; Volume 22, pp. 2255– 2271. [Google Scholar]
- CDAW Data Center. Available online: http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/2000_11/univ2000_11.html (accessed on 29 March 2022).
- NOAA National Geophysical Data Center. Available online: ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/radio-bursts/tables/spectral-sgd/2000/11/Solar_Radio_Spectral_Obs_0011.pdf (accessed on 29 March 2022).
- Logachev, Y.I.; Bazilevskaya, G.A.; Vashenyuk, E.V.; Daibog, E.I.; Ishkov, V.N. CATALOG of Solar Proton Events in the 23rd Cycle of Solar Activity (1996–2008); Geophysical Center of the Russian Academy of Sciences: Moscow, Russia, 2016; 740p, Available online: http://www.wdcb.ru/stp/data/SPE/Catalog_SPE_23_cycle_SA.pdf (accessed on 29 March 2022).
- Thakur, N.; Gopalswamy, N.; Mäkelä, P. Two Exceptions in the Large SEP Events of Solar Cycles 23 and 24. Solar Phys. 2016, 291, 513–530. [Google Scholar] [CrossRef]
- Heck, D.; Knapp, J. Technical Report FZKA 6019; Forschungszentum Karlsruhe: Karlsruhe, Germany, 1998. [Google Scholar]
- Miroshnichenko, L.I. Solar Cosmic Rays: Fundamentals and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 98–108. [Google Scholar]
- Bieber, J.W.; Clem, J.; Evenson, P.; Pyle, R. Relativistic solar neutrons and protons on 28 October 2003. Geophys. Res. Lett. 2003, 32, L03S02. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Miroshnichenk, L.I.; Fang, C. Proton activity of the Sun in current solar cycle 24. Res. Astron. Astrophys. 2015, 15, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenk, L.I.; Li, C.; Yanke, V.G. Small size ground level enhancements during solar cycle 24. Solar Phys. 2020, 295, 102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Yu, Z.; Ma, Y.; Ding, L.; Zhu, Q.; Yao, Z.; Ma, X.; Xu, Y.; Yang, C. GeV Proton Detection in the 8 November 2000 Solar Event. Universe 2022, 8, 287. https://doi.org/10.3390/universe8050287
Wang R, Yu Z, Ma Y, Ding L, Zhu Q, Yao Z, Ma X, Xu Y, Yang C. GeV Proton Detection in the 8 November 2000 Solar Event. Universe. 2022; 8(5):287. https://doi.org/10.3390/universe8050287
Chicago/Turabian StyleWang, Ruiguang, Zhongqiang Yu, Yuqian Ma, Linkai Ding, Qingqi Zhu, Zhiguo Yao, Xinhua Ma, Yupeng Xu, and Changgen Yang. 2022. "GeV Proton Detection in the 8 November 2000 Solar Event" Universe 8, no. 5: 287. https://doi.org/10.3390/universe8050287
APA StyleWang, R., Yu, Z., Ma, Y., Ding, L., Zhu, Q., Yao, Z., Ma, X., Xu, Y., & Yang, C. (2022). GeV Proton Detection in the 8 November 2000 Solar Event. Universe, 8(5), 287. https://doi.org/10.3390/universe8050287