Starobinsky–Bel–Robinson Gravity
Abstract
:1. Introduction
2. Starobinsky Gravity and Extra Dimensions
3. Bel–Robinson-Tensor-Squared Term
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
1 | Another possibility is to start from F-theory in dimensions and compactify it on a product of two Kummer surfaces . |
References
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Ketov, S. On the large-field equivalence between Starobinsky and Higgs inflation in gravity and supergravity. PoS 2022, 405, 014. [Google Scholar] [CrossRef]
- Ade, P.A.R. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef] [PubMed]
- Otero, S.P.; Pedro, F.G.; Wieck, C. R+αRn Inflation in higher-dimensional Space-times. J. High Energy Phys. 2017, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Nakada, H.; Ketov, S.V. Inflation from higher dimensions. Phys. Rev. D 2017, 96, 123530. [Google Scholar] [CrossRef] [Green Version]
- Salam, A.; Sezgin, E. d = 8 supergravity. Nucl. Phys. B 1985, 258, 284. [Google Scholar] [CrossRef]
- Cremmer, E.; Julia, B.; Scherk, J. Supergravity Theory in Eleven-Dimensions. Phys. Lett. B 1978, 76, 409–412. [Google Scholar] [CrossRef]
- Green, M.B.; Vanhove, P. D instantons, strings and M theory. Phys. Lett. B 1997, 408, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Tseytlin, A.A. R**4 terms in 11 dimensions and conformal anomaly of (2,0) theory. Nucl. Phys. B 2000, 584, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, T.; Gilkey, P.B.; Hanson, A.J. Gravitation, Gauge Theories and Differential Geometry. Phys. Rept. 1980, 66, 213. [Google Scholar] [CrossRef]
- Douglas, M.R.; Kachru, S. Flux compactification. Rev. Mod. Phys. 2007, 79, 733–796. [Google Scholar] [CrossRef] [Green Version]
- Iihoshi, M.; Ketov, S.V. On the superstrings-induced four-dimensional gravity, and its applications to cosmology. Adv. High Energy Phys. 2008, 2008, 521389. [Google Scholar] [CrossRef]
- Bel, L. La radiation gravitationnelle. Colloq. Int. CNRS 1962, 91, 119–126. [Google Scholar]
- Robinson, I. On the Bel-Robinson tensor. Class. Quantum Grav. 1997, 14, A331–A333. [Google Scholar] [CrossRef]
- Deser, S. The Immortal Bel-Robinson tensor. arXiv 1999, arXiv:gr-qc/9901007. [Google Scholar]
- Landau, L.D.; Lifshitz, E. Textbook on Theoretical Physics. Vol. 2: Classical Field Theory; Butterworth-Heinemann: Oxford, UK, 1987. [Google Scholar]
- Goldberg, J. General Relativity and Gravitation: 100-Years after the Birth Albert Einstein; Held, A., Ed.; Plenum Press: New York, NY, USA, 1980; Volume 1. [Google Scholar]
- Elgood, Z.; Ortin, T.; Pereniguez, D. The first law and Wald entropy formula of heterotic stringy black holes at first order in α′. J. High Energy Phys. 2021, 5, 110. [Google Scholar] [CrossRef]
- Ivanov, V.R.; Ketov, S.V.; Pozdeeva, E.O.; Vernov, S.Y. Analytic extensions of Starobinsky model of inflation. J. Cosmol. Astropart. Phys. 2022, 3, 58. [Google Scholar] [CrossRef]
- Ketov, S.V.; Mochalov, S.V. Curvature cubed string correction to the Hawking temperature of a black hole. Phys. Lett. B 1991, 261, 35–40. [Google Scholar] [CrossRef]
- Bachas, C.; Baulieu, L.; Douglas, M.; Kiritsis, E.; Rabinovici, E.; Vanhove, P.; Windey, P.; Cugliandolo, L.F. (Eds.) String Theory and the Real World: From Particle Physics to Astrophysics. Proceedings, Summer School in Theoretical Physics, 87th Session, Les Houches, France, 2–27 July 2007; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Ketov, S.V. Quantum Nonlinear Sigma Models: From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Alexandrov, S.; Ketov, S.V.; Wakimoto, Y. Non-perturbative scalar potential inspired by type IIA strings on rigid CY. J. High Energy Phys. 2021, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Laurentis, M.D.; Paolella, M.; Capozziello, S. Cosmological inflation in F(R,) gravity. Phys. Rev. D 2015, 91, 083531. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketov, S.V. Starobinsky–Bel–Robinson Gravity. Universe 2022, 8, 351. https://doi.org/10.3390/universe8070351
Ketov SV. Starobinsky–Bel–Robinson Gravity. Universe. 2022; 8(7):351. https://doi.org/10.3390/universe8070351
Chicago/Turabian StyleKetov, Sergei V. 2022. "Starobinsky–Bel–Robinson Gravity" Universe 8, no. 7: 351. https://doi.org/10.3390/universe8070351
APA StyleKetov, S. V. (2022). Starobinsky–Bel–Robinson Gravity. Universe, 8(7), 351. https://doi.org/10.3390/universe8070351