Observability of HOFNARs at SRG/eROSITA
Abstract
:1. Introduction
2. Model
2.1. Spatial Distribution and Number of Objects
2.2. Thermal Properties of HOFNARs
2.3. Detectability of HOFNARs
2.4. Interstellar absorption
3. Results
4. Discussion
4.1. Comparison with ROSAT
4.2. On Identification of HOFNARs in the X-ray Survey
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCO | Central compact object |
eROSITA | extended ROentgen Survey with an Imaging Telescope Array |
HOFNAR | HOt and Fast Non Accreting Rotator |
LXMB | Low-mass X-ray binary |
MSP | Millisecond radio pulsar |
NS | Neutron star |
qLXMB | quiescent Low-mass X-ray binary |
SRG | Spectrum-Roentgen-Gamma |
1 | |
2 | |
3 | Here we treat as a newborn HOFNAR a NS which finishes the LMXB stage of evolution with active r-mode instability. |
References
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; Cornell University: Ithaca, NY, USA, 1983. [Google Scholar]
- Haensel, P.; Potekhin, A.; Yakovlev, D. Neutron Stars 1: Equation of State and Structure; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germny, 2007. [Google Scholar]
- Rezzolla, L.; Pizzochero, P.; Jones, D.I.; Rea, N.; Vidaña, I. (Eds.) The Physics and Astrophysics of Neutron Stars; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Harding, A.K. The neutron star zoo. Front. Phys. 2013, 8, 679–692. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; LIGO Scientific Collaboration; Virgo Collaboration. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X 2019, 9, 011001. [Google Scholar] [CrossRef] [Green Version]
- Chugunov, A.I.; Gusakov, M.E.; Kantor, E.M. New possible class of neutron stars: Hot and fast non-accreting rotators. Mon. Not. R. Astron. Soc. 2014, 445, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 2021, 647, A1. [Google Scholar] [CrossRef]
- Millisecond Pulsars. Available online: https://link.springer.com/book/10.1007/978-3-030-85198-9 (accessed on 15 June 2022).
- Bisnovatyi-Kogan, G.S.; Komberg, B.V. Possible evolution of a binary-system radio pulsar as an old object with a weak magnetic field. Sov. Astron. Lett. 1976, 2, 130–132. [Google Scholar]
- Alpar, M.A.; Cheng, A.F.; Ruderman, M.A.; Shaham, J. A new class of radio pulsars. Nature 1982, 300, 728–730. [Google Scholar] [CrossRef]
- Harding, A.K. The Emission Physics of Millisecond Pulsars. In Millisecond Pulsars; Bhattacharyya, S., Papitto, A., Bhattacharya, D., Eds.; Astrophysics and Space Science Library; Springer: Cham, Switzerland, 2022; Volume 465, pp. 57–85. [Google Scholar] [CrossRef]
- Reisenegger, A. Constraining Dense Matter Superfluidity through Thermal Emission from Millisecond Pulsars. Astrophys. J. 1997, 485, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Kantor, E.M.; Gusakov, M.E. Long-lasting accretion-powered chemical heating of millisecond pulsars. Mon. Not. R. Astron. Soc. 2021, 508, 6118–6127. [Google Scholar] [CrossRef]
- Durant, M.; Kargaltsev, O.; Pavlov, G.G.; Kowalski, P.M.; Posselt, B.; van Kerkwijk, M.H.; Kaplan, D.L. The Spectrum of the Recycled PSR J0437-4715 and Its White Dwarf Companion. Astrophys. J. 2012, 746, 6. [Google Scholar] [CrossRef] [Green Version]
- Schwenzer, K.; Boztepe, T.; Güver, T.; Vurgun, E. X-ray bounds on the r-mode amplitude in millisecond pulsars. Mon. Not. R. Astron. Soc. 2017, 466, 2560–2569. [Google Scholar] [CrossRef]
- Chugunov, A.I.; Gusakov, M.E.; Kantor, E.M. R modes and neutron star recycling scenario. Mon. Not. R. Astron. Soc. 2017, 468, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Heinke, C.O.; Chugunov, A.I.; Freire, P.C.C.; Ridolfi, A.; Bogdanov, S. Chandra studies of the globular cluster 47 Tucanae: A deeper X-ray source catalogue, five new X-ray counterparts to millisecond radio pulsars, and new constraints to r-mode instability window. Mon. Not. R. Astron. Soc. 2017, 472, 3706–3721. [Google Scholar] [CrossRef]
- González-Caniulef, D.; Guillot, S.; Reisenegger, A. Neutron star radius measurement from the ultraviolet and soft X-ray thermal emission of PSR J0437-4715. Mon. Not. R. Astron. Soc. 2019, 490, 5848–5859. [Google Scholar] [CrossRef]
- Boztepe, T.; Göğüş, E.; Güver, T.; Schwenzer, K. Strengthening the bounds on the r-mode amplitude with X-ray observations of millisecond pulsars. Mon. Not. R. Astron. Soc. 2020, 498, 2734–2749. [Google Scholar] [CrossRef]
- Harding, A.K.; Muslimov, A.G. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission. I. Curvature Radiation Pair Fronts. Astrophys. J. 2001, 556, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.K.; Muslimov, A.G. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission. II. Inverse Compton Radiation Pair Fronts. Astrophys. J. 2002, 568, 862–877. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.L.; Schutz, B.F. Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 1978, 221, 937–957. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schutz, B.F. Secular instability of rotating Newtonian stars. Astrophys. J. 1978, 222, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N. A New Class of Unstable Modes of Rotating Relativistic Stars. Astrophys. J. 1998, 502, 708. [Google Scholar] [CrossRef] [Green Version]
- Chugunov, A.I. Radiation Driven Instability of Rapidly Rotating Relativistic Stars: Criterion and Evolution Equations Via Multipolar Expansion of Gravitational Waves. Publ. Astron. Soc. Australia 2017, 34, e046. [Google Scholar] [CrossRef] [Green Version]
- Reisenegger, A.; Bonacic, A. Bulk viscosity, r-modes, and the early evolution of neutron stars. In Proceedings of the International Workshop on Pulsars, AXPs and SGRs Observed with BeppoSAX and Other Observatories, Marsala, Italy, 23–25 September 2002. [Google Scholar]
- Alford, M.G.; Schwenzer, K. Gravitational wave emission and spindown of young pulsars. Astrophys. J. 2014, 781, 26. [Google Scholar] [CrossRef] [Green Version]
- Routray, T.R.; Pattnaik, S.P.; Gonzalez-Boquera, C.; Viñas, X.; Centelles, M.; Behera, B. Influence of direct Urca on the r-mode spin down features of newborn neutron star pulsars. Phys. Scripta 2021, 96, 045301. [Google Scholar] [CrossRef]
- Lindblom, L.; Owen, B.J.; Morsink, S.M. Gravitational Radiation Instability in Hot Young Neutron Stars. Phys. Rev. Lett. 1998, 80, 4843–4846. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Prokhorov, M.E. REVIEWS OF TOPICAL PROBLEMS: Population synthesis in astrophysics. Phys. Uspekhi 2007, 50, 1123–1146. [Google Scholar] [CrossRef] [Green Version]
- Ploeg, H.; Gordon, C.; Crocker, R.; Macias, O. Comparing the galactic bulge and galactic disk millisecond pulsars. J. Cosmology Astropart. Phys. 2020, 2020, 035. [Google Scholar] [CrossRef]
- Gonthier, P.L.; Harding, A.K.; Ferrara, E.C.; Frederick, S.E.; Mohr, V.E.; Koh, Y.M. Population Syntheses of Millisecond Pulsars from the Galactic Disk and Bulge. Astrophys. J. 2018, 863, 199. [Google Scholar] [CrossRef]
- Story, S.A.; Gonthier, P.L.; Harding, A.K. Population Synthesis of Radio and γ-Ray Millisecond Pulsars from the Galactic Disk. Astrophys. J. 2007, 671, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Haskell, B. R-modes in neutron stars: Theory and observations. Int. J. Mod. Phys. E 2015, 24, 1541007. [Google Scholar] [CrossRef] [Green Version]
- Kantor, E.M.; Gusakov, M.E.; Dommes, V.A. Constraining Neutron Superfluidity with R -Mode Physics. Phys. Rev. Lett. 2020, 125, 151101. [Google Scholar] [CrossRef] [PubMed]
- Kantor, E.M.; Gusakov, M.E.; Dommes, V.A. Resonance suppression of the r-mode instability in superfluid neutron stars: Accounting for muons and entrainment. Phys. Rev. D 2021, 103, 023013. [Google Scholar] [CrossRef]
- Kraav, K.Y.; Gusakov, M.E.; Kantor, E.M. Non-analytic behavior of the relativistic r-modes in slowly rotating neutron stars. arXiv 2021, arXiv:2112.01171. [Google Scholar]
- Heinke, C.O.; Grindlay, J.E.; Lloyd, D.A.; Edmonds, P.D. X-Ray Studies of Two Neutron Stars in 47 Tucanae: Toward Constraints on the Equation of State. Astrophys. J. 2003, 588, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S.; Heinke, C.O.; Özel, F.; Güver, T. Neutron Star Mass-Radius Constraints of the Quiescent Low-mass X-Ray Binaries X7 and X5 in the Globular Cluster 47 Tuc. Astrophys. J. 2016, 831, 184. [Google Scholar] [CrossRef]
- Heinke, C.O.; Grindlay, J.E.; Edmonds, P.D. Three Additional Quiescent Low-Mass X-Ray Binary Candidates in 47 Tucanae. Astrophys. J. 2005, 622, 556–564. [Google Scholar] [CrossRef]
- Gusakov, M.E.; Chugunov, A.I.; Kantor, E.M. Instability Windows and Evolution of Rapidly Rotating Neutron Stars. Phys. Rev. Lett. 2014, 112, 151101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gusakov, M.E.; Chugunov, A.I.; Kantor, E.M. Explaining observations of rapidly rotating neutron stars in low-mass x-ray binaries. Phys. Rev. D 2014, 90, 063001. [Google Scholar] [CrossRef] [Green Version]
- Martsen, A.R.; Ransom, S.M.; DeCesar, M.E.; Freire, P.C.C.; Hessels, J.W.T.; Ho, A.Y.Q.; Lynch, R.S.; Stairs, I.H.; Wang, Y. Pulse Profiles and Polarization of Terzan 5 Pulsars. arXiv 2022, arXiv:2204.06158. [Google Scholar]
- Ivanova, N.; Heinke, C.O.; Rasio, F.A.; Belczynski, K.; Fregeau, J.M. Formation and evolution of compact binaries in globular clusters—II. Binaries with neutron stars. Mon. Not. R. Astron. Soc. 2008, 386, 553–576. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, E.; Rappaport, S.; Podsiadlowski, P. The Galactic Population of Low- and Intermediate-Mass X-Ray Binaries. Astrophys. J. 2003, 597, 1036–1048. [Google Scholar] [CrossRef] [Green Version]
- Levin, Y.; Ushomirsky, G. Crust core coupling and r mode damping in neutron stars: A Toy model. Mon. Not. Roy. Astron. Soc. 2001, 324, 917. [Google Scholar] [CrossRef]
- Lindblom, L.; Owen, B.J. Effect of hyperon bulk viscosity on neutron-star r-modes. Phys. Rev. D 2002, 65, 063006. [Google Scholar] [CrossRef] [Green Version]
- Glampedakis, K.; Andersson, N. Crust-core coupling in rotating neutron stars. Phys. Rev. D 2006, 74, 044040. [Google Scholar] [CrossRef]
- Glampedakis, K.; Andersson, N. Ekman layer damping of r modes revisited. Mon. Not. R. Astron. Soc. 2006, 371, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Haskell, B.; Andersson, N.; Passamonti, A. r modes and mutual friction in rapidly rotating superfluid neutron stars. Mon. Not. R. Astron. Soc. 2009, 397, 1464–1485. [Google Scholar] [CrossRef]
- Alford, M.G.; Mahmoodifar, S.; Schwenzer, K. Viscous damping of r-modes: Small amplitude instability. Phys. Rev. D 2012, 85, 024007. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Schwenzer, K. What the Timing of Millisecond Pulsars Can Teach us about Their Interior. Phys. Rev. Lett. 2014, 113, 251102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, B.; Glampedakis, K.; Andersson, N. A new mechanism for saturating unstable r modes in neutron stars. Mon. Not. R. Astron. Soc. 2014, 441, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
- Kokkotas, K.D.; Schwenzer, K. R-mode astronomy. Eur. Phys. J. A 2016, 52, 38. [Google Scholar] [CrossRef]
- Pattnaik, S.P.; Routray, T.R.; Viñas, X.; Basu, D.N.; Centelles, M.; Madhuri, K.; Behera, B. Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction. J. Phys. G 2018, 45, 055202. [Google Scholar] [CrossRef] [Green Version]
- Ofengeim, D.D.; Gusakov, M.E.; Haensel, P.; Fortin, M. R-mode stabilization in neutron stars with hyperon cores. J. Phys. Conf. Seri. 2019, 1400, 022029. [Google Scholar] [CrossRef]
- Ofengeim, D.D.; Gusakov, M.E.; Haensel, P.; Fortin, M. Bulk viscosity in neutron stars with hyperon cores. Phys. Rev. D 2019, 100, 103017. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.L.; Chen, X.; Tauris, T.M.; Han, Z. Formation of Black Widows and Redbacks—Two Distinct Populations of Eclipsing Binary Millisecond Pulsars. Astrophys. J. 2013, 775, 27. [Google Scholar] [CrossRef] [Green Version]
- Parfrey, K.; Spitkovsky, A.; Beloborodov, A.M. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields. Astrophys. J. 2016, 822, 33. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Chakrabarty, D. The Effect of Transient Accretion on the Spin-up of Millisecond Pulsars. Astrophys. J. 2017, 835, 4. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Freire, P. Masses, Radii, and the Equation of State of Neutron Stars. Annu. Rev. Astron. Astrophys. 2016, 54, 401–440. [Google Scholar] [CrossRef] [Green Version]
- Horvath, J.E.; Rocha, L.S.; Bernardo, A.L.C.; de Avellar, M.G.B.; Valentim, R. Birth events, masses and the maximum mass of Compact Stars. arXiv 2020, arXiv:2011.08157. [Google Scholar]
- Heinke, C.O.; Rybicki, G.B.; Narayan, R.; Grindlay, J.E. A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae. Astrophys. J. 2006, 644, 1090–1103. [Google Scholar] [CrossRef] [Green Version]
- Zavlin, V.E.; Pavlov, G.G.; Shibanov, Y.A. Model neutron star atmospheres with low magnetic fields. I. Atmospheres in radiative equilibrium. Astron. Astrophys. 1996, 315, 141–152. [Google Scholar]
- Merloni, A.; Predehl, P.; Becker, W.; Böhringer, H.; Boller, T.; Brunner, H.; Brusa, M.; Dennerl, K.; Freyberg, M.; Friedrich, P.; et al. eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv 2012, arXiv:1209.3114. [Google Scholar]
- Morrison, R.; McCammon, D. Interstellar photoelectric absorption cross sections, 0.03–10 keV. Astrophys. J. 1983, 270, 119–122. [Google Scholar] [CrossRef]
- Khokhryakova, A.D.; Biryukov, A.V.; Popov, S.B. Observability of Single Neutron Stars at SRG/eROSITA. Astronomy Reports 2021, 65, 615–630. [Google Scholar] [CrossRef]
- Pfeffermann, E.; Briel, U.G.; Hippmann, H.; Kettenring, G.; Metzner, G.; Predehl, P.; Reger, G.; Stephan, K.H.; Zombeck, M.; Chappell, J.; et al. The focal plane instrumentation of the ROSAT Telescope. In Soft X-Ray Optics and Technology; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series: Bellingham, WA, USA, 1987; Volume 733, p. 519. [Google Scholar]
- Sofue, Y.; Nakanishi, H. Three-dimensional distribution of the ISM in the Milky Way Galaxy. IV. 3D molecular fraction and Galactic-scale H I-to-H2 transition. Publ. Astron. Soc. Jpn. 2016, 68, 63. [Google Scholar] [CrossRef] [Green Version]
- Misiriotis, A.; Xilouris, E.M.; Papamastorakis, J.; Boumis, P.; Goudis, C.D. The distribution of the ISM in the Milky Way. A three-dimensional large-scale model. Astron. Astrophys. 2006, 459, 113–123. [Google Scholar] [CrossRef]
- Willingale, R.; Starling, R.L.C.; Beardmore, A.P.; Tanvir, N.R.; O’Brien, P.T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 2013, 431, 394–404. [Google Scholar] [CrossRef]
- Boller, T.; Freyberg, M.J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K. Second ROSAT all-sky survey (2RXS) source catalogue. Astron. Astrophys. 2016, 588, A103. [Google Scholar] [CrossRef]
- Voges, W.; Aschenbach, B.; Boller, T.; Bräuninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; et al. The ROSAT all-sky survey bright source catalogue. Astron. Astrophys. 1999, 349, 389–405. [Google Scholar]
- Schwope, A.; Hasinger, G.; Lehmann, I.; Schwarz, R.; Brunner, H.; Neizvestny, S.; Ugryumov, A.; Balega, Y.; Trümper, J.; Voges, W. The ROSAT Bright Survey: II. Catalogue of all high-galactic latitude RASS sources with PSPC countrate CR > 0.2 s−1. Astron. Nachr. 2000, 321, 1–52. [Google Scholar] [CrossRef]
- Haberl, F. The magnificent seven: Magnetic fields and surface temperature distributions. Astrophys. Space Sci. 2007, 308, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Turolla, R. Isolated Neutron Stars: The Challenge of Simplicity; Becker, W., Ed.; Astrophysics and Space Science Library; Springer: Cham, Switzerland, 2009; Volume 357, p. 141. [Google Scholar] [CrossRef]
- Popov, S.B.; Colpi, M.; Prokhorov, M.E.; Treves, A.; Turolla, R. Young isolated neutron stars from the Gould Belt. Astron. Astrophys. 2003, 406, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Pires, A.M.; Schwope, A.D.; Motch, C. Follow-up of isolated neutron star candidates from the eROSITA survey. Astron. Nachr. 2017, 338, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Khokhriakova, A.D.; Biryukov, A.V.; Popov, S.B. Observability of isolated neutron stars at SRG/eROSITA. arXiv 2022, arXiv:2201.07639. [Google Scholar]
- Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. Astrophys. J. Suppl. 2014, 212, 6. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Zyuzin, D.A.; Yakovlev, D.G.; Beznogov, M.V.; Shibanov, Y.A. Thermal luminosities of cooling neutron stars. Mon. Not. R. Astron. Soc. 2020, 496, 5052–5071. [Google Scholar] [CrossRef]
- De Luca, A. Central compact objects in supernova remnants. arXiv 2017, arXiv:1711.07210. [Google Scholar] [CrossRef]
- Mancini Pires, A.; Schwope, A.; Kurpas, J. Deep eROSITA observations of the “magnificent seven” isolated neutron stars. arXiv 2022, arXiv:2202.06793. [Google Scholar]
- Weisskopf, M.C.; Soffitta, P.; Baldini, L.; Ramsey, B.D.; O’Dell, S.L.; Romani, R.W.; Matt, G.; Deininger, W.D.; Baumgartner, W.H.; Bellazzini, R.; et al. The Imaging X-Ray Polarimetry Explorer (IXPE): Pre-Launch. arXiv 2021, arXiv:2112.01269. [Google Scholar]
- Gonzalez Caniulef, D.; Zane, S.; Taverna, R.; Turolla, R.; Wu, K. Polarized thermal emission from X-ray dim isolated neutron stars: The case of RX J1856.5-3754. Mon. Not. R. Astron. Soc. 2016, 459, 3585–3595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Santangelo, A.; Feroci, M.; Xu, Y.; Lu, F.; Chen, Y.; Feng, H.; Zhang, S.; Brandt, S.; Hernanz, M.; et al. The enhanced X-ray Timing and Polarimetry mission—eXTP. Sci. ChinaPhys.Mech. Astron. 2019, 62, 29502. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, P.D.; Heinke, C.O.; Grindlay, J.E.; Gilliland, R.L. Hubble Space Telescope Detection of a Quiescent Low-Mass X-Ray Binary Companion in 47 Tucanae. Astrophys. J. Lett. 2002, 564, L17–L20. [Google Scholar] [CrossRef]
- van Kerkwijk, M.H.; Kulkarni, S.R. Optical spectroscopy and photometry of the neutron star <ASTROBJ>RX J1856.5-3754</ASTROBJ>. Astron. Astrophys. 2001, 378, 986–995. [Google Scholar]
- Ho, W.C.G.; Kaplan, D.L.; Chang, P.; van Adelsberg, M.; Potekhin, A.Y. Magnetic hydrogen atmosphere models and the neutron star RX J1856.5-3754. Mon. Not. R. Astron. Soc. 2007, 375, 821–830. [Google Scholar] [CrossRef]
- Rigoselli, M.; Mereghetti, S.; Tresoldi, C. Candidate isolated neutron stars in the 4XMM-DR10 catalogue of X-ray sources. Mon. Not. R. Astron. Soc. 2022, 509, 1217–1226. [Google Scholar] [CrossRef]
- Potekhin, A.Y.; Chugunov, A.I.; Chabrier, G. Thermal evolution and quiescent emission of transiently accreting neutron stars. Astron. Astrophys. 2019, 629, A88. [Google Scholar] [CrossRef] [Green Version]
- Lasota, J.P. The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 2001, 45, 449–508. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khokhriakova, A.D.; Chugunov, A.I.; Popov, S.B.; Gusakov, M.E.; Kantor, E.M. Observability of HOFNARs at SRG/eROSITA. Universe 2022, 8, 354. https://doi.org/10.3390/universe8070354
Khokhriakova AD, Chugunov AI, Popov SB, Gusakov ME, Kantor EM. Observability of HOFNARs at SRG/eROSITA. Universe. 2022; 8(7):354. https://doi.org/10.3390/universe8070354
Chicago/Turabian StyleKhokhriakova, Alena D., Andrey I. Chugunov, Sergei B. Popov, Mikhail E. Gusakov, and Elena M. Kantor. 2022. "Observability of HOFNARs at SRG/eROSITA" Universe 8, no. 7: 354. https://doi.org/10.3390/universe8070354
APA StyleKhokhriakova, A. D., Chugunov, A. I., Popov, S. B., Gusakov, M. E., & Kantor, E. M. (2022). Observability of HOFNARs at SRG/eROSITA. Universe, 8(7), 354. https://doi.org/10.3390/universe8070354