Overview and Status of the International Celestial Reference Frame as Realized by VLBI
Abstract
:1. Introduction
2. The History of Celestial Reference Frames Realized from VLBI
- (1)
- (2)
- The 1991 resolution A4 [64] recommended a general relativistic framework using a solar system barycentric frame (item 6).
- (3)
- The 1994 resolution B5 [65] documented the first list of so-called ‘defining sources’ to be used to define the rotational orientation of the frame. This was done three years before the adoption of the ICRF-1 in order to allow the ICRF-1 solution to be frozen in 1995 and in turn to give time for the Hipparcos optical catalog to be aligned with the ICRF-1 radio frame [66].
- (4)
- The year 1997 saw a series of resolutions [67]:B2 adopting the first ICRF realized with VLBI observations in the radio and Hipparcos observations in the optical.B3 on the relativistic framework.B4 on Non-rigid earth theory for nutations.B5 ICRS and Hipparcos.B6 Relativity in celestial mechanics and astrometry.
3. Applications of Celestial Reference Frames
4. How to Construct a Celestial Reference Frame
5. Overview of the ICRF-3
6. Current Status of the Celestial Reference Frame: Accuracy and Limiting Errors
6.1. The S/X-Band Frame
6.2. The K-Band Frame
6.3. The X/Ka-Band Frame
7. Future Plans
- To devise a proper observing strategy to increase the source density and improve the source position accuracy of the S/X and K-band CRF’s in the far-south, and to reduce the systematics in the X/Ka-band frame.
- To acquire more data and further increase the source position accuracy for ∼3000 sources in the S/X-band frame that are observed in only a few sessions.
- To include observations of optically bright ICRF-3 sources to strengthen the alignment between the radio VLBI and Gaia optical frames.
- To closely monitor and image the defining sources in order to assess their astrometric stability and to track potential source structure changes.
- To refine the underlying models, e.g., the determination of the solar system acceleration vector and the effects of source structure.
- To explore alternate analysis configurations, e.g., multi-frequency analysis in which data sets at S/X, K, and X/Ka-band are processed together and to incorporate data from other space geodetic techniques, such as satellite and lunar laser ranging (SLR and LLR), GNSS, and DORIS systems, in the combination.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nuclei |
AUM | Australian mixed-mode sessions |
BIH | Bureau International de l’Heure |
BVID | Bordeaux VLBI Image Database |
CRF | Celestial Reference Frame |
CRS | Celestial Reference System |
DORIS | Doppler Orbitography by Radiopositioning Integrated by Satellite |
DSN | Deep Space Network |
DSS | Deep Space Station |
EOP | Earth Orientation Parameters |
ESA | European Space Agency |
FK1 | Fundamental Katalog 1 |
FK5 | Fundamental Katalog 5 |
FRIDA | Fundamental Reference Image Data Archive |
Gbps | Giga-bits per second |
GGRF | Global Geodetic Reference Frame |
GNSS | Global Navigation Satellite System |
HartRAO | Hartebeesthoek Radio Astronomy Observatory |
IAU | International Astronomical Union |
ICRF | International Celestial Reference Frame |
ICRS | International Celestial Reference System |
IERS | International Earth Rotation Service |
ISM | Inter-Stellar Media |
IVS | International VLBI Service for Geodesy and Astrometry |
JAXA | Japan Aerospace Exploration Agency |
LLR | Lunar Laser Ranging |
LMT | Large Millimeter Telescope |
mas | milliarcsecond |
Mbps | Mega-bits per second |
MRO | Mars Reconnaissance Orbiter |
as | micro-arcsecond |
NASA | National Aeronautics and Space Administration |
NRAO | National Radio Astronomy Observatory |
NSF | National Science Foundation |
RDV | Research and Development with the VLBA |
RFC | Radio Fundamental Catalog |
RFI | Radio Frequency Interference |
SKA | Square Kilometre Array |
SLR | Satellite Laser Ranging |
TRF | Terrestrial Reference Frame |
USNO | United States Naval Observatory |
VCS | Very Long Baseline Array Calibrator Surveys |
VLBA | Very Long Baseline Array |
VGOS | VLBI Global Observing System |
VLBI | Very Long Baseline Interferometry |
References
- Arias, E.F.; Charlot, P.; Feissel, M.; Lestrade, J.F. The extragalactic reference system of the International Earth Rotation Service, ICRS. Astron. Astrophys. 1995, 303, 604–608. Available online: https://articles.adsabs.harvard.edu/pdf/1995A%26A...303..604A (accessed on 13 May 2022).
- Ma, C.; Arias, E.F.; Eubanks, T.M.; Fey, A.L.; Gontier, A.M.; Jacobs, C.S.; Sovers, O.J.; Archinal, B.A.; Charlot, P. The International Celestial Reference Frame by very long baseline interferometry. Astron. J. 1998, 116, 516. Available online: https://iopscience.iop.org/article/10.1086/300408 (accessed on 13 May 2022). [CrossRef]
- Fey, A.L.; Gordon, D.; Jacobs, C.S.; Ma, C.; Gaume, R.A.; Arias, E.F.; Bianco, G.; Boboltz, D.A.; Böckmann, S.; Bolotin, S.; et al. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. Astron. J. 2015, 150, 58. Available online: https://iopscience.iop.org/article/10.1088/0004-6256/150/2/58/pdf (accessed on 13 May 2022). [CrossRef] [Green Version]
- Charlot, P.; Jacobs, C.S.; Gordon, D.; Lambert, S.; de Witt, A.; Böhm, J.; Fey, A.L.; Heinkelmann, R.; Skurikhina, E.; Titov, O.; et al. The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron. Astrophys. 2020, 644, A159. Available online: https://www.aanda.org/articles/aa/full_html/2020/12/aa38368-20/aa38368-20.html (accessed on 13 May 2022). [CrossRef]
- Eubanks, T.M. Variations in the Orientation of the Earth. In Contributions of Space Geodesy to Geodynamics: Earth Dynamics; Smith, D.E., Turcotte, D.L., Eds.; Geodynamic Series; American Geophysical Union: Washington, DC, USA, 1993; Volume 24, p. 1. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/GD024 (accessed on 13 May 2022).
- Beasley, A.J.; Gordon, D.; Peck, A.B.; Petrov, L.; MacMillan, D.S.; Fomalont, E.B.; Ma, C. The VLBA Calibrator Survey-VCS1. Astrophys. J. Suppl. Ser. 2002, 141, 13–21. Available online: https://iopscience.iop.org/article/10.1086/339806 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Gordon, D.; Jacobs, C.; Beasley, A.; Peck, A.; Gaume, R.; Charlot, P.; Fey, A.; Ma, C.; Titov, O.; Boboltz, D. Second Epoch VLBA Calibrator Survey Observations: VCS-II. Astron. J. 2016, 151, 154. Available online: https://iopscience.iop.org/article/10.3847/0004-6256/151/6/154/pdf (accessed on 13 May 2022). [CrossRef]
- Petrov, L.; de Witt, A.; Sadler, E.M.; Phillips, C.; Horiuchi, S. The Second LBA Calibrator Survey of southern compact extragalactic radio sources - LCS2. Mon. Not. R. Astron. Soc. 2019, 485, 88–101. Available online: https://academic.oup.com/mnras/article/485/1/88/5301408 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Hellmers, H.; Bachmann, S.; Thaller, D.; Bloßfeld, M.; Seitz, M. Combined IVS contribution to the ITRF2020. In Proceedings of the EGU General Conference Abstracts, EGU21-10678, Virtual, 19–30 April 2021; Available online: https://meetingorganizer.copernicus.org/EGU21/EGU21-10678.html (accessed on 13 May 2022).
- Thornton, C.L.; Border, J.S. Radiometric Tracking Techniques for Deep-Space Navigation. Deep–Space Communications and Navigation Series, Monograph 1, JPL Publication 00-11, Jet Propulsion Laboratory, California Institute of Technology. 2000. Available online: https://descanso.jpl.nasa.gov/monograph/series1/Descanso1_all.pdf (accessed on 13 May 2022).
- Sub-Committee on Geodesy, Position Paper on Sustaining the Global Geodetic Reference Frame: A Plan to Help Achieve the Long-Term Accuracy and Accessibility of the Global Geodetic Reference Frame. E/C.20/2021/7/Add.2. 2021. Available online: https://ggim.un.org/meetings/GGIM-committee/11th-Session/documents/E-C.20-2021-7-Add-2_Position_Paper_on_Sustaining_the_GGRF_29Jul2021.pdf (accessed on 13 May 2022).
- United Nations General Assembly Resolution, A Global Geodetic Reference Frame for Sustainable Development. 2015. Available online: https://ggim.un.org/documents/A_RES_69_266_E.pdf (accessed on 13 May 2022).
- International VLBI Service for Geodesy and Astrometry, Terms of Reference. 1998. Available online: https://ivscc.gsfc.nasa.gov/about/org/documents/tor981020.html (accessed on 13 May 2022).
- Sovers, O.J.; Jacobs, C.S.; Lanyi, G.E. MODEST: A Tool for Geodesy and Astrometry. In Proceedings of the International VLBI Service for Geodesy and Astrometry 2004 General Meeting, Ottawa, ON, Canada, 9–11 February 2004; Available online: https://articles.adsabs.harvard.edu/pdf/2004ivsg.conf..272S (accessed on 13 May 2022).
- Petit, G.; Luzum, B. (Eds.) IERS Conventions 2010, IERS Technical Note 36; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010; p. 179. ISBN 3-89888-989-6. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html-1.htm?nn=94912 (accessed on 13 May 2022).
- IAU Resolution B2 on The Third Realization of the International Celestial Reference Frame. In Proceedings of the XXX IAU General Assembly, Vienna, Austria, 20–31 August 2018; Available online: https://www.iau.org/static/resolutions/IAU2018_ResolB2_English.pdf (accessed on 13 May 2022).
- MacMillan, D.S.; Fey, A.; Gipson, J.M.; Gordon, D.; Jacobs, C.S.; Krásná, H.; Lambert, S.B.; Malkin, Z.; Titov, O.; Wang, G.; et al. Galactocentric acceleration in VLBI analysis: Findings of IVS WG8. Astron. Astrophys. 2019, 630, A93. Available online: https://www.aanda.org/articles/aa/full_html/2019/10/aa35379-19/aa35379-19.html (accessed on 13 May 2022). [CrossRef] [Green Version]
- Treuhaft, R.N.; Lanyi, G.E. The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci. 1987, 22, 251–265. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS022i002p00251 (accessed on 13 May 2022). [CrossRef]
- Charlot, P. Radio-Source Structure in Astrometric and Geodetic Very Long Baseline Interferometry. Astron. J. 1990, 99, 1309–1326. Available online: https://articles.adsabs.harvard.edu/pdf/1990AJ.....99.1309C (accessed on 13 May 2022). [CrossRef]
- Gordon, D.; de Witt, A.; Jacobs, C.S. Current CRF Status at X/S and K Bands. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 28 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- Jacobs, C.S.; Horiuchi, S.; Snedeker, L.G.; Firre, D.; Murata, Y.; Takeuchi, H.; Uchimura, T.; Asmar, S. The JPL 2022a X/Ka Celestial Reference Frame. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 28 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- de Witt, A.; Jacobs, C.S.; Gordon, D.; Quick, J.; McCallum, J.; Krásná, H.; Soja, B.; Le Bail, K.; Horiuchi, S. K-band Celestial Reference Frame: Roadmap. In Proceedings of the Journeés 2019, Astronomy, Earth Rotation and Reference Systems in the Gaia Era, Paris, France, 2–9 October 2019; Available online: https://syrte.obspm.fr/astro/journees2019/journees_pdf/SessionIII_1/DE%20WITT_Aletha.pdf (accessed on 13 May 2022).
- Jacobs, C.S.; Samoska, L.; Kooi, J.; Bowen, J.; Fung, A.; Manthena, R.; Lazio, J.; Firre, D.; Dugast, M.; De Vicente, J.; et al. X/Ka (8.4/32 GHz) Celestial Frame: Roadmap to the future. In Proceedings of the Journeés 2019, Astronomy, Earth Rotation and Reference Systems in the Gaia Era, Paris, France, 2–9 October 2019; Available online: https://syrte.obspm.fr/astro/journees2019/journees_pdf/SessionIII_1/JACOBS_Christopher.pdf (accessed on 13 May 2022).
- de Witt, A.; Basu, S.; Charlot, P.; Gordon, D.; Jacobs, C.S.; Johnson, M.; Krásná, H.; Le Bail, K.; Shu, F.; Titov, O.; et al. Improving the S/X Celestial Reference Frame in the South: A Status Update. In Proceedings of the 25th Working Meeting of the European VLBI Group for Geodesy and Astrometry, Virtual, 14–18 March 2021; Available online: https://www.oso.chalmers.se/evga/25_EVGA_2021_Cyberspace.pdf (accessed on 13 May 2022).
- Collioud, A.; Charlot, P. The Second Version of the Bordeaux VLBI Image Database (BVID). In Proceedings of the 24th European VLBI Group for Geodesy and Astrometry Working Meeting, Las Palmas de Gran Canaria, Spain, 17–19 March 2019; pp. 219–223. Available online: https://www.oan.es/evga2019/24_EVGA_2019_Las_Palmas.pdf (accessed on 13 May 2022).
- Hunt, L.; Johnson, M.; Fey, A.; Gordon, D.; Spitzak, J. Imaging Over 3000 Quasars That Are a Part of the International Celestial Reference Frame. In Proceedings of the American Astronomical Society Meeting Abstracts, Honolulu, HI, USA, 4–8 January 2020; Volume 235, p. 305.30. Available online: https://assets.pubpub.org/rynkboj6/71582749259388.pdf#abs305.30 (accessed on 13 May 2022).
- de Witt, A.; Jacobs, C.S.; Gordon, D.; Bietenholz, M.; Nickola, M.; Bertarini, A. The Celestial Reference Frame at K-band: Imaging. I. First 28 Epochs of K-band Images. Astron. J. 2022; under review. [Google Scholar]
- Hunt, L.; de Witt, A.; Gordon, D.; Jacobs, C.S. Comparing Images of ICRF Sources at S, X, K, and Q-Bands. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 27 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- Xu, M.H.; Savolainen, T.; Anderson, J.M.; Kareinen, N.; Zubko, N.; Lunz, S.; Schuh, H. Impacts of the image alignment over frequency for VLBI Global Observing System. arXiv 2021, arXiv:2109.09315. Available online: https://arxiv.org/pdf/2109.09315.pdf (accessed on 13 May 2022).
- Xu, M.H.; Savolainen, T.; Zubko, N.; Poutanen, M.; Lunz, S.; Schuh, H.; Wang, G.L. Imaging VGOS Observations and Investigating Source Structure Effects. J. Geophys. Res. (Solid Earth) 2021, 126, e21238. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JB021238 (accessed on 13 May 2022). [CrossRef]
- Klioner, S.A.; Lindegren, L.; Mignard, F.; Hernández, J.; Ramos-Lerate, M.; Bastian, U.; Biermann, M.; Bombrun, A.; de Torres, A.; Gerlach, E.; et al. Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3). arXiv 2022, arXiv:2204.12574. Available online: https://ui.adsabs.harvard.edu/abs/2022arXiv220412574G/abstract (accessed on 13 May 2022).
- IAU Resolution B3: On the Gaia Celestial Reference Frame. In Resolutions presented to the XXXIst General Assembly. 2021. Available online: https://www.iau.org/static/archives/announcements/pdf/ann21040c.pdf (accessed on 13 May 2022).
- Jansky, K.G. Radio Waves from Outside the Solar System. Nature 1933, 132, 66. Available online: https://www.nature.com/articles/132066a0 (accessed on 13 May 2022). [CrossRef]
- Carr, T.D.; May, J.; Olson, C.N.; Walls, G.F. Post-detector correlation interferometry of Jupiter at 18 Mc/s. IEEE Nerem 1965, 7, 222. [Google Scholar]
- Bare, C.; Clark, B.G.; Kellermann, K.I.; Cohen, M.H.; Jauncey, D.L. Interferometer Experiment with Independent Local Oscillators. Science 1967, 157, 189–191. Available online: https://www.science.org/doi/10.1126/science.157.3785.189 (accessed on 13 May 2022). [CrossRef]
- Broten, N.W.; Locke, J.L.; Legg, T.H.; McLeish, C.W.; Richards, R.S. Observations of Quasars using Interferometer Baselines up to 3074 km. Nature 1967, 215, 38. Available online: https://www.nature.com/articles/215038a0 (accessed on 13 May 2022). [CrossRef]
- Matveyenko, L. Early VLBI in the USSR. In Proceedings of the Science, Resolving The Sky—Radio Interferometry: Past, Present and Future, Manchester, UK, 17–20 April 2012; Available online: https://pos.sissa.it/163/004/pdf (accessed on 13 May 2022).
- May, J.; Carr, T.D. Interferometry of Jupiter at 18 Mc/s. Q. J. Fla. Acad. Sci. 1967, 30, 1–9. Available online: https://www.jstor.org/stable/24314980 (accessed on 13 May 2022).
- Moran, J.M.; Crowther, P.P.; Burke, B.F.; Barrett, A.H.; Rogers, A.E.E.; Ball, J.A.; Carter, J.C.; Bare, C.C. Spectral Line Interferometry with Independent Time Standards at Stations Separated by 845 Kilometers. Science 1967, 157, 676–677. Available online: https://www.science.org/doi/10.1126/science.157.3789.676 (accessed on 13 May 2022). [CrossRef]
- Cohen, M.H.; Jauncey, D.L.; Kellermann, K.I.; Clark, B.G. Radio Interferometry at One-Thousandth Second of Arc. Science 1968, 162, 88–94. Available online: https://www.science.org/doi/10.1126/science.162.3849.88 (accessed on 13 May 2022). [CrossRef]
- Kellermann, K.I.; Cohen, M.H. The origin and evolution of the NRAO-Cornell VLBI system. J. R. Astron. Soc. Can. 1988, 82, 248–265. Available online: https://articles.adsabs.harvard.edu/pdf/1988JRASC..82..248K (accessed on 13 May 2022).
- Kellerman, K.I.; Moran, J.M. The Development of High-Resolution Imaging in Radio Astronomy. Annu. Rev. Astron. Astrophys. 2001, 39, 457–509. Available online: https://www.annualreviews.org/doi/pdf/10.1146/annurev.astro.39.1.457 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Clark, B.G. A Review of the History of VLBI. In Radio Astronomy at the Fringe; Zensus, J.A., Cohen, M.H., Ros, E., Eds.; ASP Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 300, Available online: http://aspbooks.org/publications/300/1.pdf (accessed on 13 May 2022).
- Cohen, M.H. Accurate Positions for Radio Sources. Astrophys. Lett. 1972, 12, 81. Available online: https://articles.adsabs.harvard.edu/pdf/1972ApL....12...81C (accessed on 13 May 2022).
- Hinteregger, H.F.; Shapiro, I.I.; Robertson, D.S.; Knight, C.A.; Ergas, R.A.; Whitney, A.R.; Rogers, A.E.E.; Moran, J.M.; Clark, T.A.; Burke, B.F. Precision Geodesy via Radio Interferometry. Science 1972, 178, 396–398. Available online: https://www.science.org/doi/10.1126/science.178.4059.396 (accessed on 13 May 2022). [CrossRef] [PubMed]
- Rogers, A.E.E.; Counselman, C.C., III; Hinteregger, H.F.; Knight, C.A.; Robertson, D.S.; Shapiro, I.I.; Whitney, A.R.; Clark, T.A. Extragalactic Radio Sources: Accurate Positions from Very-Long Interferometry Observations. Astrophys. J. 1973, 186, 801–806. Available online: https://articles.adsabs.harvard.edu/pdf/1973ApJ...186..801R (accessed on 13 May 2022). [CrossRef]
- Clark, T.A.; Hutton, L.K.; Marandino, G.E.; Counselman, C.C.; Robertson, D.S.; Shapiro, I.I.; Wittels, J.J.; Hinteregger, H.F.; Knight, C.A.; Rogers, A.E.E.; et al. Radio source positions from very-long-baseline interferometry observations. Astron. J. 1976, 81, 599–603. Available online: https://articles.adsabs.harvard.edu/pdf/1976AJ.....81..599C (accessed on 13 May 2022). [CrossRef]
- Preston, R.A.; Slade, M.A.; Williams, J.G.; Fanselow, J.L.; Harris, A.W. Development of a VLBI reference co-ordinate system. Bull. Am. Astron. Soc. 1976, 8, 432. Available online: https://articles.adsabs.harvard.edu/pdf/1976BAAS....8..432P (accessed on 13 May 2022).
- Fanselow, J.L.; Sovers, O.J.; Thomas, J.B.; Purcell, G.H., Jr.; Cohen, E.J.; Rogstad, D.H.; Skjerve, L.J.; Spitzmesser, D.J. Radio interferometric determination of source positions utilizing deep space network antennas—1971 to 1980. Astron. J. 1984, 89, 987–998. Available online: https://articles.adsabs.harvard.edu/pdf/1984AJ.....89..987F (accessed on 13 May 2022). [CrossRef]
- Fricke, W.; Schwan, H.; Lederle, T.; Bastian, U.; Bien, R.; Burkhardt, G.; Du Mont, B.; Hering, R.; Jährling, R.; Jahreiß, H.; et al. Fifth Fundamental Catalogue (FK5). Part 1. The Basic Fundamental Stars. Veroeffentlichungen Des Astron.-Rechen-Instituts Heidelb. 1988, 32, 1–106. Available online: https://ui.adsabs.harvard.edu/abs/1988VeARI..32....1F/abstract (accessed on 13 May 2022).
- Ma, C.; Clark, T.A.; Ryan, J.W.; Herring, T.A.; Shapiro, I.I.; Corey, B.E.; Hinteregger, H.F.; Rogers, A.E.E.; Whitney, A.R.; Knight, C.A.; et al. Radio-source positions from VLBI. Astron. J. 1986, 92, 1020–1029. Available online: https://articles.adsabs.harvard.edu/pdf/1986AJ.....92.1020M (accessed on 13 May 2022). [CrossRef]
- Robertson, D.S.; Fallon, F.W.; Carter, W.E. Celestial reference coordinate systems: Submilliarcsecond precision demonstrated with VLBI observations. Astron. J. 1986, 91, 1456–1462. Available online: https://articles.adsabs.harvard.edu/pdf/1986AJ.....91.1456R (accessed on 13 May 2022). [CrossRef]
- Sovers, O.J.; Edwards, C.D.; Jacobs, C.S.; Lanyi, G.E.; Liewer, K.M.; Treuhaft, R.N. Astrometric Results of 1978–1985 Deep Space Network Radio Interferometry: The JPL 1987-1 Extragalactic Source Catalog. Astron. J. 1988, 95, 1647. Available online: https://articles.adsabs.harvard.edu/pdf/1988AJ.....95.1647S (accessed on 13 May 2022). [CrossRef]
- Hazard, C.; Sutton, J.; Argue, A.N.; Kenworthy, C.M.; Morrison, L.V.; Murray, C.A. Accurate Radio and Optical Positions of 3C273B. Nat. Phys. Sci. 1971, 233, 89–91. Available online: https://www.nature.com/articles/physci233089a0 (accessed on 13 May 2022). [CrossRef]
- Arias, E.F.; Feissel, M.; Lestrade, J.F. BIH Annual Report for 1987; Sections B21-C11; BIH: Paris, France, 1987; Available online: https://webtai.bipm.org/ftp/pub/tai/annual-reports/bih-annual-report/BIH_1987.pdf (accessed on 13 May 2022).
- International Earth Rotation Service (IERS). Annual Report for 1988; Observatoire de Paris (France), Central Bureau de l’IERS: Frankfurt am Main, Germany, 1989; ISBN 2-900340-01-0. [Google Scholar]
- International Earth Rotation Service (IERS). Annual Report for 1989; Observatoire de Paris (France), Central Bureau de l’IERS: Frankfurt am Main, Germany, 1990; ISBN 2-900340-02-0. Available online: https://ui.adsabs.harvard.edu/abs/1990iers.book....../abstract (accessed on 13 May 2022).
- International Earth Rotation Service (IERS). Annual Report for 1990; Observatoire de Paris (France), Central Bureau of IERS: Frankfurt am Main, Germany, 1991; ISBN 2-900340-03-9. Available online: https://ui.adsabs.harvard.edu/abs/1991iers.book....../abstract (accessed on 13 May 2022).
- International Earth Rotation Service (IERS). Annual Report for 1991; Observatoire de Paris (France), Central Bureau of IERS: Frankfurt am Main, Germany, 1922; ISBN 2-900340-04-7. Available online: https://ui.adsabs.harvard.edu/abs/1992iers.book....../abstract (accessed on 13 May 2022).
- International Earth Rotation Service (IERS). 1992 IERS (International Earth Rotation Service) Annual Report; Observatoire de Paris (France); Central Bureau of IERS: Frankfurt am Main, Germany, 1993; ISBN 2-900340-05-5. Available online: https://ui.adsabs.harvard.edu/abs/1993iers.book....../abstract (accessed on 13 May 2022).
- International Earth Rotation Service (IERS). 1993 IERS (International Earth Rotation Service) Annual Report; Observatoire de Paris (France); Central Bureau of IERS: Frankfurt am Main, Germany, 1994; Available online: https://ui.adsabs.harvard.edu/abs/1994iers.bookQ...../abstract (accessed on 13 May 2022).
- Walter, H.G.; Sovers, O.J. Astrometry of Fundamental Catalogues: The Evolution from Optical to Radio Reference Frames; Springer: Berlin/Heidelberg, Germany, 2000; Available online: https://link.springer.com/book/10.1007/978-3-642-57260-9 (accessed on 13 May 2022).
- IAU Resolution C1. 1988. Available online: https://iau.org/static/resolutions/IAU1988_French.pdf (accessed on 13 May 2022).
- IAU Resolution A4. 1991. Available online: https://www.iau.org/static/resolutions/IAU1991_French.pdf (accessed on 13 May 2022).
- IAU Resolution B5. 1994. Available online: https://www.iau.org/static/resolutions/IAU1994_French.pdf (accessed on 13 May 2022).
- Lestrade, J.F.; Jones, D.L.; Preston, R.A.; Phillips, R.B.; Titus, M.A.; Kovalevsky, J.; Lindegren, L.; Hering, R.; Froeschle, M.; Falin, J.L.; et al. Preliminary link of the HIPPARCOS and VLBI reference frames. Astron. Astrophys. 1995, 304, 182. Available online: https://articles.adsabs.harvard.edu/pdf/1995A%26A...304..182L (accessed on 13 May 2022).
- IAU Resolutions B2 (ICRS, ICRF), B3 (Relativistic Framework), B4 (Non-Rigid Earth Theory for Nutations), B5 (ICRS and Hipparcos), B6 (Relativity in Celestial Mechanics and Astrometry), XXIII General Assembly, Kyoto, Japan, 1997. Available online: https://www.iau.org/static/resolutions/IAU1997_French.pdf (accessed on 13 May 2022).
- Charlot, P.; Boboltz, D.A.; Fey, A.L.; Fomalont, E.B.; Geldzahler, B.J.; Gordon, D.; Jacobs, C.S.; Lanyi, G.E.; Ma, C.; Naudet, C.J.; et al. The Celestial Reference Frame at 24 and 43 GHz. II. Imaging. Astron. J. 2010, 139, 1713–1770. Available online: https://iopscience.iop.org/article/10.1088/0004-6256/139/5/1713 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Lanyi, G.E.; Boboltz, D.A.; Charlot, P.; Fey, A.L.; Fomalont, E.B.; Geldzahler, B.J.; Gordon, D.; Jacobs, C.S.; Ma, C.; Naudet, C.J.; et al. The Celestial Reference Frame at 24 and 43 GHz. I. Astrometry. Astron. J. 2010, 139, 1695–1712. Available online: https://iopscience.iop.org/article/10.1088/0004-6256/139/5/1695 (accessed on 13 May 2022). [CrossRef]
- de Witt, A.; Bertarini, A.; Horiuchi, S.; Jacobs, C.S.; Jung, T.; Lovell, J.E.J.; McCallum, J.N.; Quick, J.F.H.; Sohn, B.W.; Phillips, C.; et al. Completing the K-band Celestial Reference Frame in the Southern Hemisphere. In Proceedings of the 8th IVS General Meeting: VGOS: The New VLBI Network, Beijing, China, 2–7 March 2014; pp. 433–437. Available online: https://ivscc.gsfc.nasa.gov/publications/gm2014/093_deWitt_etal.pdf (accessed on 13 May 2022).
- Reid, M.J.; Menten, K.M.; Brunthaler, A.; Zheng, X.W.; Dame1, T.M.; Xu, Y.; Li, J.; Sakai, N.; Wu, Y.; Immer, K.; et al. Trigonometric Parallaxes of High-mass Star-forming Regions: Our View of the Milky Way. Astrophys. J. 2019, 885, 131. Available online: https://iopscience.iop.org/article/10.3847/1538-4357/ab4a11 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Gordon, D.; de Witt, A.; Jacobs, C.S. ICRF3 Position and Proper Motion of Sagittarius A* from VLBA Absolute Astrometry. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 28 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- Shambayati, S.; Morabito, D.; Border, J.S.; Davarian, F.; Lee, D.; Mendoza, R.; Britcliffe, M.S.; Weinreb, S. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations. In Proceedings of the AIAA 9th International Conference on Space Operations (SpaceOps), Rome, Italy, 19–23 June 2006; Available online: http://hdl.handle.net/2014/39654 (accessed on 13 May 2022).
- Jacobs, C.S.; de Vicente, J.; Dugast, M.; García-Miró, C.; Goodhart, C.E.; Horiuchi, S.; Lowe, S.T.; Maddè, R.; Mercolino, M.; Naudet, C.J.; et al. Extending the X/Ka Celestial Reference Frame over the South Polar Cap: Results from combined NASA-ESA Deep Space Network baselines to Malargüe, Argentina. In Proceedings of the 21st Meeting of the EVGA, Espoo, Finland, 5–8 March 2013; Available online: https://ui.adsabs.harvard.edu/abs/2013evga.confE...1J/abstract (accessed on 13 May 2022).
- Jacobs, C.S.; Murata, Y.; Takeuchi, H.; Firee, D.; Asmar, S.; Uchimura, T.; Numata, K. X/Ka Network Enhanced by Misasa, Japan’s 54-meter antenna. In Proceedings of the 25th Working Meeting of the European VLBI Group for Geodesy and Astrometry, Virtual, 14–18 March 2021; Available online: https://ui.adsabs.harvard.edu/abs/2021evga.confE...3J/abstract (accessed on 13 May 2022).
- Mignard, F.; Klioner, S.A.; Lindegren, L.; Hernandez, J.; Bastian, U.; Bombrun, A.; Hobbs, D.; Lammers, U.; Michalik, D.; Ramos-Lerate, M.; et al. Gaia Data Release 2: The celestial reference frame (Gaia-CRF2). Astron. Astrophys. 2018, 616, A14. Available online: https://www.aanda.org/articles/aa/full_html/2018/08/aa32916-18/aa32916-18.html (accessed on 13 May 2022).
- Park, R.S.; Folkner, W.M.; Williams, J.G.; Boggs, D.H. The JPL Planetary and Lunar Ephemerides DE440 and DE441. Astron. J. 2021, 161, 105. Available online: https://iopscience.iop.org/article/10.3847/1538-3881/abd414 (accessed on 13 May 2022). [CrossRef]
- Beasley, A.J.; Conway, J.E. VLBI Phase Referencing. In Very Long Baseline Interferometry and the VLBA; Zensus, J.A., Diamond, P.J., Napier, P.J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1995; Volume 82, p. 327. Available online: https://articles.adsabs.harvard.edu/pdf/1995ASPC...82..327B (accessed on 13 May 2022).
- Rioja, M.J.; Dodson, R. Precise radio astrometry and new developments for the next-generation of instruments. Astron. Astrophys. Rev. 2020, 28, 6. Available online: https://link.springer.com/article/10.1007/s00159-020-00126-z (accessed on 13 May 2022). [CrossRef]
- Fomalont, E.; Kopeikin, S.; Lanyi, G.; Benson, J. Progress in Measurements of the Gravitational Bending of Radio Waves Using the VLBA. Astrophys. J. 2009, 699, 1395–1402. Available online: https://iopscience.iop.org/article/10.1088/0004-637X/699/2/1395 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Prusti, T.; De Bruijne, J.H.; Brown, A.G.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.; Bastian, U.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. Available online: https://www.aanda.org/articles/aa/full_html/2016/11/aa29272-16/aa29272-16.html (accessed on 13 May 2022).
- Altamimi, Z.; Rebischung, P.; Collilieux, X.; Metivier, L.; Chanard, K.; Teyssendier-de-la-Serve, M. Preparatory analysis and development for the ITRF2020. In Proceedings of the EGU General Assembly Conference Abstracts 2021, EGU21-2056, Virtual, 19–30 April 2021; Available online: https://meetingorganizer.copernicus.org/EGU21/EGU21-2056.html (accessed on 13 May 2022).
- Altamimi, Z.; Rebischung, P.; Collilieux, X.; Metivier, L.; Chanard, K. ITRF2020 and the IVS Contribution. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 28 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- Sovers, O.J.; Fanselow, J.L.; Jacobs, C.S. Astrometry and geodesy with radio interferometry: Experiments, models, results. Rev. Mod. Phys. 1998, 70, 1393–1454. Available online: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.70.1393 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Jacobs, C.S.; Heflin, M.B.; Lanyi, G.E.; Sovers, O.J.; Steppe, J.A. Rotational Alignment Altered by Source Position Correlations. In Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry 2010, Hobart, Australia, 7–13 February 2010; NASA/CP 2010-215864. Behrend, D., Baver, K.D., Eds.; Volume 305. Available online: https://ivscc.gsfc.nasa.gov/publications/gm2010/jacobs2.pdf (accessed on 13 May 2022).
- Xu, M.H.; Anderson, J.M.; Heinkelmann, R.; Lunz, S.; Schuh, H.; Wang, G.L. Structure Effects for 3417 Celestial Reference Frame Radio Sources. Astrophys. J. Suppl. Ser. 2019, 242, 5. Available online: https://iopscience.iop.org/article/10.3847/1538-4365/ab16ea/pdf (accessed on 13 May 2022). [CrossRef]
- Gattano, C.; Lambert, S.B.; Le Bail, K. Extragalactic radio source stability and VLBI celestial reference frame: Insights from the Allan standard deviation. Astron. Astrophys. 2018, 618, A80. Available online: https://www.aanda.org/articles/aa/pdf/2018/10/aa33430-18.pdf (accessed on 13 May 2022). [CrossRef]
- Charlot, P. Modeling Radio Source Structure for Improved VLBI Data Analysis. In Proceedings of the IVS 2002 General Meeting Proceedings, Tsukuba, Japan, 4–7 February 2002; NASA/CP-2002-210002. Vandenberg, N.R., Baver, K.D., Eds.; pp. 233–242. Available online: https://articles.adsabs.harvard.edu/pdf/2002ivsg.conf..233C (accessed on 13 May 2022).
- IAU Resolution B3 on The Second Realization of the International Celestial Reference Frame. In Proceedings of the XXVII IAU General Assembly, Rio de Janeiro, Brazil, 2–15 August 2009; Available online: https://www.iau.org/static/resolutions/IAU2009_English.pdf (accessed on 13 May 2022).
- Jacobs, C.S.; Clark, J.E.; García-Míro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; and Sotuela, I. Celestial Reference Frame at X/Ka-Band (8.4/32 GHz) for Deep Space Navigation. In Proceedings of the 23rd Symposium on Space Flight Dynamics, Pasadena, CA, USA, 29 October–2 November 2012; Available online: https://issfd.org/ISSFD_2012/ISSFD23_OD1_1.pdf (accessed on 13 May 2022).
- Fey, A.L.; Clegg, A.W.; Fomalont, E.B. VLBA Observations of Radio Reference Frame Sources. I. Astrophys. J. Suppl. Ser. 1996, 105, 299–330. Available online: https://articles.adsabs.harvard.edu/pdf/1996ApJS..105..299F (accessed on 13 May 2022). [CrossRef]
- Fey, A.L.; Charlot, P. VLBA Observations of Radio Reference Frame Sources. II. Astrometric Suitability Based on Observed Structure. Astrophys. J. Suppl. Ser. 1997, 111, 95–142. Available online: https://iopscience.iop.org/article/10.1086/313017 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Fey, A.L.; Charlot, P. VLBA Observations of Radio Reference Frame Sources. III. Astrometric Suitability of an Additional 225 Sources. Astrophys. J. Suppl. Ser. 2000, 128, 17–83. Available online: https://iopscience.iop.org/article/10.1086/313382 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Charlot, P. Astrophysical Stability of Radio Sources and Implication for the Realization of the Next ICRF. In Proceedings of the Fifth IVS General Meeting, Helsinki, Finland, 27 March–1 April 2008; Finkelstein, A., Behrend, D., Eds.; pp. 345–354. Available online: https://ivscc.gsfc.nasa.gov/publications/gm2008/charlot.pdf (accessed on 13 May 2022).
- Liu, N.; Lambert, S.B.; Charlot, P.; Zhu, Z.; Liu, J.C.; Jiang, N.; Wan, X.S.; Ding, C.Y. Comparison of multifrequency positions of extragalactic sources from ICRF3 and Gaia EDR3. Astron. Astrophys. 2021, 652, A87. Available online: https://www.aanda.org/articles/aa/full_html/2021/08/aa38179-20/aa38179-20.html (accessed on 13 May 2022). [CrossRef]
- Petrov, L.; Kovalev, Y.Y.; Plavin, A.V. A quantitative analysis of systematic differences in the positions and proper motions of Gaia DR2 with respect to VLBI. Mon. Not. R. Astron. Soc. 2019, 482, 3023–3031. Available online: https://academic.oup.com/mnras/article/482/3/3023/5187384 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Plavin, A.V.; Kovalev, Y.Y.; Petrov, L. Dissecting the AGN Disk-Jet System with Joint VLBI-Gaia Analysis. Astrophys. J. 2019, 871, 143. Available online: https://iopscience.iop.org/article/10.3847/1538-4357/aaf650 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Lambert, S.; Liu, N.; Arias, E.F.; Barache, C.; Souchay, J.; Taris, F.; Liu, J.C.; Zhu, Z. Parsec-scale alignments of radio-optical offsets with jets in AGNs from multifrequency geodetic VLBI, Gaia EDR3, and the MOJAVE program. Astron. Astrophys. 2021, 651, A64. Available online: https://www.aanda.org/articles/aa/full_html/2021/07/aa40652-21/aa40652-21.html (accessed on 13 May 2022). [CrossRef]
- Collioud, A.; Charlot, P.; Lambert, S. Exploring Source Structure with the Bordeaux VLBI Image Database—Comparing Jet Directions with Optical Radio Offset Vectors. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 28 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- de Witt, A.; Jacobs, C.; Gordon, D.; Hunt, L.; Johnson, M. Sources with Significant Astrometric Offsets Between the S/X and K-band Celestial Frames. In Proceedings of the 12th IVS General Meeting, Helsinki, Finland, 28 March–1 April 2022; Available online: https://www.maanmittauslaitos.fi/sites/maanmittauslaitos.fi/files/attachments/2022/03/Abstarct_book_2022.pdf (accessed on 13 May 2022).
- Laboratoire d’Astrophysique de Bordeaux (LAB), Bordeaux VLBI Image Database (BVID). Available online: http://bvid.astrophy.u-bordeaux.fr (accessed on 13 May 2022).
- Petrov, L. Radio Fundamental Catalog. Astro-geo Center. Available online: http://astrogeo.org/rfc/ (accessed on 13 May 2022).
- U.S. Naval Observatory Fundamental Reference Image Data Archive (FRIDA). Available online: https://crf.usno.navy.mil/data_products/FRIDA/frida.html (accessed on 13 May 2022).
- Schartner, M.; Böhm, J. VieSched++: A New VLBI Scheduling Software for Geodesy and Astrometry. Publ. Astron. Soc. Pac. 2019, 131, 084501. Available online: https://iopscience.iop.org/article/10.1088/1538-3873/ab1820/pdf (accessed on 13 May 2022). [CrossRef]
- Basu, S.; de Witt, A.; Gattano, C. Source Structure and Position Stability of Celestial Reference Frame Sources in the Deep South. In Proceedings of the 25th Working Meeting of the European VLBI Group for Geodesy and Astrometry, Virtual, 14–18 March 2021; Haas, R., Ed.; Available online: https://www.oso.chalmers.se/evga/25_EVGA_2021_Cyberspace.pdf (accessed on 13 May 2022).
- Soja, B.; Jacobs, C.S.; Runge, T.; Naudet, C.; Gross, R.; de Witt, A.; Gordon, D.; Quick, J.; McCallum, J.; Krásná, H. Ionospheric Calibration for K-Band Celestial Reference Frames. In Proceedings of the 24th European VLBI Group for Geodesy and Astrometry Working Meeting, Las Palmas, Gran Canaria, Spain, 17–19 March 2019; Haas, R., Garcia-Espada, S., López-Fernández, J.A., Eds.; Available online: https://www.oan.es/evga2019/EVGA2019_PDF/O316_EVGA2019_Soja.pdf (accessed on 13 May 2022).
- Lister, M.L.; Homan, D.C. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. I. First-Epoch 15 GHz Linear Polarization Images. Astron. J. 2005, 130, 1389–1417. Available online: https://iopscience.iop.org/article/10.1086/432969/pdf (accessed on 13 May 2022). [CrossRef] [Green Version]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. Astron. Astrophys. Rev. 2017, 25, 4. Available online: https://link.springer.com/article/10.1007/s00159-017-0105-6 (accessed on 13 May 2022). [CrossRef] [Green Version]
- Kurtz, S.E.; Stander, T.; de Villiers, D.I.L.; Cerfonteyn, W.; de Witt, A.; Ferrusca Rodríguez, D.; Hiriart, D.; Hughes, D.H.; Jacobs, C.S.; Loinard, L.; et al. The potential for a K-band receiver on the Large Millimeter Telescope. In Proceedings of the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, SPIE Conference Series 11453, Virtual, 14–18 December 2020; Volume 11453, p. E40. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11453/2563132/The-potential-for-a-K-band-receiver-on-the-Large/10.1117/12.2563132.full?SSO=1 (accessed on 13 May 2022).
- Bourda, G.; Charlot, P. Preparing the VLBI Celestial Reference Frame for the Gaia Era: Observations of ICRF2 Sources to Improve the Astrometry of the Future Radio-Optical Transfer Sources. IVS Memorandum 2012-001v01. 2012. Available online: https://ivscc.gsfc.nasa.gov/publications/memos/ivs-2012-001v01.pdf (accessed on 13 May 2022).
- Le Bail, K.; Gipson, J.M.; Gordon, D.; MacMillan, D.S.; Behrend, D.; Thomas, C.C.; Bolotin, S.; Himwich, W.E.; Baver, K.D.; Corey, B.E.; et al. IVS Observation of ICRF2-Gaia Transfer Sources. Astron. J. 2016, 151, 79. Available online: https://iopscience.iop.org/article/10.3847/0004-6256/151/3/79/pdf (accessed on 13 May 2022). [CrossRef]
- Charlot, P. Precision Astrometry: From VLBI to Gaia and SKA. In The Square Kilometre Array: Paving the Way for the New 21st Century Radio Astronomy Paradigm; Astrophysics and Space Science Proceedings; Barbosa, D., Anton, S., Gurvits, L., Maia, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 85–95. Available online: https://link.springer.com/chapter/10.1007/978-3-642-22795-0_9 (accessed on 13 May 2022).
- Paragi, Z.; Godfrey, L.; Reynolds, C.; Rioja, M.; Deller, A.; Zhang, B.; Gurvits, L.; Bietenholz, M.; Szomoru, A.; Bignall, H.; et al. Very Long Baseline Interferometry with the SKA. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Naxos, Italy, 29 May 2015; Volume 143, p. 1412.5971. Available online: https://pos.sissa.it/215/143/pdf (accessed on 13 May 2022).
- Charlot, P.; Garcia-Miró, C.; An, T.; Campbell, B.; Colomer, F.; de Witt, A.; Edwards, P.; Lambert, S. Looking into the future of the radio reference frame with SKA. In Proceedings of the Journées 2019—Astrometry, Earth Rotation and Reference Systems in the Gaia Era, Paris, France, 7–9 October 2019; Available online: https://syrte.obspm.fr/astro/journees2019/LATEX/JOURNEES2019.pdf (accessed on 13 May 2022).
- Schuh, H.; Behrend, D. VLBI: A fascinating technique for geodesy and astrometry. J. Geodyn. 2012, 61, 68–80. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0264370712001159?via%3Dihub (accessed on 13 May 2022). [CrossRef] [Green Version]
- McCallum, J.; McCallum, L. An S/X Compatible VGOS System for the AuScope Array. In Proceedings of the IVS 2018 General Meeting: Global Geodesy and the Role of VGOS—Fundamental to Sustainable Development, Longyearbyen, Norway, 3–8 June 2019; Available online: https://ivscc.gsfc.nasa.gov/publications/gm2018/27_mccallum_mccallum.pdf (accessed on 13 May 2022).
- McCallum, L.; Chuan, L.C.; Krasna, L.; McCallum, J.; McCarthy, T.; Gruber, J.; Bohm, J.; Schartner, M.; Quick, J.; Weston, S. The Australian mixed-mode observing program. J. Geod. 2022; under review. [Google Scholar]
- Soriano, M.; Kooi, J.; Bowen, J.; Fung, A.; Hoppe, D.; Mathena, R.; Abdulla, Z.; Samoska, L.; Jacobs, C.S. Simultaneous X- and Ka-Band Receiver for Astrometry and Navigation. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS, Rome, Italy, 28 August–4 September 2021; Available online: https://www.ursi.org/proceedings/procGA21/papers/URSIGASS2021-We-J04-PM4-2.pdf (accessed on 13 May 2022).
- Charlot, P. IAU Working Group on Multi-waveband ICRF Terms of Reference. Available online: https://www.iau.org/static/science/scientific_bodies/working_groups/329/charter_icrf-multiwaveband-wg.pdf (accessed on 13 May 2022).
- The Third Realization of the ICRF: ICRF-3. ICRF-3 Positions. Available online: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/644/A159 (accessed on 13 May 2022).
- Napier, P.J. VLBA Design. In ASP Conference Series: Very Long Baseline Interferometry and the VLBA; Zensus, J.A., Diamond, P.J., Napier, P.J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1995; Volume 82, p. 59. Available online: https://articles.adsabs.harvard.edu/pdf/1995ASPC...82...59N (accessed on 13 May 2022).
- Imbriale, W.A. Large Antennas of the Deep Space Network. In Deep-Space Communication and Navigation Series, Monograph 4; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2002; Volume 4. Available online: https://descanso.jpl.nasa.gov/monograph/series4/Descanso_Mono4_web.pdf (accessed on 13 May 2022).
- Vassallo, E.; Martin, R.; Madde, R.; Lanucara, M.; Besso, P.; Droll, P.; Galtie, G.; De Vicente, J. The European Space Agency’s Deep-Space Antennas. Proc. IEEE 2007, 95, 2111. Available online: https://ieeexplore.ieee.org/document/4390046 (accessed on 13 May 2022). [CrossRef]
Frame | Date | Noise Floor (as) | |
---|---|---|---|
ICRF-1 | 1 January 1998 | 608 | 250 |
ICRF-2 | 1 January 2010 | 3414 | 40 |
ICRF-3 | 1 January 2019 | 4536 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Witt, A.; Charlot, P.; Gordon, D.; Jacobs, C.S. Overview and Status of the International Celestial Reference Frame as Realized by VLBI. Universe 2022, 8, 374. https://doi.org/10.3390/universe8070374
de Witt A, Charlot P, Gordon D, Jacobs CS. Overview and Status of the International Celestial Reference Frame as Realized by VLBI. Universe. 2022; 8(7):374. https://doi.org/10.3390/universe8070374
Chicago/Turabian Stylede Witt, Aletha, Patrick Charlot, David Gordon, and Christopher S. Jacobs. 2022. "Overview and Status of the International Celestial Reference Frame as Realized by VLBI" Universe 8, no. 7: 374. https://doi.org/10.3390/universe8070374
APA Stylede Witt, A., Charlot, P., Gordon, D., & Jacobs, C. S. (2022). Overview and Status of the International Celestial Reference Frame as Realized by VLBI. Universe, 8(7), 374. https://doi.org/10.3390/universe8070374