Dilaton Effective Field Theory
Abstract
:1. Introduction
2. Leading Order (LO)
2.1. Mass Deformation and Scaling Properties
2.2. Fits to Lattice Data
3. Beyond Leading Order
3.1. Method for Constructing the Lagrangian
3.2. The dEFT at NLO
3.3. Spurion Analysis
- to be invariant under Lorentz and internal symmetries,
- to transform with a scaling dimension of 4 under dilatations; the action will then be invariant under dilatations,
- to be polynomial in the spurions and in derivatives.
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
dEFT | Dilaton Effective Field Theory |
EFT | Effective Field Theory |
LO | Leading Order |
NGB | Nambu–Goldstone Boson |
NLO | Next-to-Leading Order |
pNGB | Pseudo-Nambu–Goldstone Boson |
QCD | Quantum Chromodynamics |
SM | Standard Model (of particle physics) |
VEV | Vacuum Expectation Value |
1 | Other conventions would simply implement small corrections to the parameters within the LO Lagrangian. |
2 | The dEFT remains non-singular and well defined even when operators containing negative or noninteger powers of are incorporated within the Lagrangian, since . |
References
- Migdal, A.A.; Shifman, M.A. Dilaton Effective Lagrangian in Gluodynamics. Phys. Lett. 1982, 114B, 445. [Google Scholar] [CrossRef]
- Coleman, S. Aspects of Symmetry: Selected Erice Lectures; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Goldberger, W.D.; Grinstein, B.; Skiba, W. Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider. Phys. Rev. Lett. 2008, 100, 111802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.N.; Love, S.T.; Bardeen, W.A. Spontaneous Symmetry Breaking in Scale Invariant Quantum Electrodynamics. Nucl. Phys. B 1986, 273, 649. [Google Scholar] [CrossRef]
- Bardeen, W.A.; Leung, C.N.; Love, S.T. The Dilaton and Chiral Symmetry Breaking. Phys. Rev. Lett. 1986, 56, 1230. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, K.; Bando, M.; Matumoto, K.i. Scale Invariant Technicolor Model and a Technidilaton. Phys. Rev. Lett. 1986, 56, 1335. [Google Scholar] [CrossRef]
- Aoki, Y. et al. [LatKMI Collaboration] Light composite scalar in eight-flavor QCD on the lattice. Phys. Rev. D 2014, 89, 111502. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Brower, R.; Fleming, G.; Hasenfratz, A.; Jin, X.; Kiskis, J.; Neil, E.; Osborn, J.; Rebbi, C.; Rinaldi, E.; et al. Strongly interacting dynamics and the search for new physics at the LHC. Phys. Rev. D 2016, 93, 114514. [Google Scholar] [CrossRef] [Green Version]
- Aoki Y. et al. [LatKMI Collaboration] Light flavor-singlet scalars and walking signals in Nf = 8 QCD on the lattice. Phys. Rev. D 2017, 96, 014508. [Google Scholar] [CrossRef] [Green Version]
- Gasbarro, A.D.; Fleming, G.T. Examining the Low Energy Dynamics of Walking Gauge Theory. PoS Lattice 2017, 2016, 242. [Google Scholar] [CrossRef]
- Appelquist, T. et al. [Lattice Strong Dynamics Collaboration] Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors. Phys. Rev. D 2019, 99, 014509. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T. et al. [Lattice Strong Dynamics (LSD)] Goldstone boson scattering with a light composite scalar. Phys. Rev. D 2022, 105, 034505. [Google Scholar] [CrossRef]
- Hasenfratz, A. Emergent strongly coupled ultraviolet fixed point in four dimensions with 8 Kähler-Dirac fermions. arXiv 2022, arXiv:2204.04801. [Google Scholar] [CrossRef]
- Fodor, Z.; Holland, K.; Kuti, J.; Nogradi, D.; Schroeder, C.; Wong, C.H. Can the nearly conformal sextet gauge model hide the Higgs impostor? Phys. Lett. B 2012, 718, 657. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Holland, K.; Kuti, J.; Mondal, S.; Nogradi, D.; Wong, C.H. Toward the minimal realization of a light composite Higgs. PoS Lattice 2015, 2014, 244. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Holland, K.; Kuti, J.; Mondal, S.; Nogradi, D.; Wong, C.H. Status of a minimal composite Higgs theory. PoS Lattice 2016, 2015, 219. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Holland, K.; Kuti, J.; Nogradi, D.; Wong, C.H. The twelve-flavor β-function and dilaton tests of the sextet scalar. EPJ Web Conf. 2018, 175, 08015. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Holland, K.; Kuti, J.; Wong, C.H. Tantalizing dilaton tests from a near-conformal EFT. PoS Lattice 2019, 2018, 196. [Google Scholar] [CrossRef]
- Fodor, Z.; Holland, K.; Kuti, J.; Wong, C.H. Dilaton EFT from p-regime to RMT in the ϵ-regime. PoS Lattice 2020, 2019, 246. [Google Scholar] [CrossRef]
- Appelquist, T.; Ingoldby, J.; Piai, M. Dilaton EFT Framework For Lattice Data. J. High Energy Phys. 2017, 2017, 035. [Google Scholar] [CrossRef]
- Appelquist, T.; Ingoldby, J.; Piai, M. Analysis of a Dilaton EFT for Lattice Data. J. High Energy Phys. 2018, 2018, 039. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Ingoldby, J.; Piai, M. Dilaton potential and lattice data. Phys. Rev. D 2020, 101, 075025. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Ingoldby, J.; Piai, M. Nearly Conformal Composite Higgs Model. Phys. Rev. Lett. 2021, 126, 191804. [Google Scholar] [CrossRef] [PubMed]
- Appelquist, T.; Ingoldby, J.; Piai, M. Composite two-Higgs doublet model from dilaton effective field theory. Nucl. Phys. B 2022, 983, 115930. [Google Scholar] [CrossRef]
- Hong, D.K.; Hsu, S.D.H.; Sannino, F. Composite Higgs from higher representations. Phys. Lett. B 2004, 597, 89. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.D.; Sannino, F.; Tuominen, K. Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for CERN LHC. Phys. Rev. D 2005, 72, 055001. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Yamawaki, K. Techni-dilaton at Conformal Edge. Phys. Rev. D 2011, 83, 015008. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Bai, Y. A Light Dilaton in Walking Gauge Theories. Phys. Rev. D 2010, 82, 071701. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, L. Phenomenology of a light scalar: The dilaton. Phys. Rev. D 2010, 82, 076009. [Google Scholar] [CrossRef] [Green Version]
- Chacko, Z.; Mishra, R.K. Effective Theory of a Light Dilaton. Phys. Rev. D 2013, 87, 115006. [Google Scholar] [CrossRef]
- Bellazzini, B.; Csaki, C.; Hubisz, J.; Serra, J.; Terning, J. A Higgslike Dilaton. Eur. Phys. J. C 2013, 73, 2333. [Google Scholar] [CrossRef] [Green Version]
- Bellazzini, B.; Csaki, C.; Hubisz, J.; Serra, J.; Terning, J. A Naturally Light Dilaton and a Small Cosmological Constant. Eur. Phys. J. C 2014, 74, 2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; Kitano, R.; Konishi, Y.; Oda, K.y.; Sato, J.; Sugiyama, S. Minimal Dilaton Model. Phys. Rev. D 2012, 86, 115016. [Google Scholar] [CrossRef] [Green Version]
- Eichten, E.; Lane, K.; Martin, A. A Higgs Impostor in Low-Scale Technicolor. arXiv 2012, arXiv:1210.5462. [Google Scholar]
- Hernandez-Leon, P.; Merlo, L. Distinguishing A Higgs-Like Dilaton Scenario With A Complete Bosonic Effective Field Theory Basis. Phys. Rev. D 2017, 96, 075008. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, S.; Yamawaki, K. Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant of the Technidilaton on the Lattice. Phys. Rev. Lett. 2014, 113, 082002. [Google Scholar] [CrossRef] [Green Version]
- Golterman, M.; Shamir, Y. Low-energy effective action for pions and a dilatonic meson. Phys. Rev. D 2016, 94, 054502. [Google Scholar] [CrossRef] [Green Version]
- Kasai, A.; Okumura, K.i.; Suzuki, H. A dilaton-pion mass relation. arXiv 2016, arXiv:1609.02264. [Google Scholar]
- Hansen, M.; Langaeble, K.; Sannino, F. Extending Chiral Perturbation Theory with an Isosinglet Scalar. Phys. Rev. D 2017, 95, 036005. [Google Scholar] [CrossRef] [Green Version]
- Golterman, M.; Shamir, Y. Effective pion mass term and the trace anomaly. Phys. Rev. D 2017, 95, 016003. [Google Scholar] [CrossRef] [Green Version]
- Golterman, M.; Shamir, Y. Large-mass regime of the dilaton-pion low-energy effective theory. Phys. Rev. D 2018, 98, 056025. [Google Scholar] [CrossRef] [Green Version]
- Cata, O.; Muller, C. Chiral effective theories with a light scalar at one loop. Nucl. Phys. B 2020, 952, 114938. [Google Scholar] [CrossRef]
- Catà, O.; Crewther, R.J.; Tunstall, L.C. Crawling technicolor. Phys. Rev. D 2019, 100, 095007. [Google Scholar] [CrossRef] [Green Version]
- Golterman, M.; Neil, E.T.; Shamir, Y. Application of dilaton chiral perturbation theory to Nf = 8, SU(3) spectral data. Phys. Rev. D 2020, 102, 034515. [Google Scholar] [CrossRef]
- Golterman, M.; Shamir, Y. Explorations beyond dilaton chiral perturbation theory in the eight-flavor SU(3) gauge theory. Phys. Rev. D 2020, 102, 114507. [Google Scholar] [CrossRef]
- Leung, C.N.; Love, S.T.; Bardeen, W.A. Aspects of Dynamical Symmetry Breaking in Gauge Field Theories. Nucl. Phys. B 1989, 323, 493–512. [Google Scholar] [CrossRef]
- Cohen, A.G.; Georgi, H. Walking Beyond the Rainbow. Nucl. Phys. B 1989, 314, 7–24. [Google Scholar] [CrossRef]
- Ryttov, T.A.; Shrock, R. Higher-order scheme-independent series expansions of and β′IR in conformal field theories. Phys. Rev. D 2017, 95, 105004. [Google Scholar] [CrossRef] [Green Version]
- Georgi, H. Generalized dimensional analysis. Phys. Lett. B 1993, 298, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Bijnens, J.; Lu, J. Technicolor and other QCD-like theories at next-to-next-to-leading order. J. High Energy Phys. 2009, 11, 116. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, Y.L.; Rho, M. Chiral-scale effective theory including a dilatonic meson. Phys. Rev. D 2017, 95, 114011. [Google Scholar] [CrossRef] [Green Version]
- Soldate, M.; Sundrum, R. Z Couplings to Pseudogoldstone Bosons Within Extended Technicolor. Nucl. Phys. B 1990, 340, 1–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appelquist, T.; Ingoldby, J.; Piai, M. Dilaton Effective Field Theory. Universe 2023, 9, 10. https://doi.org/10.3390/universe9010010
Appelquist T, Ingoldby J, Piai M. Dilaton Effective Field Theory. Universe. 2023; 9(1):10. https://doi.org/10.3390/universe9010010
Chicago/Turabian StyleAppelquist, Thomas, James Ingoldby, and Maurizio Piai. 2023. "Dilaton Effective Field Theory" Universe 9, no. 1: 10. https://doi.org/10.3390/universe9010010
APA StyleAppelquist, T., Ingoldby, J., & Piai, M. (2023). Dilaton Effective Field Theory. Universe, 9(1), 10. https://doi.org/10.3390/universe9010010