Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment
Abstract
:1. Introduction
2. Fundamental Formulations in Gravity
3. The Cosmological Model
4. Observational Constraints
4.1. Hubble Datasets
4.2. BAO Datasets
4.3. Pantheon Datasets
4.4. Cosmological Parameters
5. Energy Conditions
- Null energy condition (NEC):;
- Weak energy condition (WEC): and ;
- Dominant energy condition (DEC):;
- Strong energy condition (SEC):.
6. Statefinder Analysis
7. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Koivisto, T.; Mota, D.F. Dark energy anisotropic stress and large scale structure formation. Phys. Rev. D 2006, 73, 083502. [Google Scholar] [CrossRef]
- Daniel, S.F. Large scale structure as a probe of gravitational slip. Phys. Rev. D 2008, 77, 103513. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.-J.; Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezic, Z.; Knapp, G.R.; et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon. Not. R. Astron. Soc. 2010, 401, 2148–2168. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.R.; Doran, M. Cosmic microwave background and supernova constraints on quintessence: Concordance regions and target models. Phys. Rev. D 2004, 69, 103517. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.Y.; Wang, B.; Abdalla, E.; Suet, R.K. Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation. J. Cosm. Astrop. Phys. 2006, 0605, 013. [Google Scholar] [CrossRef]
- Dalal, N.; Abazajian, K.; Jenkins, E.; Manoharet, A.V. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy. Phys. Rev. Lett. 2001, 87, 141302. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Phys. Rev. Lett. 2000, 85, 4438. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. Quintessence and the Rest of the World: Suppressing Long-Range Interactions. Phys. Rev. Lett. 1998, 81, 3067. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y. Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory. Phys. Rev. D 1982, 26, 2580. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Tong, M.; Noh, H. CMB temperature and matter power spectrum in a decay vacuum dark energy model. Phys. Rev. D 2011, 84, 123004. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.; Noh, H. Observational constraints on decaying vacuum dark energy model. Eur. Phys. J. C 2011, 71, 1586. [Google Scholar] [CrossRef] [Green Version]
- Freese, K.; Adams, F.C.; Frieman, J.A.; Mottola, E. Cosmology with decaying vacuum energy. Nucl. Phys. B 1987, 287, 797. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, A.-M.M. Nonsingular decaying-vacuum cosmology and baryonic matter. Phys. Rev. D 1992, 45, 3497. [Google Scholar] [CrossRef]
- Appleby, S.; Battye, R. Do consistent F(R) models mimic General Relativity plus Λ. Phys. Lett. B 2007, 654, 7. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Gannouji, R.; Polarski, D.; Tsujikawa, S. Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D 2007, 75, 083504. [Google Scholar] [CrossRef] [Green Version]
- Saffari, R.; Rahvar, S. f(R) gravity: From the Pioneer anomaly to cosmic acceleration. Phys. Rev. D 2008, 77, 104028. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem. Phys. Rev. D 2006, 73, 084007. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Barrow, J.D.; Mota, D.F. Cosmology of modified Gauss-Bonnet gravity. Phys. Rev. D 2007, 76, 044027. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Santos, J.R.L. A complete cosmological scenario from f(R,Tϕ) gravity theory. Eur. Phys. J. C 2016, 76, 60. [Google Scholar]
- Ren, X.; Wong, T.H.T.; Cai, Y.F.; Saridakis, E.N. Data-driven Reconstruction of the Late-time Cosmic Acceleration with f(T) Gravity. Phys. Dark Univ. 2021, 32, 100812. [Google Scholar] [CrossRef]
- Nashed, G.L.; Capozziello, S. Charged Anti-de Sitter BTZ black holes in Maxwell-f(T) gravity. Gen. Rel. Grav. 2015, 47, 75. [Google Scholar] [CrossRef] [Green Version]
- Setare, M.R.; Mohammadipour, N. Can f(T) gravity theories mimic ΛCDM cosmic history. J. Cosm. Astrop. Phys. 2013, 01, 015. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Dialektopoulos, K.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.; Mifsud, J.; Valentino, E.D. Teleparallel Gravity: From Theory to Cosmology. arXiv 2021, arXiv:2106.13793. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Neéman, Y. Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Neéman, Y.; Nitsch, J.; Heyde, P.V.D. Short-range confining component in a quadratic poincare gauge theory of gravitation. Phys. Lett. B 1978, 78, 102–106. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature ? arXiv 2000, arXiv:0001010. [Google Scholar]
- Ne’eman, Y.; Hehl, F.W. Matter Particled—Patterns, Structure and Dynamics. Class. Quant. Grav. 1997, 14, 251–260. [Google Scholar]
- Nester, J.M.; Yo, H.-J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Boulanger, N.; Kirsch, I. Higgs mechanism for gravity. II. Higher spin connections Phys. Rev. D 2006, 73, 124023. [Google Scholar]
- Baekler, P.; Boulanger, N.; Hehl, F.W. Linear connections with a propagating spin-3 field in gravity. Phys. Rev. D 2006, 74, 125009. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Gravitation and electricity. Sitzungsber. Preuss. Akad. Wiss. 1918, 465, 1. [Google Scholar] [CrossRef] [Green Version]
- Dialektopoulos, K.F.; Koivisto, T.S.; Capozziello, S. Noether symmetries in symmetric teleparallel cosmology. Eur. Phys. J. C 2019, 79, 606. [Google Scholar] [CrossRef] [Green Version]
- Frusciante, N. Signatures of f(Q) gravity in cosmology. Phys. Rev. D 2021, 103, 044021. [Google Scholar] [CrossRef]
- Barros, B.J.; Barreiro, T.; Koivisto, T.; Nunes, N.J. Testing F(Q) gravity with redshift space distortions. Phys. Dark Univ. 2020, 30, 100616. [Google Scholar] [CrossRef]
- Ferreira, J.; Barreiro, T.; Mimoso, J.; Nunes, N.J. Forecasting F(Q) cosmology with ΛCDM background using standard sirens. Phys. Rev. D 2022, 105, 123531. [Google Scholar] [CrossRef]
- Albuquerque, I.S.; Frusciante, N. A designer approach to f(Q) gravity and cosmological implications. Phys. Dark Univ. 2022, 35, 100980. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R. Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. B 2022, 832, 137229. [Google Scholar] [CrossRef]
- Atayde, L.; Frusciante, N. Can f(Q) gravity challenge ΛCDM . Phys. Rev. D 2022, 104, 064052. [Google Scholar] [CrossRef]
- Ayuso, I.; Lazkoz, R.; Salzano, V. Observational constraints on cosmological solutions of f(Q) theories. Phys. Rev. D 2021, 103, 063505. [Google Scholar] [CrossRef]
- Khyllep, W. Cosmology in f(Q) gravity: A unified dynamical system analysis at background and perturbation levels. arXiv 2022, arXiv:2207.02610. [Google Scholar]
- Sahlu, S.; Tsegaye, E. Linear Cosmological perturbations in F(Q) Gravity. arXiv 2022, arXiv:2206.02517. [Google Scholar]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.; Pekar, S. Cosmology in f(Q) geometry. Phys. Rev. D 2020, 101, 103507. [Google Scholar] [CrossRef]
- Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f(Q) gravity. Phys. Rev. D 2021, 103, 103521. [Google Scholar] [CrossRef]
- Mandal, S.; Wang, D.; Sahoo, P.K. Cosmography in f(Q) gravity. Phys. Rev. D 2020, 102, 124029. [Google Scholar] [CrossRef]
- Mandal, S.; Sahoo, P.K.; Santos, J.R.L. Energy conditions in f(Q) gravity. Phys. Rev. D 2020, 102, 024057. [Google Scholar] [CrossRef]
- Wilson, J.R.; Mathews, G.J.; Fuller, G.M. Bulk viscosity, decaying dark matter, and the cosmic acceleration. Phys. Rev. D 2007, 75, 043521. [Google Scholar] [CrossRef] [Green Version]
- Okumura, H.; Yonezawa, F. New expression of the bulk viscosity. Phys. A 2003, 321, 207. [Google Scholar] [CrossRef]
- Bali, R.; Jain, D.R. Some expanding and shearing viscous fluid cosmological models in general relativity. Astrophys. Spa. Sci. 1988, 141, 207. [Google Scholar] [CrossRef]
- Bali, R.; Jain, D.R. A gravitationally non-degenerate cosmological model with expanding and shearing viscous fluid in general relativity. Astriphys. Spa. Sci. 1987, 139, 175. [Google Scholar] [CrossRef]
- Deng, Y.; Mannheim, P.D. Acceleration-free spherically symmetric inhomogeneous cosmological model with shear viscosity. Phys. Rev. D 1991, 44, 1722. [Google Scholar] [CrossRef]
- Huang, W.-H. Effects of the shear viscosity on the character of cosmological evolution. J. Math. Phys. 1990, 31, 659. [Google Scholar] [CrossRef] [Green Version]
- Samanta, G.C.; Myrzakulov, R.; Shah, P. Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R,T) Gravity. Zeits. Naturfor. 2017, 72, 365. [Google Scholar] [CrossRef] [Green Version]
- Satish, J.; Venkateswarlu, R. Bulk viscous fluid cosmological models in f(R, T) gravity. Chin. J. Phys. 2016, 54, 830. [Google Scholar]
- Beesham, A. Cosmological Models with a Variable Cosmological Term and Bulk Viscous Models. Phys. Rev. D 1993, 48, 3539. [Google Scholar] [CrossRef] [PubMed]
- Colistete, R., Jr.; Fabris, J.C.; Tossa, J.; Zimdahl, W. Bulk viscous cosmology. Phys. Rev. D 2007, 76, 103516. [Google Scholar] [CrossRef] [Green Version]
- Sadatian, S.D. Effects of viscous content on the modified cosmological F(T) model. EPL 2019, 126, 30004. [Google Scholar] [CrossRef]
- Brevik, I. Viscosity in Modified Gravity. Entropy 2012, 14, 2302–2310. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.P.; Kumar, P. Friedmann model with viscous cosmology in modified f(R,T) gravity theory. Eur. Phys. J. C 2014, 74, 3070. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, M.; Singh, C.P. New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory. Astrophys. Space Sci. 2018, 363, 117. [Google Scholar] [CrossRef]
- Paolis, F.D.; Jamil, M.; Qadir, A. Black holes in bulk viscous cosmology. Int. J. Theor. Phys. 2010, 49, 621–632. [Google Scholar] [CrossRef]
- Brevik, I.; Jamil, M. Black holes in the turbulence phase of viscous rip cosmology. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1950030. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. ApJ 2002, 573, 37. [Google Scholar] [CrossRef]
- Sharov, G.S.; Bhattacharya, S.; Pan, S.; Nunes, R.C.; Chakraborty, S. A new interacting two-fluid model and its consequences. Mon. Not. R. Astron. Soc. 2017, 466, 3497. [Google Scholar] [CrossRef]
- Blake, C.; Kazin, E.A.; Beutler, F.; Davis, T.M.; Parkinson, D.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; et al. The WiggleZ Dark Energy Survey: Mapping the distance-redshift relation with baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 2011, 418, 1707. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. ApJ 2018, 859, 101. [Google Scholar] [CrossRef]
- Lazkoz, R.; Lobo, F.S.N.; Ortiz-Banos, M.; Salzano, V. Observational constraints of f(Q) gravity. Phys. Rev. D 2019, 100, 104027. [Google Scholar] [CrossRef] [Green Version]
- Beh, J.T.; Loo, T.H.; De, A. Geodesic Deviation Equation In f(Q) Gravity. arXiv 2021, arXiv:2107.04513. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Christodoulakis, T. Quantum Cosmology in f(Q) theory. arXiv 2021, arXiv:2108.01970. [Google Scholar] [CrossRef]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Loeb, A.; Moresco, M. The cosmic chronometers take on spatial curvature and cosmic concordance. Astrophys. J. 2021, 908, 84. [Google Scholar]
- Gusakov, M.E. Bulk viscosity of superfluid neutron stars. Phys. Rev. D 2007, 76, 083001. [Google Scholar] [CrossRef] [Green Version]
- Gusakov, M.E.; Kantor, E.M. Bulk viscosity of superfluid hyperon stars. Phys. Rev. D 2008, 78, 083006. [Google Scholar] [CrossRef] [Green Version]
- Haensel, P.; Levenfish, K.P.; Yakovlev, D.G. Bulk viscosity in superfluid neutron star cores-III. Effects of hyperons. Astron. Astrophys. 2002, 381, 1080. [Google Scholar] [CrossRef]
- Ryden, B. Introduction to Cosmology; Addison Wesley: San Francisco, CA, USA, 2003. [Google Scholar]
- Odintsov, S.D.; Gomez, D.S.C.; Sharov, G.S. Testing the equation of state for viscous dark energy. Phys. Rev. D 2020, 101, 044010. [Google Scholar] [CrossRef] [Green Version]
- Fabris, J.C.; Goncalves, S.V.B.; Ribeiro, R. Bulk viscosity driving the acceleration of the Universe. Gen. Rel. Grav. 2006, 38, 495. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.-H.; Dou, X. Friedmann cosmology with bulk viscosity: A concrete model for dark energy. Comm. Theor. Phys. 2009, 52, 377. [Google Scholar]
- Brevik, I.; Gorbunova, O. Dark energy and viscous cosmology. Gen. Rel. Grav. 2005, 37, 2039. [Google Scholar] [CrossRef]
- Gron, O. Viscous inflationary universe models. Astrophys. Space Sci. 1990, 173, 191–225. [Google Scholar] [CrossRef]
- Eckart, C. The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid Phys. Rev. 1940, 58, 919. [Google Scholar]
- Ren, J.; Meng, X.-H. Cosmological model with viscosity media (dark fluid) described by an effective equation of state. Phys. Lett. B 2006, 633, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D 2018, 98, 084043. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.F.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Sharov, G.S.; Vasilie, V.O. How predictions of cosmological models depend on Hubble parameter data sets. Math. Model. Geom. 2018, 6, 1. [Google Scholar] [CrossRef]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017. [Google Scholar] [CrossRef]
- Jarosik, N.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Halpern, M.; Hill, R.S.; Hinshaw, G.; Kogut, A.; Komatsu, E. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS. Astrophys. J. Suppl. 2011, 192, 14. [Google Scholar] [CrossRef] [Green Version]
- Giostri, R.; Santos, M.V.d.; Waga, I.; Reis, R.R.R.; Calvao, M.O.; Lago, B.L. From cosmic deceleration to acceleration: New constraints from SN Ia and BAO/CMB. J. Cosm. Astropart. Phys. 2012, 03, 027. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.; Banerjee, N. Non-parametric reconstruction of the cosmological jerk parameter. Eur. Phys. J. C 2021, 81, 36. [Google Scholar] [CrossRef]
- Tripp, R. A two-parameter luminosity correction for Type IA supernovae. Astron. Astrophys. 1998, 331, 815. [Google Scholar]
- Kessler, R.; Scolnic, D. Correcting type Ia supernova distances for selection biases and contamination in photometrically identified samples. Astrophys. J. 2017, 836, 56. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Myrzakulov gravity. Phys. Rev. D 2021, 103, 104013. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Pacucci, F.; Loeb, A. Implications for the Hubble tension from the ages of the oldest astrophysical objects. JHEAp 2022, 36, 27–35. [Google Scholar] [CrossRef]
- Raychaudhuri, A. Relativistic cosmology I. Phys. Rev. 1955, 98, 1123. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.O. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280–283. [Google Scholar] [CrossRef]
- Sahni, V.; Saini, T.D.; Starobinsky, A.A.; Alam, U. Statefinder-a new geometrical diagnostic of dark energy. JETP Lett. 2003, 77, 201. [Google Scholar] [CrossRef]
- CDMS II Collaboration. Science 2010, 327, 1619.
- Akerib, D.S.; Araujo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; et al. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 2014, 112, 091303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essig, R.; Manalaysay, A.; Mardon, J.; Sorensen, P.; Volansky, T. First direct detection limits on sub-GeV dark matter from XENON10. Phys. Rev. Lett 2012, 109, 021301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohmer, C.G.; Harko, T.; Lobo, F.S.N. Dark matter as a geometric effect in f(R) gravity. Astrop. Phys. 2008, 29, 386. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D.; O’Brien, J.G. Fitting galactic rotation curves with conformal gravity and a global quadratic potential. Phys. Rev. D 2012, 85, 124020. [Google Scholar] [CrossRef]
Data | n | |||
---|---|---|---|---|
Hubble | ||||
BAO | ||||
Pantheon |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solanki, R.; Arora, S.; Sahoo, P.K.; Moraes, P.H.R.S. Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment. Universe 2023, 9, 12. https://doi.org/10.3390/universe9010012
Solanki R, Arora S, Sahoo PK, Moraes PHRS. Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment. Universe. 2023; 9(1):12. https://doi.org/10.3390/universe9010012
Chicago/Turabian StyleSolanki, Raja, Simran Arora, Pradyumn Kumar Sahoo, and Pedro H. R. S. Moraes. 2023. "Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment" Universe 9, no. 1: 12. https://doi.org/10.3390/universe9010012
APA StyleSolanki, R., Arora, S., Sahoo, P. K., & Moraes, P. H. R. S. (2023). Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment. Universe, 9(1), 12. https://doi.org/10.3390/universe9010012