Single-Top Quark Physics at the LHC: From Precision Measurements to Rare Processes and Top Quark Properties
Abstract
:1. Introduction
2. Precise and Differential Measurements of Single-Top Quark Processes
2.1. The t-Channel Process: The Production Mode with The Largest Statistics
2.1.1. Features of the t-Channel Process
2.1.2. Experimental Techniques for the t-Channel Measurement
- Integrated luminosity: Typically a few percent (depending on the dataset).
- Signal and background modeling from SM theoretical predictions: Uncertainties in the modeling of signal acceptance and in the modeling of distributions used as discriminant observables are usually major sources of systematic uncertainty in top quark physics. This includes renormalization and factorization scale variations (accounting for missing higher-order contributions in pQCD), parton shower and hadronization, PDFs, the choice of a matching scheme between fixed-order predictions and the parton shower, the choice of flavor scheme (4FS or 5FS), and MC statistical uncertainty. These uncertainties are treated by generating various MC samples, or including various event weights in the MC samples, with generation parameters varied up and down. The same uncertainties are also included for most backgrounds, which are estimated from simulations.
- Data-driven background estimate: Due to the inadequate representation in simulations of jets misidentified as leptons, the non-prompt lepton background is directly estimated from the data. Usually, these estimations are complicated and rather imprecise. It is rare to lower the relative systematic uncertainty below 30% before any constraints from the fit.
- Simulation-to-data corrections: Several corrections (so-called scale factors) to the reconstructed objects are applied to the simulation to improve its agreement with the data. These corrections are derived from dedicated analyses estimating the associated systematic uncertainties. The corrections are typically related to trigger and lepton selections, jet energy scale and resolution, and b-tagging.
2.1.3. Summary of the Latest Measurements of the t-Channel-Inclusive Cross-Section
2.1.4. Measurements of Fiducial and Differential Cross-Sections
- Parton level: Corresponds to the generated on-shell top quarks after QCD radiative corrections.
- Particle level: Corresponds to (pseudo-)top quarks reconstructed from simulated particles after QED and QCD radiation, particle decay, and hadronization, with a dedicated algorithm.
2.2. The tW Process, and Its Interplay with the Process
2.2.1. Introduction to the process
2.2.2. Measurements of the Process
2.2.3. Understanding the Interference between and Processes
2.3. The Challenging s-Channel
3. Associated Production of a Single-Top Quark with a Neutral Boson
3.1. A Newcomer: Associated Production of a Single-Top Quark with a Photon ()
3.2. A Path toward Top-Z Coupling: Single-Top Quark Production with a Z Boson ()
3.3. The Processes: Companions for the top Quark Yukawa Coupling
3.3.1. Introduction to the Processes
3.3.2. Searches for the Processes
3.3.3. Probing the Sign of the Top Quark Yukawa Coupling
4. Discovery Potential of Property Measurements and Interpretations
4.1. Measurement of the CKM Matrix Element
4.2. W Boson Polarization Fractions
4.3. Effective Couplings and Interpretation in the SM EFT
4.4. Top Quark Polarization
4.5. Discussion on other Couplings with Single-Top Quark Measurements in the SM EFT
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CDF Collaboration. Observation of top quark production in collisions. Phys. Rev. Lett. 1995, 74, 2626–2631. [Google Scholar] [CrossRef]
- D0 Collaboration. Observation of the top quark. Phys. Rev. Lett. 1995, 74, 2632–2637. [Google Scholar] [CrossRef] [PubMed]
- D0 Collaboration. Observation of Single Top Quark Production. Phys. Rev. Lett. 2009, 103, 092001. [Google Scholar] [CrossRef]
- CDF Collaboration. First Observation of Electroweak Single Top Quark Production. Phys. Rev. Lett. 2009, 103, 092002. [Google Scholar] [CrossRef] [PubMed]
- D0 Collaboration. Model-independent measurement of t-channel single top quark production in collisions at = 1.96 TeV. Phys. Lett. B 2011, 705, 313–319. [Google Scholar] [CrossRef]
- D0 Collaboration. Evidence for S-Channel Single Top Quark Production in Collisions at = 1.96 TeV. Phys. Lett. B 2013, 726, 656–664. [Google Scholar] [CrossRef]
- CDF Collaboration. Updated Measurement of the Single Top Quark Production Cross Section and Vtb in the Missing Transverse Energy Plus Jets Topology in Collisions at = 1.96 TeV. Phys. Rev. D 2016, 93, 032011. [Google Scholar] [CrossRef]
- CDF Collaboration; D0 Collaboration. Observation of s-channel production of single top quarks at the Tevatron. Phys. Rev. Lett. 2014, 112, 231803. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Evidence for single top-quark production in the s-channel in proton-proton collisions at = 8 TeV with the ATLAS detector using the Matrix Element Method. Phys. Lett. B 2016, 756, 228–246. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of single top-quark production in the s-channel in proton–proton collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2023, 6, 191. [Google Scholar] [CrossRef]
- Campbell, J.; Neumann, T.; Sullivan, Z. Single-top-quark production in the t-channel at NNLO. J. High Energy Phys. 2021, 2, 40. [Google Scholar] [CrossRef]
- Kidonakis, N.; Yamanaka, N. Higher-order corrections for tW production at high-energy hadron colliders. J. High Energy Phys. 2021, 5, 278. [Google Scholar] [CrossRef]
- Aliev, M.; Lacker, H.; Langenfeld, U.; Moch, S.; Uwer, P.; Wiedermann, M. HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR. Comput. Phys. Commun. 2011, 182, 1034–1046. [Google Scholar] [CrossRef]
- Kant, P.; Kind, O.M.; Kintscher, T.; Lohse, T.; Martini, T.; Mölbitz, S.; Rieck, P.; Uwer, P. HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. 2015, 191, 74–89. [Google Scholar] [CrossRef]
- Giammanco, A. Single top quark production at the LHC. Rev. Phys. 2016, 1, 1–12. [Google Scholar] [CrossRef]
- Giammanco, A.; Schwienhorst, R. Single top-quark production at the Tevatron and the LHC. Rev. Mod. Phys. 2018, 90, 035001. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Top Cross Section Summary Plots—June 2023. 2023. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-014 (accessed on 24 July 2023).
- CMS Collaboration. CMS Top Quark Physics Summary Figures. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOPSummaryFigures (accessed on 24 July 2023).
- Tait, T.M.P.; Yuan, C.P. Single top quark production as a window to physics beyond the standard model. Phys. Rev. D 2000, 63, 014018. [Google Scholar] [CrossRef]
- Drueke, E.; Nutter, J.; Schwienhorst, R.; Vignaroli, N.; Walker, D.G.E.; Yu, J.H. Single Top Production as a Probe of Heavy Resonances. Phys. Rev. D 2015, 91, 054020. [Google Scholar] [CrossRef]
- Burdman, G. Scalars from top condensation models at hadron colliders. Phys. Rev. Lett. 1999, 83, 2888–2891. [Google Scholar] [CrossRef]
- Oakes, R.J.; Whisnant, K.; Yang, J.M.; Young, B.L.; Zhang, X. Single top quark production as a probe of R-parity violating SUSY at p p and p anti-p colliders. Phys. Rev. D 1998, 57, 534–540. [Google Scholar] [CrossRef]
- Burdman, G.; Dobrescu, B.A.; Ponton, E. Resonances from two universal extra dimensions. Phys. Rev. D 2006, 74, 075008. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A. Identifying top partners at LHC. J. High Energy Phys. 2009, 11, 30. [Google Scholar] [CrossRef]
- Hassanain, B.; March-Russell, J.; Rosa, J.G. On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats. J. High Energy Phys. 2009, 7, 77. [Google Scholar] [CrossRef]
- Atwood, D.; Reina, L.; Soni, A. Phenomenology of two Higgs doublet models with flavor changing neutral currents. Phys. Rev. D 1997, 55, 3156–3176. [Google Scholar] [CrossRef]
- Cao, J.J.; Eilam, G.; Frank, M.; Hikasa, K.; Liu, G.L.; Turan, I.; Yang, J.M. SUSY-induced FCNC top-quark processes at the large hadron collider. Phys. Rev. D 2007, 75, 075021. [Google Scholar] [CrossRef]
- Agashe, K.; Perez, G.; Soni, A. Collider Signals of Top Quark Flavor Violation from a Warped Extra Dimension. Phys. Rev. D 2007, 75, 015002. [Google Scholar] [CrossRef]
- Fontes, D.; Mühlleitner, M.; Romão, J.C.; Santos, R.; Silva, J.a.P.; Wittbrodt, J. The C2HDM revisited. J. High Energy Phys. 2018, 2, 73. [Google Scholar] [CrossRef]
- Bi, X.J.; Dai, Y.B. CP violation in semileptonic decays of the top quark within MSSM. Eur. Phys. J. C 2000, 12, 125–135. [Google Scholar] [CrossRef]
- Behr, J.K.; Grohsjean, A. Dark Matter Searches with Top Quarks. Universe 2023, 9, 16. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at = 13TeV. Eur. Phys. J. C 2020, 80, 370. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the t-channel single top quark production cross section in pp collisions at = 7 TeV. Phys. Rev. Lett. 2011, 107, 091802. [Google Scholar] [CrossRef] [PubMed]
- ATLAS Collaboration. Measurement of the t-channel single top-quark production cross section in pp collisions at = 7 TeV with the ATLAS detector. Phys. Lett. B 2012, 717, 330–350. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the Single-Top-Quark t-Channel Cross Section in pp Collisions at = 7 TeV. J. High Energy Phys. 2012, 12, 35. [Google Scholar] [CrossRef]
- Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 2011, 71, 1554, Erratum in Eur. Phys. J. C 2013, 73, 2501. [Google Scholar] [CrossRef]
- ATLAS Collaboration; CMS Collaboration; the LHC Higgs Combination Group. Procedure for the LHC Higgs Boson Search Combination in Summer 2011. CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11. Available online: https://cds.cern.ch/record/1379837 (accessed on 24 July 2023).
- ATLAS Collaboration. Measurement of t-Channel Production of Single Top Quarks and Antiquarks in pp Collisions at 13 TeV Using the Full ATLAS Run 2 Dataset. ATLAS-CONF-2023-026. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-026 (accessed on 24 July 2023).
- ATLAS Collaboration. Measurement of t-Channel Single-Top-Quark Production in pp Collisions at = 5.02 TeV with the ATLAS Detector. ATLAS-CONF-2023-033. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-033 (accessed on 24 July 2023).
- ATLAS Collaboration; CMS Collaboration. Combinations of Single-Top-Quark Production Cross-Section Measurements and |fLVVtb| Determinations at = 7 and 8 TeV with the ATLAS and CMS Experiments. J. High Energy Phys. 2019, 5, 88. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in proton-proton collisions at = 13 TeV. Phys. Lett. B 2020, 800, 135042. [Google Scholar] [CrossRef]
- Fischer, N.; Prestel, S.; Ritzmann, M.; Skands, P. Vincia for Hadron Colliders. Eur. Phys. J. C 2016, 76, 589. [Google Scholar] [CrossRef]
- Dasgupta, M.; Dreyer, F.A.; Hamilton, K.; Monni, P.F.; Salam, G.P.; Soyez, G. Parton showers beyond leading logarithmic accuracy. Phys. Rev. Lett. 2020, 125, 052002. [Google Scholar] [CrossRef]
- Ferrario Ravasio, S.; Hamilton, K.; Karlberg, A.; Salam, G.P.; Scyboz, L.; Soyez, G. A parton shower with higher-logarithmic accuracy for soft emissions. arXiv 2023, arXiv:2307.11142. [Google Scholar] [CrossRef]
- Corcella, G.; Franceschini, R.; Kim, D. Fragmentation Uncertainties in Hadronic Observables for Top-quark Mass Measurements. Nucl. Phys. B 2018, 929, 485–526. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Comprehensive measurements of t-channel single top-quark production cross sections at = 7 TeV with the ATLAS detector. Phys. Rev. D 2014, 90, 112006. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector. Eur. Phys. J. C 2017, 77, 531. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Measurement of the t-channel single-top-quark production cross section and of the ∣Vtb∣ CKM matrix element in pp collisions at = 8 TeV. J. High Energy Phys. 2014, 6, 90. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2017, 4, 86. [Google Scholar] [CrossRef]
- Nocera, E.R.; Ubiali, M.; Voisey, C. Single Top Production in PDF fits. J. High Energy Phys. 2020, 5, 67. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of single top-quark production in association with a W boson in the single-lepton channel at = 8TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 720. [Google Scholar] [CrossRef]
- Castro, N.F.; Skovpen, K. Flavour-Changing Neutral Scalar Interactions of the Top Quark. Universe 2022, 8, 609. [Google Scholar] [CrossRef]
- White, C.D.; Frixione, S.; Laenen, E.; Maltoni, F. Isolating Wt production at the LHC. J. High Energy Phys. 2009, 11, 74. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A. Single top quark production at LHC with anomalous Wtb couplings. Nucl. Phys. B 2008, 804, 160–192. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Evidence for the associated production of a W boson and a top quark in ATLAS at = 7 TeV. Phys. Lett. B 2012, 716, 142–159. [Google Scholar] [CrossRef]
- CMS Collaboration. Evidence for Associated Production of a Single Top Quark and W Boson in pp Collisions at = 7 TeV. Phys. Rev. Lett. 2013, 110, 022003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment. J. High Energy Phys. 2016, 1, 64. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of the associated production of a single top quark and a W boson in pp collisions at = 8 TeV. Phys. Rev. Lett. 2014, 112, 231802. [Google Scholar] [CrossRef] [PubMed]
- ATLAS Collaboration. Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at = 13 TeV with ATLAS. J. High Energy Phys. 2018, 1, 63. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2018, 10, 117. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of differential cross-sections of a single top quark produced in association with a W boson at = 13 TeV with ATLAS. Eur. Phys. J. C 2018, 78, 186. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2023, 7, 46. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of tW production in the single-lepton channel in pp collisions at = 13 TeV. J. High Energy Phys. 2021, 11, 111. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at = 8 TeV with the ATLAS detector. J. High Energy Phys. 2016, 2, 110. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at = 13 TeV. J. High Energy Phys. 2022, 4, 48. [Google Scholar] [CrossRef]
- Baur, U.; Spira, M.; Zerwas, P.M. Excited Quark and Lepton Production at Hadron Colliders. Phys. Rev. D 1990, 42, 815–824. [Google Scholar] [CrossRef]
- Brochet, S.; Delaere, C.; François, B.; Lemaître, V.; Mertens, A.; Saggio, A.; Vidal Marono, M.; Wertz, S. MoMEMta, a modular toolkit for the Matrix Element Method at the LHC. Eur. Phys. J. C 2019, 79, 126. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at = 13 TeV with the ATLAS detector. Phys. Rev. Lett. 2018, 121, 152002. [Google Scholar] [CrossRef] [PubMed]
- Ježo, T.; Lindert, J.M.; Nason, P.; Oleari, C.; Pozzorini, S. An NLO+PS generator for and Wt production and decay including non-resonant and interference effects. Eur. Phys. J. C 2016, 76, 691. [Google Scholar] [CrossRef]
- Ježo, T.; Lindert, J.M.; Pozzorini, S. Resonance-aware NLOPS matching for off-shell +tW production with semileptonic decays. arXiv 2023, arXiv:2307.15653. [Google Scholar] [CrossRef]
- Kidonakis, N. NNLL resummation for s-channel single top quark production. Phys. Rev. D 2010, 81, 054028. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for s-channel single top-quark production in proton–proton collisions at = 8 TeV with the ATLAS detector. Phys. Lett. B 2015, 740, 118–136. [Google Scholar] [CrossRef]
- Kondo, K. Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. 1: Method and Toy Models. J. Phys. Soc. Jap. 1988, 57, 4126–4140. [Google Scholar] [CrossRef]
- D0 Collaboration. A precision measurement of the mass of the top quark. Nature 2004, 429, 638–642. [Google Scholar] [CrossRef]
- CDF Collaboration. Precision measurement of the top quark mass from dilepton events at CDF II. Phys. Rev. D 2007, 75, 031105. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for s channel single top quark production in pp collisions at = 7 and 8 TeV. J. High Energy Phys. 2016, 9, 27. [Google Scholar] [CrossRef]
- Liu, Z.L.; Gao, J. s-channel single top quark production and decay at next-to-next-to-leading-order in QCD. Phys. Rev. D 2018, 98, 071501. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 7, 79. [Google Scholar] [CrossRef]
- CMS Collaboration. Evidence for the associated production of a single top quark and a photon in proton-proton collisions at = 13 TeV. Phys. Rev. Lett. 2018, 121, 221802. [Google Scholar] [CrossRef]
- Kidonakis, N.; Yamanaka, N. QCD corrections in tqγ production at hadron colliders. Eur. Phys. J. C 2022, 82, 670. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Observation of single-top-quark production in association with a photon using the ATLAS detector. arXiv 2023, arXiv:2302.01283. [Google Scholar] [CrossRef]
- Fael, M.; Gehrmann, T. Probing top quark electromagnetic dipole moments in single-top-plus-photon production. Phys. Rev. D 2013, 88, 033003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurements of inclusive and differential cross-sections of combined γ and tWγ production in the eμ channel at 13 TeV with the ATLAS detector. J. High Energy Phys. 2020, 9, 49. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the production cross-section of a single top quark in association with a Z boson in proton–proton collisions at 13 TeV with the ATLAS detector. Phys. Lett. B 2018, 780, 557–577. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the associated production of a single top quark and a Z boson in pp collisions at = 13 TeV. Phys. Lett. B 2018, 779, 358–384. [Google Scholar] [CrossRef]
- Kidonakis, N.; Yamanaka, N. Soft-gluon corrections for tqZ production. Phys. Lett. B 2023, 838, 137708. [Google Scholar] [CrossRef]
- CMS Collaboration. Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2022, 2, 107. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of Single Top Quark Production in Association with a Z Boson in Proton-Proton Collisions at =13 TeV. Phys. Rev. Lett. 2019, 122, 132003. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Observation of the associated production of a top quark and a Z boson in pp collisions at = 13 TeV with the ATLAS detector. J. High Energy Phys. 2020, 7, 124. [Google Scholar] [CrossRef]
- CMS Collaboration. Evidence for tWZ Production in Proton-Proton Collisions at = 13 TeV in Multilepton Final States. CMS-PAS-TOP-22-008. Available online: https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-22-008/index.html (accessed on 24 July 2023).
- ATLAS Collaboration. Studies on Top-Quark Monte Carlo Modelling for Top2016. Available online: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-020/ (accessed on 24 July 2023).
- LHC Higgs Cross Section Working Group. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. arXiv 2016, arXiv:1610.07922. [Google Scholar] [CrossRef]
- Forslund, M.; Kidonakis, N. Soft-gluon corrections for the associated production of a single top quark and a Higgs boson. Phys. Rev. D 2021, 104, 034024. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at = 8 TeV. J. High Energy Phys. 2016, 6, 177. [Google Scholar] [CrossRef]
- Farina, M.; Grojean, C.; Maltoni, F.; Salvioni, E.; Thamm, A. Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson. J. High Energy Phys. 2013, 5, 22. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the properties of Higgs boson production at = 13 TeV in the H →γγ channel using 139 fb−1 of pp collision data with the ATLAS experiment. J. High Energy Phys. 2023, 7, 88. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at = 13 TeV. J. High Energy Phys. 2021, 7, 27. [Google Scholar] [CrossRef]
- Berger, N.; Bertella, C.; Calvet, T.P.; Calvetti, M.; Dao, V.; Delmastro, M.; Duehrssen-Debling, M.; Francavilla, P.; Haddad, Y.; Kivernyk, O.; et al. Simplified Template Cross Sections—Stage 1.1. arXiv 2019, arXiv:1906.02754. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at = 13 TeV. Eur. Phys. J. C 2021, 81, 378. [Google Scholar] [CrossRef] [PubMed]
- CMS Collaboration. Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at = 13 TeV. Phys. Rev. D 2019, 99, 092005. [Google Scholar] [CrossRef]
- CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 2022, 607, 60–68. [Google Scholar] [CrossRef] [PubMed]
- ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 2022, 607, 52–59, Erratum in Nature 2022, 612, E24. [Google Scholar] [CrossRef]
- CMS Collaboration. Sensitivity Projections for Higgs Boson Properties Measurements at the HL-LHC. CMS-PAS-FTR-18-011. Available online: https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR-18-011/index.html (accessed on 24 July 2023).
- ATLAS Collaboration. CP Properties of Higgs Boson Interactions with Top Quarks in the H and tH Processes Using H→γγ with the ATLAS Detector. Phys. Rev. Lett. 2020, 125, 061802. [CrossRef]
- ATLAS Collaboration. Probing the CP nature of the top-Higgs Yukawa coupling in H and tH events with H→ decays using the ATLAS detector at the LHC. arXiv 2023, arXiv:2303.05974. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurements of H Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel. Phys. Rev. Lett. 2020, 125, 061801. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for CP violation in H and tH production in multilepton channels in proton-proton collisions at = 13 TeV. J. High Energy Phys. 2023, 7, 92. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at = 13 TeV. J. High Energy Phys. 2021, 12, 161. [Google Scholar] [CrossRef]
- Kidonakis, N. Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D 2011, 83, 091503. [Google Scholar] [CrossRef]
- Kidonakis, N. Two-loop soft anomalous dimensions for single top quark associated production with a W− or H−. Phys. Rev. D 2010, 82, 054018. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of CKM matrix elements in single top quark t-channel production in proton-proton collisions at = 13 TeV. Phys. Lett. B 2020, 808, 135609. [Google Scholar] [CrossRef]
- Czarnecki, A.; Korner, J.G.; Piclum, J.H. Helicity fractions of W bosons from top quark decays at NNLO in QCD. Phys. Rev. D 2010, 81, 111503. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at = 8TeV. Phys. Lett. B 2016, 762, 512–534. [Google Scholar] [CrossRef]
- CDF Collaboration; D0 Collaboration. Combination of CDF and D0 measurements of the W boson helicity in top quark decays. Phys. Rev. D 2012, 85, 071106. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at = 8 TeV. J. High Energy Phys. 2015, 1, 53. [Google Scholar] [CrossRef]
- ATLAS Collaboration; CMS Collaboration. Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at = 8 TeV. J. High Energy Phys. 2020, 8, 51. [Google Scholar] [CrossRef]
- Boudreau, J.; Escobar, C.; Mueller, J.; Sapp, K.; Su, J. Single top quark differential decay rate formulae including detector effects. arXiv 2013, arXiv:1304.5639. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for anomalous couplings in the Wtb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector. J. High Energy Phys. 2016, 4, 23. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Analysis of the Wtb vertex from the measurement of triple-differential angular decay rates of single top quarks produced in the t-channel at = 8 TeV with the ATLAS detector. J. High Energy Phys. 2017, 12, 17. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at = 7 and 8 TeV. J. High Energy Phys. 2017, 2, 28. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at = 8 TeV with the ATLAS detector. J. High Energy Phys. 2017, 4, 124. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Carvalho, J.; Castro, N.F.; Veloso, F.; Onofre, A. Probing anomalous Wtb couplings in top pair decays. Eur. Phys. J. C 2007, 50, 519–533. [Google Scholar] [CrossRef]
- Buckley, A.; Englert, C.; Ferrando, J.; Miller, D.J.; Moore, L.; Russell, M.; White, C.D. Constraining top quark effective theory in the LHC Run II era. J. High Energy Phys. 2016, 4, 15. [Google Scholar] [CrossRef]
- Grzadkowski, B.; Iskrzynski, M.; Misiak, M.; Rosiek, J. Dimension-Six Terms in the Standard Model Lagrangian. J. High Energy Phys. 2010, 10, 85. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment. J. High Energy Phys. 2022, 11, 40. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Amor Dos Santos, S. New directions for top quark polarization in the t-channel process. Phys. Rev. D 2014, 89, 114009. [Google Scholar] [CrossRef]
- Degrande, C.; Maltoni, F.; Mimasu, K.; Vryonidou, E.; Zhang, C. Single-top associated production with a Z or H boson at the LHC: The SMEFT interpretation. J. High Energy Phys. 2018, 10, 5. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for new physics in top quark production with additional leptons in proton-proton collisions at = 13 TeV using effective field theory. J. High Energy Phys. 2021, 3, 95. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory. arXiv 2023, arXiv:2307.15761. [Google Scholar] [CrossRef]
- CMS Collaboration. Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at = 13 TeV. J. High Energy Phys. 2021, 12, 83. [Google Scholar] [CrossRef]
- Degrande, C.; Greiner, N.; Kilian, W.; Mattelaer, O.; Mebane, H.; Stelzer, T.; Willenbrock, S.; Zhang, C. Effective Field Theory: A Modern Approach to Anomalous Couplings. Ann. Phys. 2013, 335, 21–32. [Google Scholar] [CrossRef]
- Campbell, J.M.; Ellis, R.K. MCFM at the Tevatron and the LHC. Nucl. Phys. B Proc. Suppl. 2010, 205-206, 10–15. [Google Scholar] [CrossRef]
- LHC Top Working Group. LHCTopWG Summary Plots. Available online: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots (accessed on 24 July 2023).
- LHC Top Working Group. Predictions at NNLO of Single Top-Quark Production Cross-Sections. Available online: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopNNLORef (accessed on 24 July 2023).
- LHC Top Working Group. NNLO+NNLL Top-Quark-Pair Cross Sections. Available online: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO (accessed on 24 July 2023).
- Czakon, M.; Mitov, A. Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders. Comput. Phys. Commun. 2014, 185, 2930. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of differential production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at = 13 TeV. Phys. Rev. D 2021, 104, 092013. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Mangano, M.L. New physics with boosted single top production at the LHC and future colliders. Eur. Phys. J. C 2020, 80, 5. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Observation of four-top-quark production in the multilepton final state with the ATLAS detector. Eur. Phys. J. C 2023, 83, 496. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of four top quark production in proton-proton collisions at = 13 TeV. arXiv 2023, arXiv:2305.13439. [CrossRef]
- Ahmed, I.; Bi, N.; Ather, M.W.; Amjad, M.S. Observability of triple top quark signal at future hadron colliders. Prog. Theor. Exp. Phys. 2023, 2023, 053B01. [Google Scholar] [CrossRef]
- Faham, H.E.; Maltoni, F.; Mimasu, K.; Zaro, M. Single top production in association with a WZ pair at the LHC in the SMEFT. J. High Energy Phys. 2022, 1, 100. [Google Scholar] [CrossRef]
- Maltoni, F.; Mantani, L.; Mimasu, K. Top-quark electroweak interactions at high energy. J. High Energy Phys. 2019, 10, 4. [Google Scholar] [CrossRef]
- Durieux, G.; Camacho, A.G.; Mantani, L.; Miralles, V.; López, M.M.; Llácer Moreno, M.; Poncelet, R.; Vryonidou, E.; Vos, M. Snowmass White Paper: Prospects for the measurement of top-quark couplings. In Proceedings of the Snowmass 2021, Washington, DC, USA, 17–27 July 2022. [Google Scholar]
- Bahl, H.; Bechtle, P.; Heinemeyer, S.; Katzy, J.; Klingl, T.; Peters, K.; Saimpert, M.; Stefaniak, T.; Weiglein, G. Indirect CP probes of the Higgs-top-quark interaction: Current LHC constraints and future opportunities. J. High Energy Phys. 2020, 11, 127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrea, J.; Chanon, N. Single-Top Quark Physics at the LHC: From Precision Measurements to Rare Processes and Top Quark Properties. Universe 2023, 9, 439. https://doi.org/10.3390/universe9100439
Andrea J, Chanon N. Single-Top Quark Physics at the LHC: From Precision Measurements to Rare Processes and Top Quark Properties. Universe. 2023; 9(10):439. https://doi.org/10.3390/universe9100439
Chicago/Turabian StyleAndrea, Jérémy, and Nicolas Chanon. 2023. "Single-Top Quark Physics at the LHC: From Precision Measurements to Rare Processes and Top Quark Properties" Universe 9, no. 10: 439. https://doi.org/10.3390/universe9100439
APA StyleAndrea, J., & Chanon, N. (2023). Single-Top Quark Physics at the LHC: From Precision Measurements to Rare Processes and Top Quark Properties. Universe, 9(10), 439. https://doi.org/10.3390/universe9100439