The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Global Maps’ Computation
3. Results
3.1. Ionization and Dose Rates for Atmospheres Taken at Different Latitudes
3.2. Seasonal Variations
3.3. Global Maps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AtRIS | Atmosphere Radiation Interaction Simulator |
PSF | Planet Specification File |
CRII | Cosmic-Ray-Induced Ionization |
GCRs | Galactic Cosmic Rays |
SEPs | Solar Energetic Particles |
References
- O’Brien, K. Calculated cosmic ray ionization in the lower atmosphere. J. Geophys. Res. 1970, 75, 4357–4359. [Google Scholar] [CrossRef]
- Grieder, P.K. Cosmic Rays at Earth; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef]
- Friedberg, W.; Copeland, K. Ionizing Radiation in Earth’s Atmosphere and in Space Near Earth; Technical Report; Office of Aerospace Medicine: Washington, DC, USA, 2011. [Google Scholar]
- Gaisser, T.K.; Engel, R.; Resconi, E. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Gleeson, L.; Axford, W. Solar modulation of galactic cosmic rays. Astrophys. J. 1968, 154, 1011. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Alanko-Huotari, K.; Kovaltsov, G.A.; Mursula, K. Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Badruddin, B.; Aslam, O.; Derouich, M.; Asiri, H.; Kudela, K. Forbush decreases and geomagnetic storms during a highly disturbed solar and interplanetary period, 4–10 September 2017. Space Weather 2019, 17, 487–496. [Google Scholar] [CrossRef]
- Klein, K.L.; Dalla, S. Acceleration and propagation of solar energetic particles. Space Sci. Rev. 2017, 212, 1107–1136. [Google Scholar] [CrossRef]
- Usoskin, I.; Kovaltsov, G.; Mironova, I.; Tylka, A.; Dietrich, W. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos. Chem. Phys. 2011, 11, 1979–1988. [Google Scholar] [CrossRef]
- Golubenko, K.; Rozanov, E.; Mironova, I.; Karagodin, A.; Usoskin, I. Natural sources of ionization and their impact on atmospheric electricity. Geophys. Res. Lett. 2020, 47, e2020GL088619. [Google Scholar] [CrossRef]
- Mallios, S.A.; Papaioannou, A.; Herbst, K.; Papangelis, G.; Hloupis, G. Study of the Ground Level Enhancements effect on atmospheric electric properties and mineral dust particle charging. J. Atmos.-Sol.-Terr. Phys. 2022, 233–234, 105871. [Google Scholar] [CrossRef]
- Lu, Q.B. Fingerprints of the cosmic ray driven mechanism of the ozone hole. AIP Adv. 2021, 11, 115307. [Google Scholar] [CrossRef]
- Bazilevskaya, G.; Usoskin, I.; Flückiger, E.; Harrison, R.; Desorgher, L.; Bütikofer, R.; Krainev, M.; Makhmutov, V.; Stozhkov, Y.I.; Svirzhevskaya, A.; et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, 137, 149–173. [Google Scholar] [CrossRef]
- Semeniuk, K.; Fomichev, V.; McConnell, J.; Fu, C.; Melo, S.; Usoskin, I. Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 2011, 11, 5045–5077. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Salnikov, V.; Turulina, G.; Polyakova, S.; Tazhibayeva, T.; Schnitzler, T.; Shmeleva, I.A. Climate change and food security: The impact of some key variables on wheat yield in Kazakhstan. Sustainability 2021, 13, 8583. [Google Scholar] [CrossRef]
- Reddmann, T.; Sinnhuber, M.; Wissing, J.M.; Yakovchuk, O.; Usoskin, I. The impact of an extreme solar event on the middle atmosphere: A case study. Atmos. Chem. Phys. 2023, 23, 6989–7000. [Google Scholar] [CrossRef]
- Desorgher, L.; Flückiger, E.O.; Gurtner, M. The planetocosmics geant4 application. In Proceedings of the 36th COSPAR Scientific Assembly, Beijing, China, 6–23 July 2006; Volume 36, p. 2361. [Google Scholar]
- Usoskin, I.G.; Kovaltsov, G.A.; Mironova, I.A. Cosmic ray induced ionization model CRAC: CRII: An extension to the upper atmosphere. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Kovaltsov, G.A. Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Maurchev, E.; Balabin, Y.V.; Germanenko, A.; Mikhalko, E.; Gvozdevsky, B. Calcuating the ionization rate induced by GCR and SCR protons in Earth’s atmosphere. Sol.-Terr. Phys. 2019, 5, 68–74. [Google Scholar]
- Mishev, A.; Velinov, P. Global maps of galactic cosmic ray induced ionization at different altitudes in planetary atmosphere. In Proceedings of the Bulgarian Academy of Sciences, Sofia, Bulgaria, 31 May 2022; Volume 75, pp. 700–708. [Google Scholar]
- Makrantoni, P.; Tezari, A.; Stassinakis, A.N.; Paschalis, P.; Gerontidou, M.; Karaiskos, P.; Georgakilas, A.G.; Mavromichalaki, H.; Usoskin, I.G.; Crosby, N.; et al. Estimation of Cosmic-Ray-Induced Atmospheric Ionization and Radiation at Commercial Aviation Flight Altitudes. Appl. Sci. 2022, 12, 5297. [Google Scholar] [CrossRef]
- Flückiger, E.; Bütikofer, R. Radiation doses along selected flight profiles during two extreme solar cosmic ray events. Astrophys. Space Sci. Trans. ASTRA 2011, 7, 105–109. [Google Scholar]
- Paschalis, P.; Mavromichalaki, H.; Dorman, L.; Plainaki, C.; Tsirigkas, D. Geant4 software application for the simulation of cosmic ray showers in the Earth’s atmosphere. New Astron. 2014, 33, 26–37. [Google Scholar] [CrossRef]
- Mishev, A.; Usoskin, I. Numerical model for computation of effective and ambient dose equivalent at flight altitudes-Application for dose assessment during GLEs. J. Space Weather Space Clim. 2015, 5, A10. [Google Scholar] [CrossRef]
- Maurchev, E.; Mikhalko, E.; Balabin, Y.V.; Germanenko, A.; Gvozdevsky, B. Estimated equivalent radiation dose at different altitudes in Earth’s atmosphere. Sol.-Terr. Phys. 2022, 8, 27–31. [Google Scholar] [CrossRef]
- Banjac, S.; Herbst, K.; Heber, B. The atmospheric radiation interaction simulator (atris): Description and validation. J. Geophys. Res. Space Phys. 2019, 124, 50–67. [Google Scholar] [CrossRef]
- Banjac, S.; Heber, B.; Herbst, K.; Berger, L.; Burmeister, S. On-the-Fly Calculation of Absorbed and Equivalent Atmospheric Radiation Dose in A Water Phantom with the Atmospheric Radiation Interaction Simulator (AtRIS). J. Geophys. Res. Space Phys. 2019, 124, 9774–9790. [Google Scholar] [CrossRef]
- Guo, J.; Banjac, S.; Röstel, L.; Terasa, J.C.; Herbst, K.; Heber, B.; Wimmer-Schweingruber, R.F. Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars. J. Space Weather Space Clim. 2019, 9, A2. [Google Scholar] [CrossRef]
- Herbst, K.; Banjac, S.; Nordheim, T.A. Revisiting the cosmic-ray induced Venusian ionization with the Atmospheric Radiation Interaction Simulator (AtRIS). Astron. Astrophys. 2019, 624, A124. [Google Scholar] [CrossRef]
- Herbst, K.; Banjac, S.; Atri, D.; Nordheim, T.A. Revisiting the cosmic-ray induced Venusian radiation dose in the context of habitability. Astron. Astrophys. 2020, 633, A15. [Google Scholar] [CrossRef]
- Heck, D.; Knapp, J.; Capdevielle, J.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo code to simulate extensive air showers. Rep. Fzka 1998, 6019. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.a.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Picone, J.; Hedin, A.; Drob, D.P.; Aikin, A. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, SIA-15. [Google Scholar] [CrossRef]
- Röstel, L.; Guo, J.; Banjac, S.; Wimmer-Schweingruber, R.F.; Heber, B. Subsurface radiation environment of Mars and its implication for shielding protection of future habitats. J. Geophys. Res. Planets 2020, 125, e2019JE006246. [Google Scholar] [CrossRef]
- Caballero-Lopez, R.; Moraal, H. Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Moraal, H. Cosmic-ray modulation equations. Space Sci. Rev. 2013, 176, 299–319. [Google Scholar] [CrossRef]
- Parker, E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 1965, 13, 9–49. [Google Scholar] [CrossRef]
- Bisschoff, D.; Potgieter, M.S. New local interstellar spectra for protons, helium and carbon derived from PAMELA and Voyager 1 observations. Astrophys. Space Sci. 2016, 361, 1–8. [Google Scholar] [CrossRef]
- Corti, C.; Bindi, V.; Consolandi, C.; Whitman, K. Solar modulation of the local interstellar spectrum with Voyager 1, AMS-02, PAMELA, and BESS. Astrophys. J. 2016, 829, 8. [Google Scholar] [CrossRef]
- Herbst, K.; Muscheler, R.; Heber, B. The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C. J. Geophys. Res. Space Phys. 2017, 122, 23–34. [Google Scholar] [CrossRef]
- Boschini, M.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; La Vacca, G.; Masi, N.; Moskalenko, I.; Pensotti, S.; Porter, T.; et al. HelMod in the works: From direct observations to the local interstellar spectrum of cosmic-ray electrons. Astrophys. J. 2018, 854, 94. [Google Scholar] [CrossRef]
- Bisschoff, D.; Potgieter, M.; Aslam, O. New very local interstellar spectra for electrons, positrons, protons, and light cosmic ray nuclei. Astrophys. J. 2019, 878, 59. [Google Scholar] [CrossRef]
- Gecášek, D.; Bobík, P.; Genči, J.; Villim, J.; Vaško, M. COR system: A tool to evaluate cosmic ray trajectories in the Earth’s magnetosphere. Adv. Space Res. 2022, 70, 1153–1168. [Google Scholar] [CrossRef]
- Ghelfi, A.; Maurin, D.; Cheminet, A.; Derome, L.; Hubert, G.; Melot, F. Neutron monitors and muon detectors for solar modulation studies: 2 ϕ time series. Adv. Space Res. 2017, 60, 833–847. [Google Scholar] [CrossRef]
- Weaver, B.; Westphal, A. Energy loss of relativistic heavy ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2002, 187, 285–301. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.; Brown, W.; Califf, S.; Chambodut, A.; et al. International geomagnetic reference field: The thirteenth generation. Earth Planets Space 2021, 73, 1–25. [Google Scholar] [CrossRef]
- Tsyganenko, N.; Sitnov, M. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winant, A.; Pierrard, V.; Botek, E.; Herbst, K. The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates. Universe 2023, 9, 502. https://doi.org/10.3390/universe9120502
Winant A, Pierrard V, Botek E, Herbst K. The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates. Universe. 2023; 9(12):502. https://doi.org/10.3390/universe9120502
Chicago/Turabian StyleWinant, Alexandre, Viviane Pierrard, Edith Botek, and Konstantin Herbst. 2023. "The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates" Universe 9, no. 12: 502. https://doi.org/10.3390/universe9120502
APA StyleWinant, A., Pierrard, V., Botek, E., & Herbst, K. (2023). The Atmospheric Influence on Cosmic-Ray-Induced Ionization and Absorbed Dose Rates. Universe, 9(12), 502. https://doi.org/10.3390/universe9120502