Kerner Equation for Motion in a Non-Abelian Gauge Field
Abstract
:1. Introduction: A Short History of the Isospin
2. Gauge Theory and the Kaluza–Klein Framework
2.1. Yang–Mills Theory
2.2. Abelian Kaluza–Klein Theory
2.3. Non-Abelian Generalization
2.4. Fiber Bundles and a Symplectic Framework
- The system is described by a fiber bundle over space–time M called an evolution space—Souriau’s “espace d’évolution”.
- The dynamics are discussed in terms of differential forms. The main tool is a 1-form on , whose exterior derivative is, in Souriau’s language, “presymplectic”, i.e., a closed 2-form that has a constant rank, dim . Then, the motions are the projections onto M of the integral submanifolds of the characteristic foliation of . Factoring out yields , the space of motions (an abstract substitute for phase space—Souriau’s “espace des mouvements” [54]). The presymplectic form projects onto as a symplectic form, i.e., one which is closed and has no kernel, as illustrated in Figure 2.
- Group S is a symmetry for a system if it acts on the space of motions by preserving the symplectic structure.
- A system is elementary with respect to a symmetry group S if the action of the latter on is transitive. Souriau’s orbit construction [54] applies to an arbitrary symmetry group: The space of motions of an elementary system is, conversely, a (co)adjoint orbit of a basepoint chosen in the Lie algebra of the symmetry group. is endowed with its canonical symplectic form:In particular, applying the general construction to gauge group G endows the orbit in lieu of the Lie algebra with its canonical symplectic form.
- The symmetry group S w.r.t., where the system is elementary, can be viewed as evolution space, [62]; S is a principal fiber bundle over its (co)adjoint orbit .
3. Physical Meaning of Isospin Dynamics
4. Conservation Laws with Isospin
4.1. Van Holten’s Covariant Framework
- When is a Killing vector, then we have , and the expansion can be reduced to a linear expression,
- Similarly, choosing unit vector again,More generally, the framework also applies to the so-called “MIC-Zwanziger” system [55,56], which combines a Dirac monopole of charge q with an arbitrary Newtonian and a fine-tuned inverse-square potential,The combined system generalizes the well-known dynamical O(4)/O(3,1) symmetry of planetary motion spanned by the angular momentum and the Runge–Lenz vector, in (52) and , respectively [55,56]. The relationsSpin can also be considered [23].We mentioned that the MIC–Zwanziger system is essentially equivalent to the one that describes the long-range monopole scattering [74] alias Kaluza–Klein monopole [48,75]; see also [22,76,77,78,79,80,81]. Dynamical symmetry for a self-dual Wu–Yang monopole [82] will be further analyzed in the next subsection.
4.2. Motion in the Wu–Yang Monopole Field
4.3. Diatomic Molecules
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | To study the Non-Abelian Aharonov–Bohm effect was suggested to one of us (PAH) in the early eighties by Tai Tsun Wu, who also insisted that we should study the original paper of Yang and Mills [27]. We are grateful for his advices and would like to congratulate him on his 90th birthday. |
2 | The fascinating story of gauge theory is recounted by O’Raifeartaigh [44]. |
3 | Our outline follows [48]. |
4 | Duval’s note [11] was rejected from Comptes Rendues de l’Académie des Sciences without refereeing. |
5 | Souriau has discussed the fiber bundle description of a monopole in “Prequantization” chapter of his never completed and thus unpublished revision of his book [54]. |
6 | |
7 | |
8 | |
9 |
References
- Kerner, R. Generalization of the Kaluza-Klein Theory for an Arbitrary Nonabelian Gauge Group. Ann. Inst. H. Poincare Phys. Theor. 1968, 9, 143–152. [Google Scholar]
- Wong, S.K. Field and particle equations for the classical Yang-Mills field and particles with isotopic spin. Nuovo Cimento 1970, 65A, 689. [Google Scholar] [CrossRef]
- Trautman, A. Fiber bundles associated with space-time. Rept. Math. Phys. 1970, 1, 29–62. [Google Scholar] [CrossRef]
- Cho, Y.M. Higher-Dimensional Unifications of Gravitation and Gauge Theories. J. Math. Phys. 1975, 16, 2029. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Salomonson, P.; Skagerstam, B.S.; Winnberg, J.O. Classical Description of Particle Interacting with Nonabelian Gauge Field. Phys. Rev. D 1977, 15, 2308–2317. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Borchardt, S.; Stern, A. Lagrangian and Hamiltonian Descriptions of Yang-Mills Particles. Phys. Rev. D 1978, 17, 3247. [Google Scholar] [CrossRef]
- Sternberg, S. Minimal Coupling and the Symplectic Mechanics of a Classical Particle in the Presence of a Yang-Mills Field. Proc. Nat. Acad. Sci. USA 1977, 74, 5253–5254. [Google Scholar] [CrossRef]
- Guillemin, V.; Sternberg, S. On the Equations of Motion of a Classical Particle in a Yang-Mills Field and the Principle of General Covariance. Hadronic J. 1978, 1, 1. [Google Scholar]
- Sternberg, S. On the role of field theories in our physical conception of geometry. In Differential Geometrical Methods in Mathematical Physics II. Lecture Notes in Mathematics; Bleuler, K., Reetz, A., Petry, H.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; Volume 676, pp. 1–88. [Google Scholar] [CrossRef]
- Weinstein, A. A Universal Phase Space for Particles in Yang-Mills Field. Lett. Math. Phys. 1978, 2, 417–420. [Google Scholar] [CrossRef]
- Duval, C. Sur les mouvements classiques dans un champ de Yang-Mills; Preprint; C. P. T.: Marseille, France, 1978; p. 1056. [Google Scholar]
- Duval, C. On the prequantum description of spinning particles in an external gauge field. Proc. Aix Conf. Diff. Geom. Meths. Math. Phys. 1980, 836, 49–67. [Google Scholar]
- Duval, C.; Horvathy, P.A. Particles with internal structure: The geometry of classical motions and conservation laws. Ann. Phys. 1982, 142, 10. [Google Scholar] [CrossRef]
- Montgomery, R. Canonical formulations of a classical particle in a yang-mills field and wong’s equations. Lett. Math. Phys. 1984, 8, 59–67. [Google Scholar] [CrossRef]
- Fehér, L.G. Classical motion of coloured test particles along geodesics of a Kaluza-Klein spacetime. Acta Phys. Hung. 1986, 59, 437–444. [Google Scholar] [CrossRef]
- Jackiw, R.; Manton, N.S. Symmetries and conservation laws in gauge theories. Annals Phys. 1980, 127, 257. [Google Scholar] [CrossRef]
- ’t Hooft, G. Magnetic monopoes in unified gauge theories. Nucl. Phys. 1974, B79, 276. [Google Scholar] [CrossRef]
- Polyakov, A.M. Particle Spectrum in Quantum Field Theory. JETP Lett. 1974, 20, 194–195. [Google Scholar]
- Goddard, P.; Olive, D.I. New Developments in the Theory of Magnetic Monopoles. Rept. Prog. Phys. 1978, 41, 1357. [Google Scholar] [CrossRef]
- Fehér, L.G. Bounded Orbits for Classical Motion of Colored Test Particles in the Prasad-Sommerfield Monopole Field. Acta Phys. Polon. B 1984, 15, 919. [Google Scholar]
- Fehér, L.G. Quantum Mechanical Treatment of an Isospinor Scalar in Yang-Mills Higgs Monopole Background. Acta Phys. Polon. B 1985, 16, 217. [Google Scholar]
- Fehér, L.G. Dynamical O(4) Symmetry in the Asymptotic Field of the Prasad-sommerfield Monopole. J. Phys. A 1986, 19, 1259–1270. [Google Scholar] [CrossRef]
- Fehér, L.G.; Horvathy, P.A. Non-relativistic scattering of a spin-1/2 particle off a self-dual monopole. Mod. Phys. Lett. A 1988, 3, 1451–1460. [Google Scholar] [CrossRef]
- Wu, T.T.; Yang, C.N. Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields. Phys. Rev. D 1975, 12, 3845–3857. [Google Scholar] [CrossRef]
- Wu, T.T.; Yang, C.N. Dirac’s Monopole Without Strings: Classical Lagrangian Theory. Phys. Rev. D 1976, 14, 437–445. [Google Scholar] [CrossRef]
- Horvathy, P.A. The Nonabelian Aharonov-Bohm Effect. Phys. Rev. D 1986, 33, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.N.; Mills, R.L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 1954, 96, 191–195. [Google Scholar] [CrossRef]
- Elbistan, M.; Zhang, P.-M.; Horvathy, P.A. Isospin Precession in the Non-Abelian Aharonov-Bohm Scattering; Université de Tours: Tours, France, 2023. [Google Scholar]
- Alford, M.G.; March-Russell, J.; Wilczek, F. Discrete Quantum Hair on Black Holes and the Nonabelian Aharonov-Bohm Effect. Nucl. Phys. B 1990, 337, 695–708. [Google Scholar] [CrossRef]
- Preskill, J.; Krauss, L.M. Local Discrete Symmetry and Quantum Mechanical Hair. Nucl. Phys. B 1990, 341, 50–100. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Topological defects and structure formation. Int. J. Mod. Phys. A 1994, 9, 2117–2190. [Google Scholar] [CrossRef]
- Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M. Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter “Moth” to Lattice Gauge Theory. Phys. Rev. Lett. 2005, 95, 010403. [Google Scholar] [CrossRef]
- Goldman, N.; Juzeliūnas, G.; Öhberg, P.; Spielman, I.B. Light-induced gauge fields for ultracold atoms. Rept. Prog. Phys. 2014, 77, 126401. [Google Scholar] [CrossRef]
- Jacob, A.; Öhberg, P.; Juzeliūnas, G.; Santos, L. Cold atom dynamics in non-Abelian gauge fields. Appl. Phys. B 2007, 89, 439. [Google Scholar] [CrossRef]
- Dalibard, J.; Gerbier, F.; Juzeliūnas, G.; Öhberg, P. Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 2011, 83, 1523–1543. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.Y.; Xiong, Z.; Hang, Z.H.; Li, J.; Shen, J.Q.; Chan, C.T. Non-Abelian gauge field optics. Nat. Commun. 2019, 10, 3125. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, C.; Zhu, D.; Buljan, H.; Joannopoulos, J.D.; Zhen, B.; Soljačić, M. Synthesis and Observation of Non-Abelian Gauge Fields in Real Space. Science 2019, 365, 1021. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Z.; Biao, Y.; Fei, F.; Zhang, S.; Yin, Z.; Hu, Y.; Song, Z.; Wu, T.; Song, F.; et al. Non-Abelian gauge fields in circuit systems. Nat. Electron. 2022, 5, 635. [Google Scholar] [CrossRef]
- Németh, R.; Cserti, J. Differential scattering cross section of the non-Abelian Aharonov-Bohm effect in multiband systems. Phys. Rev. B 2023, 108, 155402. [Google Scholar] [CrossRef]
- Wu, T.T.; Yang, C.N. Some solutions of the classical isotopic gauge field equations. In Properties of Matter under Unusual Conditions. Festschrift for the 60th Birthday of E. Teller; Mark, H., Fernbach, S., Eds.; Interscience: New York, NY, USA, 1969; p. 349. [Google Scholar]
- Moody, J.; Shapere, A.; Wilczek, F. Realization of magnetic monopole gauge fields: Diatoms and spin precession. Phys. Rev. Lett. 1986, 56, 893. [Google Scholar] [CrossRef]
- Jackiw, R. Angular momentum for diatoms described by gauge fields. Phys. Rev. Lett. 1986, 56, 2779. [Google Scholar] [CrossRef]
- Heisenberg, W. On the structure of atomic nuclei. Z. Phys. 1932, 77, 197–207. [Google Scholar] [CrossRef]
- O’Raifeartaigh, L. The Dawning of Gauge Theory; Princeton University Press: Princeton, NJ, USA, 1997; ISBN 978-0-691-02977-1. [Google Scholar]
- Abers, E.S.; Lee, B.W. Gauge Theories. Phys. Rept. 1973, 9, 1–141. [Google Scholar] [CrossRef]
- Kaluza, T.; der Physik, Z.U. Sitzungsber. Math. Phys. 1921, 1921, 966–972. [Google Scholar] [CrossRef]
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. [Quantum Theory and Five-Dimensional Theory of Relativity]. Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Gross, D.J.; Perry, M.J. Magnetic Monopoles in Kaluza-Klein Theories. Nucl. Phys. B 1983, 226, 29–48. [Google Scholar] [CrossRef]
- Arodz, H. Colored, Spinning Classical Particle in an External Nonabelian Gauge Field. Phys. Lett. B 1982, 116, 251–254. [Google Scholar] [CrossRef]
- Arodz, H. A Remark on the Classical Mechanics of Colored Particles. Phys. Lett. B 1982, 116, 255–258. [Google Scholar] [CrossRef]
- Arodz, H. Limitation of the concept of the classical colored particle. Acta Phys. Polon. B 1983, 14, 13–21. [Google Scholar]
- Horvathy, P.A.; Rawnsley, J.H. Internal Symmetries of Nonabelian Gauge Field Configurations. Phys. Rev. D 1985, 32, 968. [Google Scholar] [CrossRef]
- Horvathy, P.A.; Rawnsley, J.H. The Problem of `Global Color’ in Gauge Theories. J. Math. Phys. 1986, 27, 982. [Google Scholar] [CrossRef]
- Souriau, J.-M. Structure Des Systèmes Dynamiques Structure of Dynamical Systems. A Symplectic View of Physics; Birkhäuser: Boston, MA, USA, 1997. [Google Scholar]
- McIntosh, H.V.; Cisneros, A. Degeneracy in the Presence of a Magnetic Monopole. J. Math. Phys. 1970, 11, 896–916. [Google Scholar] [CrossRef]
- Zwanziger, D. Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Phys. Rev. 1968, 176, 1480–1488. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience: New York, NY, USA, 1963; Volume I. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience: New York, NY, USA, 1969; Volume II. [Google Scholar]
- Yang, C.N. Fibre Bundles and the Physics of the Magnetic Monopole. In The Chern Symposium; Hsiang, W.Y., Kobayashi, S., Singer, I.M., Wolf, J., Wu, H.H., Weinstein, A., Eds.; Springer: New York, NY, USA, 1980. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Marmo, G.; Stern, A. Magnetic Monopoles With No Strings. Nucl. Phys. B 1980, 162, 385–396. [Google Scholar] [CrossRef]
- Horvathy, P.A. Classical Action, the Wu-Yang Phase Factor and Prequantization. Lect. Notes Math. 1980, 836, 67–90. [Google Scholar] [CrossRef]
- Künzle, H.P. Canonical Dynamics of Spinning Particles in Gravitational and Electromagnetic Fields. J. Math. Phys. 1972, 13, 739. [Google Scholar] [CrossRef]
- Horvathy, P.A.; Kollar, J. The Nonabelian Aharonov-Bohm Effect in Geometric Quantization. Class. Quant. Grav. 1984, 1, L61. [Google Scholar] [CrossRef]
- Horvathy, P.A. The wu-yang factor and the nonabelian aharonov-bohm experiment. EPL 1986, 2, 195. [Google Scholar] [CrossRef]
- Nelson, P.C.; Manohar, A. Global Color Is Not Always Defined. Phys. Rev. Lett. 1983, 50, 943. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Marmo, G.; Mukunda, N.; Nilsson, J.S.; Sudarshan, E.C.G.; Zaccaria, F. Monopole Topology and the Problem of Color. Phys. Rev. Lett. 1983, 50, 1553. [Google Scholar] [CrossRef]
- Nelson, P.C.; Coleman, S.R. What Becomes of Global Color. Nucl. Phys. B 1984, 237, 1–31. [Google Scholar] [CrossRef]
- Forgács, P.; Manton, N.S. Space-Time Symmetries in Gauge Theories. Commun. Math. Phys. 1980, 72, 15. [Google Scholar] [CrossRef]
- van Holten, J.W. Covariant Hamiltonian dynamics. Phys. Rev. D 2007, 75, 025027. [Google Scholar] [CrossRef]
- Horvathy, P.A.; Ngome, J.P. Conserved quantities in non-abelian monopole fields. Phys. Rev. D 2009, 79, 127701. [Google Scholar] [CrossRef]
- Cariglia, M.; Gibbons, G.W.; van Holten, J.W.; Horvathy, P.A.; Kosinski, P.; Zhang, P.M. Killing tensors and canonical geometry. Class. Quant. Grav. 2014, 31, 125001. [Google Scholar] [CrossRef]
- Cariglia, M.; Gibbons, G.W.; van Holten, J.W.; Horvathy, P.A.; Zhang, P.M. Conformal Killing Tensors and covariant Hamiltonian Dynamics. J. Math. Phys. 2014, 55, 122702. [Google Scholar] [CrossRef]
- Hasenfratz, P.; ’t Hooft, G. A Fermion-Boson Puzzle in a Gauge Theory. Phys. Rev. Lett. 1976, 36, 1119. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Manton, N.S. Classical and Quantum Dynamics of BPS Monopoles. Nucl. Phys. B 1986, 274, 183–224. [Google Scholar] [CrossRef]
- Sorkin, R.D. Kaluza-Klein Monopole. Phys. Rev. Lett. 1983, 51, 87–90. [Google Scholar] [CrossRef]
- Feher, L.G.; Horvathy, P.A. Dynamical Symmetry of Monopole Scattering. Phys. Lett. B 1987, 183, 182, Erratum in Phys. Lett. B 1987, 188, 512. [Google Scholar] [CrossRef]
- Cordani, B.; Feher, L.G.; Horvathy, P.A. O(4,2) Dynamical Symmetry of the Kaluza-Klein Monopole. Phys. Lett. B 1988, 201, 481–486. [Google Scholar] [CrossRef]
- Cordani, B.; Feher, L.G.; Horvathy, P.A. Kepler Type Dynamical Symmetries of Long Range Monopole Interactions. J. Math. Phys. 1990, 31, 202. [Google Scholar] [CrossRef]
- Feher, L.G. The O(3,1) Symmetry Problem of the Charge-Monopole Interaction. J. Math. Phys. 1987, 28, 234–239. [Google Scholar] [CrossRef]
- Feher, L.G.; Horvathy, P.A. Dynamical symmetry of the Kaluza-Klein monopole. arXiv 1989, arXiv:hep-th/0612216. [Google Scholar]
- Manton, N.S.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004; ISBN 9780511617034. [Google Scholar] [CrossRef]
- Horvathy, P.A. Isospin dependent O(4,2) symmetry of selfdual Wu-Yang monopoles. Mod. Phys. Lett. A 1991, 6, 3613–3620. [Google Scholar] [CrossRef]
- Schechter, J. Yang-Mills particle in ’t Hooft’s gauge field. Phys. Rev. 1976, D14, 524. [Google Scholar] [CrossRef]
- Wipf, A. Nonrelativistic Yang-Mills particle in a spherically symmetric monopole field. J. Phys. 1985, A18, 2379. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvathy, P.A.; Zhang, P. Kerner Equation for Motion in a Non-Abelian Gauge Field. Universe 2023, 9, 519. https://doi.org/10.3390/universe9120519
Horvathy PA, Zhang P. Kerner Equation for Motion in a Non-Abelian Gauge Field. Universe. 2023; 9(12):519. https://doi.org/10.3390/universe9120519
Chicago/Turabian StyleHorvathy, Peter A., and Pengming Zhang. 2023. "Kerner Equation for Motion in a Non-Abelian Gauge Field" Universe 9, no. 12: 519. https://doi.org/10.3390/universe9120519
APA StyleHorvathy, P. A., & Zhang, P. (2023). Kerner Equation for Motion in a Non-Abelian Gauge Field. Universe, 9(12), 519. https://doi.org/10.3390/universe9120519