Modified Gravity Approaches to the Cosmological Constant Problem
Abstract
:Contents | ||
1. | Introduction...................................................................................................................................................................................... | 2 |
2. | What Is the Problem after All?............................................................................................................................................................ | 4 |
3. | How to Modify Gravity.......................................................................................................................................................... | 5 |
3.1. Self-Tuning................................................................................................................................................................. | 5 | |
3.1.1. A Failed Start...................................................................................................................................................... | 6 | |
3.1.2. Weinberg’s Argument......................................................................................................................................... | 8 | |
3.1.3. Beyond Weinberg’s Argument.................................................................................................................................. | 9 | |
3.1.4. Loopholes..................................................................................................................................................... | 11 | |
3.2. Screening Mechanisms........................................................................................................................................................ | 12 | |
3.2.1. Potential Screening........................................................................................................................................... | 13 | |
3.2.2. Derivative Screening.......................................................................................................................................... | 15 | |
4. | Modified Gravity Approaches............................................................................................................................................................ | 17 |
4.1. What Do We Want?............................................................................................................................................................ | 17 | |
4.2. Constraining Gravity........................................................................................................................................................ | 17 | |
4.2.1. The Global Vacuum Energy Sequestering............................................................................................................ | 18 | |
4.2.2. Local Sequestering............................................................................................................................................ | 19 | |
4.2.3. Nonlocal Approach............................................................................................................................................. | 20 | |
4.2.4. Unimodular Gravity............................................................................................................................................ | 22 | |
4.3. Massive Gravity............................................................................................................................................................. | 23 | |
4.3.1. Degravitation................................................................................................................................................. | 23 | |
4.3.2. Linear Massive Gravity........................................................................................................................................ | 24 | |
4.3.3. Nonlinear Theories............................................................................................................................................ | 25 | |
4.4. Self-Tuning with Horndeski Theories.......................................................................................................................... | 25 | |
4.4.1. The Fab-4..................................................................................................................................................... | 27 | |
4.4.2. Well-Tempered Self-Tuning..................................................................................................................................... | 27 | |
4.4.3. Outlook.................................................................................................................................................................... | 28 | |
4.5. Braneworld Models............................................................................................................................................................... | 28 | |
4.5.1. Our Universe as a Cosmic String in Six Dimensions....................................................................................... | 29 | |
4.5.2. Supersymmetric Large Extra Dimensions............................................................................................................. | 31 | |
4.5.3. Outlook.................................................................................................................................................................. | 32 | |
5. | Conclusions—You Can’t Always Get What You Want, or Can You?........................................................................................ | 33 |
References................................................................................................................................................................................................... | 37 |
1. Introduction
2. What Is the Problem after All?
- The weight of vacuum. The gravitating vacuum energy at the level of the classical Einstein equations receives contributions from the vacuum energy of the fields in the SM, . QFT calculations of the latter for a given energy scale , defined by the renormalization scale at which we trust our theories, seem to result in a very high value for the vacuum energy that scales as , where m is the mass of the particle for which the vacuum energy is being computed [24]. This typically differs by many orders of magnitude from the actual value associated with the accelerated expansion of the Universe at cosmological scales, which is roughly (the mass of the top quark, for instance, is roughly , leading to a 56-orders-of-magnitude gap). One of the problems is to reconcile this discrepancy. Following standard practice, we call this the old cosmological constant problem (old-CCP).
- Phase transitions. The potential energy for a constant field configuration contributes as vacuum energy, but, for instance, the Higgs field’s effective potential depends on the background temperature. As the Universe cools down, the potential changes its shape, shifting its global minimum. Therefore, its contribution to the vacuum energy also changes. This problem is a classical instability due to the change in the contribution coming from the potential energy of the Higgs field before and after its phase transition. In fact, this is just one example of what happens generally for any phase transition, including the one due to quantum chromodynamics (QCD) and possibly others from unification theories. This is called the classical cosmological constant problem [24] (class-CCP).
- Dark energy. The Universe is undergoing a period of accelerated expansion [43,44] that can be explained by a nonzero vacuum energy in the form of a positive CC. Thus, we need to explain where this positive-cosmological-constant-like term is coming from at the cosmological level when using Einstein equations. We will call this the dark energy problem (DEP).2
- UV sensitivity. Finally, another problem comes from the fact that the vacuum energy computed in QFT is UV-sensitive, despite being possibly the most infrared (IR) quantity one could conceive (as it is a constant throughout spacetime). In particular, there are two ways in which the UV sensitivity of manifests:
- —
- It is directly connected with the Higgs’ mass UV sensitivity. As we saw above, the vacuum energy scales with the mass of particles, and the Higgs’ mass squared is itself highly UV-sensitive (quadratic in cutoff). This is the hierarchy problem (see [47,48] for a recent review), and it manifests as an even worse sensitivity in the computation of the vacuum energy (since it is quartic in the cutoff).
- —
- As we change the QFT cutoff by increasing it to higher-energy scales, we might be able to excite new fields with higher masses, again disturbing the fixing of the CC performed at lower scales. Thus, even if all the masses were not fine-tuned in the SM, would still be sensitive to new fields showing up at new higher-energy EFTs.
Thus, in short, once we change the energy scale in which we are computing the vacuum energy, the radiative corrections from higher-order loop corrections in QFT will shift the value of . We will refer to this issue as the new cosmological constant problem (new-CCP).
3. How to Modify Gravity
3.1. Self-Tuning
3.1.1. A Failed Start
- For , the potential directly depends on in such a way that it exactly cancels the vacuum energy in both equations in Equation (2) (or Equation (5) equivalently). This is fine-tuning again and it would not be robust under a change of the loop-order or a shift in the EFT cutoff, and it also means the cancellation is no longer dynamical. Therefore, this model does not address any of the CCPs discussed in Section 2.
- For , the potential does not depend on . Unfortunately, we have still arrived at an impasse. Our self-tuning mechanism assumed that settles down to a constant vacuum configuration ; however, the potential in Equation (10) has no minimum at finite field values. Instead, it is a runaway potential, which approaches its minimum only asymptotically as . Setting to avoid this conclusion would constitute a fine-tuning again. The reason is that receives huge (UV-sensitive) radiative corrections because only the combination contributes to Equation (2).
3.1.2. Weinberg’s Argument
- (i)
- The scalar field vacuum is constant and thus invariant under translations (see Equation (11));
- (ii)
- The vacuum geometry is constant (this assumption is stronger than maximal symmetry);
- (iii)
- The theory can be formulated in terms of a Lagrange density . The covariant integration measure is provided by as in (12).
3.1.3. Beyond Weinberg’s Argument
- (i)
- We assume classical and quantum stability, which requires (absence of tachyons) and (unitarity);
- (ii)
- The vacuum geometry is either Minkowski or (quasi) de Sitter;
- (iii)
- A weakly coupling assumption underlies the explicit derivation of and limits the approach to linear source couplings;
- (iv)
- The spin-0 and spin-2 propagators take on their canonical form.
3.1.4. Loopholes
- Models that rely on nonlinear couplings to restore GR (violating assumption (iii) of the amplitude argument). In particular, this includes models that build on the Vainshtein mechanism presented in Section 3.2.2. In this review, we discuss two examples: massive gravity in Section 4.3 and scalar–tensor theories such as Fab-4 in Section 4.4. Whether the no-go arguments can be generalized to this case remains to be seen. It should also be noted that Vainshtein screening comes with its own set of problems pertaining to its UV sensitivity in the nonlinear regime [61,62,63]. Both models also circumnavigate Weinberg’s complementary no-go by relying on a scalar field vacuum that breaks translational invariance (violating assumption (i) in Section 3.1.2)a. In the case of massive gravity, this happens in the Stuckelberg sector of the theory.
- Another key assumption in both theorems is that vacuum energy, and, thus, also the corresponding geometry, is maximally symmetric. In particular, the vacuum does not break local Lorentz invariance. As we will argue in Section 4.5, in braneworld models, the vacuum energy that arises from SM matter loops (spontaneously) breaks Lorentz invariance in the directions orthogonal to the brane (violating assumption (ii) of both arguments).
- For the generalized no-go, we assumed that propagators take on their canonical form as could be derived in canonical local and ghost-free field theories of a given spin. Accordingly, this loophole relies on introducing nonstandard propagators (violating assumption (iv) of the amplitude argument). This is, for example, how sequestering in Section 4.2 avoids the no-go. It also avoids Weinberg’s argument by introducing either global variables or employing a four-form contribution to the volume measure (violating assumption (iii) in Section 3.1.2).
3.2. Screening Mechanisms
3.2.1. Potential Screening
3.2.2. Derivative Screening
4. Modified Gravity Approaches
4.1. What Do We Want?
4.2. Constraining Gravity
4.2.1. The Global Vacuum Energy Sequestering
- The action Equation (45) is not additive over spacetime due to the global interaction term , leading to subtleties for its quantization and its embedding in a complete UV theory.
4.2.2. Local Sequestering
4.2.3. Nonlocal Approach
4.2.4. Unimodular Gravity
4.3. Massive Gravity
4.3.1. Degravitation
4.3.2. Linear Massive Gravity
4.3.3. Nonlinear Theories
4.4. Self-Tuning with Horndeski Theories
- The equation of motion for Equation (78c) is trivially satisfied on the attractor or redundant with the other two equations;
- The Friedmann equation Equation (78a) should depend on for the tuning to be dynamic;
- The Friedmann equation must admit nontrivial expansion histories before hitting the attractor solution;
- The theory incorporates a screening mechanism (see Section 3.2).
4.4.1. The Fab-4
4.4.2. Well-Tempered Self-Tuning
4.4.3. Outlook
4.5. Braneworld Models
4.5.1. Our Universe as a Cosmic String in Six Dimensions
4.5.2. Supersymmetric Large Extra Dimensions
4.5.3. Outlook
5. Conclusions—You Can’t Always Get What You Want, or Can You?
Selected Modified Gravity Approaches | |||||
---|---|---|---|---|---|
CC-Problems | Data Constraints | ||||
New-CCP | Class-CCP | DEP | CHC | AC | |
GR + QFT | X | X | 🗸 | 🗸 | 🗸 |
Global sequestering | 🗸 | 🗸 | (P) | 🗸 | 🗸 |
Local sequestering | 🗸 | 🗸 | (P) | 🗸 | 🗸 |
Nonlocal approach | X | (P) | (P) | 🗸 | 🗸 |
Unimodular gravity | X | X | 🗸 | 🗸 | 🗸 |
Linear massive gravity | 🗸 | 🗸 | (P) | 🗸 | X |
Nonlinear massive gravity | X | 🗸 | (P) | 🗸 | (P) |
Fab-4 | (P) | 🗸 | 🗸 | (P) | (P) |
Well-tempered self-tuning | (P) | 🗸 | 🗸 | 🗸 | (P) |
SLED | X | X | (P) | (P) | 🗸 |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CCP | Cosmological Constant Problem |
UV | Ultraviolet |
EFT | Effective Field Theory |
GR | General Relativity |
EMT | Energy-Momentum Tensor |
CDM | Cold Dark Matter |
CC | Cosmological Constant |
DE | Dark Energy |
SM | Standard Model of Particle Physics |
QFT | Quantum Field Theory |
QCD | Quantum Chromodynamics |
DEP | Dark Energy Problem |
IR | Infrared |
DGP | Dvali–Gabadadze–Porrati gravity |
CMB | Cosmic Microwave Background |
CHC | Cosmic History Constraint |
AC | Astrophysical Constraints |
SLED | Supersymmetric Large Extra Dimension |
1 | |
2 | |
3 | Of course, this is not the only possibility to address the CCPs. In another scenario, the value of the CC at low energies could be connected to (and ultimately explained by) unknown UV physics. In such a scenario, explaining the smallness of the CC requires knowledge of the UV sector of the theory. For example, if we assume the SM of particle physics to be valid all the way up to the Planck scale, the condition of stability of the electroweak vacuum in the deep UV (as represented by the quartic Higgs coupling) is connected to the Higgs boson and top quark masses measured at much lower energies [53,54,55]. This is a specific form of UV–IR coupling and has been used to motivate alternative scenarios for addressing the CCP (see [56] as one example). We thank an anonymous referee for bringing that to our attention. |
4 | An often echoed concern is that self-tuning would also spell the end for inflation. However, this assumes that sources behaving similar to a cosmological constant (such as an inflaton field in slow-roll) are equally decoupled from gravity, which does not need to be true. Sequestering in Section 4.2 provides the cleanest example of a mechanism that only affects a true cosmological constant. |
5 | We could also look at a general conformal coupling, but as it turns out the exponential case will be sufficiently interesting. |
6 | For example, the Higgs vacuum is , with vacuum expectation value . |
7 | We note that this is not the only object that transforms as a density. Instead, we can use as the integration measure, where is the Levi–Civita symbol and a four-form field. This is the loophole exploited by some of the approaches discussed in Section 4.2. |
8 | Spin-1 fields linearly coupled to a conserved source cannot contribute to . |
9 | These formal relations can be defined rigorously in momentum space. |
10 | As an aside, screening mechanisms discussed in Section 3.2 fulfill this condition based on a violation of the weak coupling assumption (iii). |
11 | To derive this condition, Equation (19) needs to be slightly generalized to also account for nonlocalized sources such as vacuum energy. |
12 | Cosmic structure formation measurements are also constraining, but to a much lesser degree [36]. |
13 | |
14 | In particular, the literature moves beyond proposals simply trying to tackle the CCPs, as modifications of gravity have also been extensively considered as an explanation for the late-time accelerated expansion of the Universe and an alternative to dark matter [34]. |
15 | In contrast to unimodular gravity, for example, see Section 4.2.4. |
16 | |
17 | We denote the rank of a p-form by the subscript . |
18 | On a more fundamental level, the occurrence of can be linked to the presence of membranes, but it has been argued that such an explanation might compromise the mechanism [108]. |
19 | Superposition of small-mass massive spin-2 states. |
20 | These models typically generalize the Randall–Sundrum model [200], which itself cannot address the CCP due to an immediate tuning between the brane tension and the bulk cosmological constant. |
21 | For higher value of the brane tension, the geometry on the brane changes to de Sitter [206]. |
22 | |
23 | The last approach also addressed concerns about the general applicability of the distributional approach away from the scale-invariant case [229]. |
24 | |
25 | |
26 | |
27 | |
28 |
References
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1917; pp. 142–152. [Google Scholar]
- O’Raifeartaigh, C.; O’Keeffe, M.; Nahm, W.; Mitton, S. Einstein’s 1917 static model of the universe: A centennial review. Eur. Phys. J. H 2017, 42, 431–474. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; et al.; [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, [Erratum in Astron. Astrophys. 2021, 652, C4]. [Google Scholar] [CrossRef] [Green Version]
- Bautista, J.E.; Paviot, R.; Vargas Magaña, M.; de la Torre, S.; Fromenteau, S.; Gil-Marín, H.; Ross, A.J.; Burtin, E.; Dawson, K.S.; Hou, J.; et al. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic correlation function between redshifts 0.6 and 1. Mon. Not. Roy. Astron. Soc. 2020, 500, 736–762. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, H.; Viola, M.; Heymans, C.; Joudaki, S.; Kuijken, K.; Blake, C.; Erben, T.; Joachimi, B.; Klaes, D.; Miller, L.; et al. KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing. Mon. Not. Roy. Astron. Soc. 2017, 465, 1454. [Google Scholar] [CrossRef] [Green Version]
- Doux, C.; Jain, B.; Zeurcher, D.; Lee, J.; Fang, X.; Rosenfeld, R.; Amon, A.; Camacho, H.; Choi, A.; Secco, L.F.; et al. Dark Energy Survey Year 3 results: Cosmological constraints from the analysis of cosmic shear in harmonic space. Mon. Not. Roy. Astron. Soc. 2022, 515, 1942–1972. [Google Scholar] [CrossRef]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Carr, A.; Zuntz, J.; Kessler, R.; Davis, T.M.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Costanzi, M.; et al.; [DES and SPT Collaborations] Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data. Phys. Rev. D 2021, 103, 043522. [Google Scholar] [CrossRef]
- de Haan, T.; Benson, B.A.; Bleem, L.E.; Allen, S.W.; Applegate, D.E.; Ashby, M.L.N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; et al. Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey. Astrophys. J. 2016, 832, 95. [Google Scholar] [CrossRef]
- Huterer, D.; Shafer, D.L. Dark energy two decades after: Observables, probes, consistency tests. Rept. Prog. Phys. 2018, 81, 016901. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge Univ. Press: Cambridge, UK, 1984. [Google Scholar] [CrossRef]
- Nernst, W. Über einen Versuch, von quantentheoretischen Betrachtungen zur Annahme stetiger Energieänderungen zurückzukehren. Verhandlungen der Deutschen Physikalischen Gesellschaft 1916, 18, 83–116. [Google Scholar]
- Enz, C.P.; Thellung, A. Nullpunktsenergie und Anordnung nicht vertauschbarer Faktoren im Hamiltonoperator. Helv. Phys. Acta 1960, 33, 839. [Google Scholar]
- Lenz, W. Das Gleichgewicht von Materie und Strahlung in Einsteins geschlossener Welt. Phys. Zs. 1926, 27, 642–645. [Google Scholar]
- Peruzzi, G.; Realdi, M. The quest for the size of the universe in early relativistic cosmology (1917–1930). Arch. Hist. Exact Sci. 2011, 65, 659. [Google Scholar] [CrossRef] [Green Version]
- Kragh, H. Walther Nernst: Grandfather of dark energy? Astron. Geophys. 2012, 53, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Kragh, H.S.; Overduin, J.M. The Weight of the Vacuum: A Scientific History of Dark Energy; Springer: Berlin, Germany, 2014. [Google Scholar]
- Zeldovich, Y.B. Cosmological Constant and Elementary Particles. JETP Lett. 1967, 6, 316. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Krasinski, A.; Zeldovich, Y.B. The Cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M.J.G. One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A 1974, 20, 69–94. [Google Scholar]
- Goroff, M.H.; Sagnotti, A. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys. B 1986, 266, 709–736. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Martin, J. Everything You Always Wanted to Know About the Cosmological Constant Problem (But Were Afraid to Ask). Comptes Rendus Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Tipler, F.J. The Anthropic Cosmological Principle; Oxford U. Pr.: Oxford, UK, 1988. [Google Scholar]
- Gribbin, J.; Rees, M. Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology; Black Swan: London, UK, 1989. [Google Scholar]
- Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, G. An anthropic argument for a cosmological constant. Mon. Not. R. Astron. Soc. 1995, 274, L73–L76. [Google Scholar] [CrossRef] [Green Version]
- Martel, H.; Shapiro, P.R.; Weinberg, S. Likely values of the cosmological constant. Astrophys. J. 1998, 492, 29. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Livio, M.; Vilenkin, A. The Cosmological constant and the time of its dominance. Phys. Rev. D 2000, 61, 023503. [Google Scholar] [CrossRef] [Green Version]
- Peacock, J.A. Testing anthropic predictions for Lambda and the CMB temperature. Mon. Not. Roy. Astron. Soc. 2007, 379, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Sobral Blanco, D.; Lombriser, L. Local self-tuning mechanism for the cosmological constant. Phys. Rev. D 2020, 102, 043506. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Hinterbichler, K. Theoretical Aspects of Massive Gravity. Rev. Mod. Phys. 2012, 84, 671–710. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K. Cosmological Tests of Modified Gravity. Rept. Prog. Phys. 2016, 79, 046902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rham, C. Massive Gravity. Living Rev. Rel. 2014, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobbenhuis, S. Categorizing different approaches to the cosmological constant problem. Found. Phys. 2006, 36, 613–680. [Google Scholar] [CrossRef]
- Polchinski, J. The Cosmological Constant and the String Landscape. In Proceedings of the 23rd Solvay Conference in Physics: The Quantum Structure of Space and Time, Brussels, Belgium, 1–3 December 2005; pp. 216–236. [Google Scholar]
- Bousso, R. TASI Lectures on the Cosmological Constant. Gen. Rel. Grav. 2008, 40, 607–637. [Google Scholar] [CrossRef] [Green Version]
- Padilla, A. Lectures on the Cosmological Constant Problem. arXiv 2015, arXiv:1502.05296. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of W and L from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowski, M. Early Dark Energy Can Resolve The Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301. [Google Scholar] [CrossRef] [Green Version]
- Kamionkowski, M.; Riess, A.G. The Hubble Tension and Early Dark Energy. arXiv 2022, arXiv:2211.04492. [Google Scholar]
- Wells, J.D. Lectures on Higgs Boson Physics in the Standard Model and Beyond. In Proceedings of the 38th British Universities Summer School in Theoretical Elementary Particle Physics, Cambridge, UK, 25 August–6 September 2008. [Google Scholar]
- Koren, S. The Hierarchy Problem: From the Fundamentals to the Frontiers. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2020. [Google Scholar]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys. B 1988, 302, 668–696. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Ratra, B. Cosmology with a Time Variable Cosmological Constant. Astrophys. J. Lett. 1988, 325, L17. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P. The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics. In Proceedings of the 100e Ecole d’Ete de Physique: Post-Planck Cosmology, Les Houches, France, 8 July–2 August 2013. [Google Scholar] [CrossRef] [Green Version]
- Bednyakov, A.V.; Kniehl, B.A.; Pikelner, A.F.; Veretin, O.L. Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision. Phys. Rev. Lett. 2015, 115, 201802. [Google Scholar] [CrossRef] [PubMed]
- Degrassi, G.; Di Vita, S.; Elias-Miro, J.; Espinosa, J.R.; Giudice, G.F.; Isidori, G.; Strumia, A. Higgs mass and vacuum stability in the Standard Model at NNLO. J. High Energy Phys. 2012, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Jegerlehner, F. The Standard model as a low-energy effective theory: What is triggering the Higgs mechanism? Acta Phys. Polon. B 2014, 45, 1167. [Google Scholar] [CrossRef] [Green Version]
- Jegerlehner, F. The Hierarchy Problem and the Cosmological Constant Problem Revisited—A new view on the SM of particle physics. Found. Phys. 2019, 49, 915–971. [Google Scholar] [CrossRef] [Green Version]
- Niedermann, F.; Padilla, A. Gravitational Mechanisms to Self-Tune the Cosmological Constant: Obstructions and Ways Forward. Phys. Rev. Lett. 2017, 119, 251306. [Google Scholar] [CrossRef] [Green Version]
- Fierz, M.; Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. Lond. A 1939, 173, 211–232. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, E.; Finke, A.; Frassino, A.; Maggiore, M. Testing nonlocal gravity with Lunar Laser Ranging. J. Cosmol. Astropart. Phys. 2019, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Kaloper, N.; Padilla, A. Strong Coupling and Bounds on the Spin-2 Mass in Massive Gravity. Phys. Rev. Lett. 2013, 111, 021802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rham, C.; Ribeiro, R.H. Riding on irrelevant operators. J. Cosmol. Astropart. Phys. 2014, 11, 16. [Google Scholar] [CrossRef]
- Kaloper, N.; Padilla, A.; Saffin, P.; Stefanyszyn, D. Unitarity and the Vainshtein Mechanism. Phys. Rev. D 2015, 91, 045017. [Google Scholar] [CrossRef]
- Adams, A.; McGreevy, J.; Silverstein, E. Decapitating tadpoles. arXiv 2002, arXiv:hep-th/0209226. [Google Scholar]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef]
- Williams, J.G.; Newhall, X.X.; Dickey, J.O. Relativity parameters determined from lunar laser ranging. Phys. Rev. D 1996, 53, 6730–6739. [Google Scholar] [CrossRef]
- Anderson, J.D.; Gross, M.; Nordtvedt, K.L.; Turyshev, S.G. The Solar test of the equivalence principle. Astrophys. J. 1996, 459, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Dickey, J.O.; Bender, P.; Faller, J.; Newhall, X.; Ricklefs, R.; Ries, J.; Shelus, P.; Veillet, C.; Whipple, A.; Wiant, J.; et al. Lunar Laser Ranging: A Continuing Legacy of the Apollo Program. Science 1994, 265, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Talmadge, C.; Berthias, J.P.; Hellings, R.W.; Standish, E.M. Model Independent Constraints on Possible Modifications of Newtonian Gravity. Phys. Rev. Lett. 1988, 61, 1159–1162. [Google Scholar] [CrossRef]
- Dvali, G.R.; Gabadadze, G.; Porrati, M. 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 2000, 485, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.R.; Gabadadze, G. Gravity on a brane in infinite volume extra space. Phys. Rev. D 2001, 63, 065007. [Google Scholar] [CrossRef] [Green Version]
- Luty, M.A.; Porrati, M.; Rattazzi, R. Strong interactions and stability in the DGP model. J. High Energy Phys. 2003, 9, 029. [Google Scholar] [CrossRef] [Green Version]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Woodard, R.P. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys. 2007, 720, 403–433. [Google Scholar] [CrossRef]
- Motohashi, H.; Suyama, T. Third order equations of motion and the Ostrogradsky instability. Phys. Rev. D 2015, 91, 085009. [Google Scholar] [CrossRef] [Green Version]
- Langlois, D.; Noui, K. Degenerate higher derivative theories beyond Horndeski: Evading the Ostrogradski instability. J. Cosmol. Astropart. Phys. 2016, 2, 034. [Google Scholar] [CrossRef] [Green Version]
- Langlois, D.; Noui, K. Hamiltonian analysis of higher derivative scalar-tensor theories. J. Cosmol. Astropart. Phys. 2016, 7, 016. [Google Scholar] [CrossRef] [Green Version]
- Crisostomi, M.; Koyama, K.; Tasinato, G. Extended Scalar-Tensor Theories of Gravity. J. Cosmol. Astropart. Phys. 2016, 4, 044. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R.; Trincherini, E. The Galileon as a local modification of gravity. Phys. Rev. D 2009, 79, 064036. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P. The present state of Dirac’s cosmological hypothesis. Z. Phys 1959, 157, 112. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Joyce, A.; Lombriser, L.; Schmidt, F. Dark Energy Versus Modified Gravity. Ann. Rev. Nucl. Part. Sci. 2016, 66, 95–122. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J. Astrophysical Tests of Modified Gravity. Ph.D. Thesis, Cambridge University, DAMTP, Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Cataneo, M.; Rapetti, D. Tests of gravity with galaxy clusters. Int. J. Mod. Phys. D 2018, 27, 1848006. [Google Scholar] [CrossRef]
- Carroll, S.M.; Sawicki, I.; Silvestri, A.; Trodden, M. Modified-Source Gravity and Cosmological Structure Formation. New J. Phys. 2006, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Pogosian, L.; Silvestri, A. What can cosmology tell us about gravity? Constraining Horndeski gravity with S and m. Phys. Rev. D 2016, 94, 104014. [Google Scholar] [CrossRef] [Green Version]
- Peirone, S.; Koyama, K.; Pogosian, L.; Raveri, M.; Silvestri, A. Large-scale structure phenomenology of viable Horndeski theories. Phys. Rev. D 2018, 97, 043519. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; Sakstein, J. Tests of Chameleon Gravity. Living Rev. Rel. 2018, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Bauer, F.; Sola, J.; Stefancic, H. The Relaxed Universe: Towards solving the cosmological constant problem dynamically from an effective action functional of gravity. Phys. Lett. B 2010, 688, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Sawicki, I. Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 2007, 76, 064004. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Navarro, I.; Van Acoleyen, K. f(R) actions, cosmic acceleration and local tests of gravity. J. Cosmol. Astropart. Phys. 2007, 2, 022. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, T.; Tegmark, M.; Bunn, E.F.; Mao, Y. Constraining f(R) Gravity as a Scalar Tensor Theory. Phys. Rev. D 2007, 76, 063505. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Casas, S.; Desmond, H.; Elder, B. Testing Screened Modified Gravity. Universe 2021, 8, 11. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R. Classical and quantum consistency of the DGP model. J. High Energy Phys. 2004, 6, 059. [Google Scholar] [CrossRef]
- Koyama, K.; Silva, F.P. Non-linear interactions in a cosmological background in the DGP braneworld. Phys. Rev. D 2007, 75, 084040. [Google Scholar] [CrossRef] [Green Version]
- Barreira, A.; Li, B.; Hellwing, W.A.; Baugh, C.M.; Pascoli, S. Nonlinear structure formation in the Cubic Galileon gravity model. J. Cosmol. Astropart. Phys. 2013, 10, 027. [Google Scholar] [CrossRef] [Green Version]
- Vainshtein, A.I. To the problem of nonvanishing gravitation mass. Phys. Lett. B 1972, 39, 393–394. [Google Scholar] [CrossRef]
- Lombriser, L.; Li, B.; Koyama, K.; Zhao, G.B. Modeling halo mass functions in chameleon f(R) gravity. Phys. Rev. D 2013, 87, 123511. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.; Hu, W.; Lima, M. Spherical Collapse and the Halo Model in Braneworld Gravity. Phys. Rev. D 2010, 81, 063005. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Appleby, S.; Avgoustidis, A.; Bacon, D.; Baker, T.; Baldi, M.; Bartolo, N.; Blanchard, A.; Bonvin, C.; Borgani, S.; et al. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 2018, 21, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Huff, E.M.; Choi, A.; Elvin-Poole, J.; Hirata, C.; Honscheid, K.; MacCrann, N.; Ross, A.J.; Troxel, M.A.; Eifler, T.F.; et al. Probing gravity with the DES-CMASS sample and BOSS spectroscopy. Mon. Not. Roy. Astron. Soc. 2021, 509, 4982–4996. [Google Scholar] [CrossRef]
- Alam, S.; Arnold, C.; Aviles, A.; Bean, R.; Cai, Y.C.; Cautun, M.; Cervantes-Cota, J.L.; Cuesta-Lazaro, C.; Devi, N.C.; Eggemeier, A.; et al. Towards testing the theory of gravity with DESI: Summary statistics, model predictions and future simulation requirements. J. Cosmol. Astropart. Phys. 2021, 11, 050. [Google Scholar] [CrossRef]
- Brax, P.; Valageas, P. Quantum field theory of K-mouflage. Phys. Rev. D 2016, 94, 043529. [Google Scholar] [CrossRef]
- Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept. 2015, 568, 1–98. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Padilla, A. Sequestering the Standard Model Vacuum Energy. Phys. Rev. Lett. 2014, 112, 091304. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Padilla, A.; Stefanyszyn, D.; Zahariade, G. Manifestly Local Theory of Vacuum Energy Sequestering. Phys. Rev. Lett. 2016, 116, 051302. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, G.; Kaloper, N.; Padilla, A.; Stefanyszyn, D.; Westphal, A.; Zahariade, G. An étude on global vacuum energy sequester. J. High Energy Phys. 2017, 9, 074. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A.; Mayer, W. Albert Einstein: Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der Wissenschaften 1914–1932; Wiley: Weinheim, Germany, 2006; pp. 375–392. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Unimodular Theory of Gravity and the Cosmological Constant. J. Math. Phys. 1991, 32, 1337–1340. [Google Scholar] [CrossRef]
- Carroll, S.M.; Remmen, G.N. A Nonlocal Approach to the Cosmological Constant Problem. Phys. Rev. D 2017, 95, 123504. [Google Scholar] [CrossRef] [Green Version]
- Lombriser, L. On the cosmological constant problem. Phys. Lett. B 2019, 797, 134804. [Google Scholar] [CrossRef]
- Kaloper, N.; Westphal, A. A Quantum-Mechanical Mechanism for Reducing the Cosmological Constant. arXiv 2022, arXiv:2204.13124. [Google Scholar] [CrossRef]
- Kaloper, N. Pancosmic Relativity and Nature’s Hierarchies. arXiv 2022, arXiv:2202.08860. [Google Scholar]
- Kaloper, N.; Padilla, A. Vacuum Energy Sequestering and Graviton Loops. Phys. Rev. Lett. 2017, 118, 061303. [Google Scholar] [CrossRef] [PubMed]
- El-Menoufi, B.K.; Nagy, S.; Niedermann, F.; Padilla, A. Quantum corrections to vacuum energy sequestering (with monodromy). Class. Quant. Grav. 2019, 36, 215014. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Padilla, A.; Stefanyszyn, D. Sequestering effects on and of vacuum decay. Phys. Rev. D 2016, 94, 025022. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Padilla, A. Vacuum Energy Sequestering: The Framework and Its Cosmological Consequences. Phys. Rev. D 2014, 90, 084023, Addendum in Phys. Rev. D 2014, 90, 109901. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Padilla, A. Sequestration of Vacuum Energy and the End of the Universe. Phys. Rev. Lett. 2015, 114, 101302. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N. Irrational Monodromies of Vacuum Energy. J. High Energy Phys. 2019, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Padilla, A. Monodromy inflation and an emergent mechanism for stabilising the cosmological constant. J. High Energy Phys. 2019, 1, 175. [Google Scholar] [CrossRef] [Green Version]
- Oda, I. Manifestly Local Formulation of Nonlocal Approach to the Cosmological Constant Problem. Phys. Rev. D 2017, 95, 104020. [Google Scholar] [CrossRef] [Green Version]
- Smolin, L. The Quantization of unimodular gravity and the cosmological constant problems. Phys. Rev. D 2009, 80, 084003. [Google Scholar] [CrossRef] [Green Version]
- Padilla, A.; Saltas, I.D. A note on classical and quantum unimodular gravity. Eur. Phys. J. C 2015, 75, 561. [Google Scholar] [CrossRef] [Green Version]
- Percacci, R. Unimodular quantum gravity and the cosmological constant. Found. Phys. 2018, 48, 1364–1379. [Google Scholar] [CrossRef]
- Eichhorn, A. On unimodular quantum gravity. Class. Quant. Grav. 2013, 30, 115016. [Google Scholar] [CrossRef]
- Kuchar, K.V. Does an unspecified cosmological constant solve the problem of time in quantum gravity? Phys. Rev. D 1991, 43, 3332–3344. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. The Cosmological Constant and General Covariance. Phys. Lett. B 1989, 222, 195–199. [Google Scholar] [CrossRef]
- Fiol, B.; Garriga, J. Semiclassical Unimodular Gravity. J. Cosmol. Astropart. Phys. 2010, 8, 015. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Unimodular F(R) Gravity. J. Cosmol. Astropart. Phys. 2016, 5, 046. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-May, A.; von Strauss, M. Recent developments in bimetric theory. J. Phys. A 2016, 49, 183001. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C.; Deskins, J.T.; Tolley, A.J.; Zhou, S.Y. Graviton Mass Bounds. Rev. Mod. Phys. 2017, 89, 025004. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rept. 2019, 796, 1–113. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.; Gabadadze, G. Nonlocal modification of gravity and the cosmological constant problem. arXiv 2002, arXiv:hep-th/0209227. [Google Scholar]
- Dvali, G.; Hofmann, S.; Khoury, J. Degravitation of the cosmological constant and graviton width. Phys. Rev. D 2007, 76, 084006. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C.; Hofmann, S.; Khoury, J.; Tolley, A.J. Cascading Gravity and Degravitation. J. Cosmol. Astropart. Phys. 2008, 2, 011. [Google Scholar] [CrossRef]
- van Dam, H.; Veltman, M.J.G. Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 1970, 22, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.I. Linearized gravitation theory and the graviton mass. JETP Lett. 1970, 12, 312. [Google Scholar]
- Stueckelberg, E.C.G. Theory of the radiation of photons of small arbitrary mass. Helv. Phys. Acta 1957, 30, 209–215. [Google Scholar]
- Arkani-Hamed, N.; Georgi, H.; Schwartz, M.D. Effective field theory for massive gravitons and gravity in theory space. Annals Phys. 2003, 305, 96–118. [Google Scholar] [CrossRef] [Green Version]
- Boulware, D.G.; Deser, S. Can gravitation have a finite range? Phys. Rev. D 1972, 6, 3368–3382. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C.; Gabadadze, G. Generalization of the Fierz-Pauli Action. Phys. Rev. D 2010, 82, 044020. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.F.; Rosen, R.A. On Non-Linear Actions for Massive Gravity. J. High Energy Phys. 2011, 7, 009. [Google Scholar] [CrossRef] [Green Version]
- Bellazzini, B.; Riva, F.; Serra, J.; Sgarlata, F. Beyond Positivity Bounds and the Fate of Massive Gravity. Phys. Rev. Lett. 2018, 120, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rham, C.; Melville, S.; Tolley, A.J.; Zhou, S.Y. Positivity Bounds for Massive Spin-1 and Spin-2 Fields. J. High Energy Phys. 2019, 3, 182. [Google Scholar] [CrossRef] [Green Version]
- LIGO Scientific Collaboration and Virgo Collaboration; Fermi GBM; INTEGRAL; IceCube Collaboration; AstroSat Cadmium Zinc Telluride Imager Team; IPN Collaboration; The Insight-HXMT Collaboration; ANTARES Collaboration; The Swift Collaboration; AGILE Team; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Baker, T.; Bellini, E.; Ferreira, P.G.; Lagos, M.; Noller, J.; Sawicki, I. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 2017, 119, 251301. [Google Scholar] [CrossRef]
- Bernus, L.; Minazzoli, O.; Fienga, A.; Gastineau, M.; Laskar, J.; Deram, P. Constraining the mass of the graviton with the planetary ephemeris INPOP. Phys. Rev. Lett. 2019, 123, 161103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi, N.; Rahmanpour, N.; Sepangi, H.R.; Shahidi, S. Multi-Metric Gravity via Massive Gravity. Phys. Rev. D 2012, 85, 024049. [Google Scholar] [CrossRef] [Green Version]
- Platscher, M.; Smirnov, J. Degravitation of the Cosmological Constant in Bigravity. J. Cosmol. Astropart. Phys. 2017, 3, 051. [Google Scholar] [CrossRef] [Green Version]
- Högås, M.; Torsello, F.; Mörtsell, E. On the stability of bimetric structure formation. J. Cosmol. Astropart. Phys. 2020, 4, 046. [Google Scholar] [CrossRef]
- Högås, M.; Mörtsell, E. Constraints on bimetric gravity from Big Bang nucleosynthesis. J. Cosmol. Astropart. Phys. 2021, 11, 1. [Google Scholar] [CrossRef]
- Caravano, A.; Lüben, M.; Weller, J. Combining cosmological and local bounds on bimetric theory. J. Cosmol. Astropart. Phys. 2021, 9, 035. [Google Scholar] [CrossRef]
- Högås, M.; Mörtsell, E. Constraints on bimetric gravity. Part II. Observational constraints. J. Cosmol. Astropart. Phys. 2021, 5, 002. [Google Scholar] [CrossRef]
- Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Healthy theories beyond Horndeski. Phys. Rev. Lett. 2015, 114, 211101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Mukohyama, S.; Namba, R.; Saitou, R. Hamiltonian structure of scalar-tensor theories beyond Horndeski. J. Cosmol. Astropart. Phys. 2014, 10, 071. [Google Scholar] [CrossRef]
- Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Exploring gravitational theories beyond Horndeski. J. Cosmol. Astropart. Phys. 2015, 2, 018. [Google Scholar] [CrossRef]
- Gao, X. Hamiltonian analysis of spatially covariant gravity. Phys. Rev. D 2014, 90, 104033. [Google Scholar] [CrossRef] [Green Version]
- Kase, R.; Tsujikawa, S. Effective field theory approach to modified gravity including Horndeski theory and Hořava–Lifshitz gravity. Int. J. Mod. Phys. D 2015, 23, 1443008. [Google Scholar] [CrossRef] [Green Version]
- Frusciante, N.; Raveri, M.; Vernieri, D.; Hu, B.; Silvestri, A. Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints. Phys. Dark Univ. 2016, 13, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Horava, P. Quantum Gravity at a Lifshitz Point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, H.; Noui, K.; Suyama, T.; Yamaguchi, M.; Langlois, D. Healthy degenerate theories with higher derivatives. J. Cosmol. Astropart. Phys. 2016, 7, 033. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T. Horndeski theory and beyond: A review. Rept. Prog. Phys. 2019, 82, 086901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babichev, E.; Charmousis, C. Dressing a black hole with a time-dependent Galileon. J. High Energy Phys. 2014, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett. 2012, 108, 051101. [Google Scholar] [CrossRef] [Green Version]
- Brax, P. What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rept. Prog. Phys. 2018, 81, 016902. [Google Scholar] [CrossRef]
- Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. Self-tuning and the derivation of a class of scalar-tensor theories. Phys. Rev. D 2012, 85, 104040. [Google Scholar] [CrossRef]
- Charmousis, C. From Lovelock to Horndeski’s Generalized Scalar Tensor Theory. Lect. Notes Phys. 2015, 892, 25–56. [Google Scholar] [CrossRef]
- Copeland, E.J.; Padilla, A.; Saffin, P.M. The cosmology of the Fab-Four. J. Cosmol. Astropart. Phys. 2012, 12, 026. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Smith, T.L.; Erickcek, A.L. Solar System constraints to general f(R) gravity. Phys. Rev. D 2007, 75, 124014. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; et al.; [LIGO Scientific Collaboration and Virgo Collaboration] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rham, C.; Melville, S. Gravitational Rainbows: LIGO and Dark Energy at its Cutoff. Phys. Rev. Lett. 2018, 121, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, T.; Calcagni, G.; Chen, A.; Fasiello, M.; Lombriser, L.; Martinovic, K.; Pieroni, M.; Sakellariadou, M.; Tasinato, G.; Bertacca, D.; et al. Measuring the propagation speed of gravitational waves with LISA. J. Cosmol. Astropart. Phys. 2022, 8, 031. [Google Scholar] [CrossRef]
- Linder, E.V. How Fabulous Is Fab 5 Cosmology? J. Cosmol. Astropart. Phys. 2013, 12, 032. [Google Scholar] [CrossRef] [Green Version]
- Appleby, S.; Linder, E.V. The Well-Tempered Cosmological Constant. J. Cosmol. Astropart. Phys. 2018, 7, 034. [Google Scholar] [CrossRef] [Green Version]
- Appleby, S.; Linder, E.V. The Well-Tempered Cosmological Constant: The Horndeski Variations. J. Cosmol. Astropart. Phys. 2020, 12, 036. [Google Scholar] [CrossRef]
- Bernardo, R.C.; Said, J.L.; Caruana, M.; Appleby, S. Well-tempered teleparallel Horndeski cosmology: A teleparallel variation to the cosmological constant problem. J. Cosmol. Astropart. Phys. 2021, 10, 078. [Google Scholar] [CrossRef]
- Khan, A.; Taylor, A. A minimal self tuning model to solve the cosmological constant problem. arXiv 2022, arXiv:2201.09016. [Google Scholar] [CrossRef]
- Copeland, E.J.; Ghataore, S.; Niedermann, F.; Padilla, A. Generalised scalar-tensor theories and self-tuning. J. Cosmol. Astropart. Phys. 2022, 3, 004. [Google Scholar] [CrossRef]
- Appleby, S.; Bernardo, R.C. Tadpole cosmology: Self tuning without degeneracy. J. Cosmol. Astropart. Phys. 2022, 7, 035. [Google Scholar] [CrossRef]
- Lacombe, O.; Mukohyama, S. Self-tuning of the cosmological constant in brane-worlds with P(X,f). arXiv 2022, arXiv:2203.16322. [Google Scholar]
- Amariti, A.; Charmousis, C.; Forcella, D.; Kiritsis, E.; Nitti, F. Brane cosmology and the self-tuning of the cosmological constant. J. Cosmol. Astropart. Phys. 2019, 10, 007. [Google Scholar] [CrossRef] [Green Version]
- Charmousis, C.; Kiritsis, E.; Nitti, F. Holographic self-tuning of the cosmological constant. J. High Energy Phys. 2017, 9, 031. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, R.C.; Said, J.L.; Caruana, M.; Appleby, S. Well-tempered Minkowski solutions in teleparallel Horndeski theory. Class. Quant. Grav. 2022, 39, 015013. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Cvetic, M.; Langacker, P.; Shiu, G. Toward realistic intersecting D-brane models. Ann. Rev. Nucl. Part. Sci. 2005, 55, 71–139. [Google Scholar] [CrossRef] [Green Version]
- Maharana, A.; Palti, E. Models of Particle Physics from Type IIB String Theory and F-theory: A Review. Int. J. Mod. Phys. A 2013, 28, 1330005. [Google Scholar] [CrossRef] [Green Version]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Berglund, P.; Conlon, J.P.; Quevedo, F. Systematics of moduli stabilisation in Calabi-Yau flux compactifications. J. High Energy Phys. 2005, 03, 007. [Google Scholar] [CrossRef] [Green Version]
- Grana, M. Flux compactifications in string theory: A Comprehensive review. Phys. Rept. 2006, 423, 91–158. [Google Scholar] [CrossRef] [Green Version]
- Blumenhagen, R.; Kors, B.; Lust, D.; Stieberger, S. Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes. Phys. Rept. 2007, 445, 1–193. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K. The cosmological constant and dark energy in braneworlds. Gen. Rel. Grav. 2008, 40, 421–450. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Kaloper, N.; Sundrum, R. A Small cosmological constant from a large extra dimension. Phys. Lett. B 2000, 480, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Kachru, S.; Schulz, M.B.; Silverstein, E. Selftuning flat domain walls in 5-D gravity and string theory. Phys. Rev. D 2000, 62, 045021. [Google Scholar] [CrossRef] [Green Version]
- Forste, S.; Lalak, Z.; Lavignac, S.; Nilles, H.P. A Comment on selftuning and vanishing cosmological constant in the brane world. Phys. Lett. B 2000, 481, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Forste, S.; Lalak, Z.; Lavignac, S.; Nilles, H.P. The Cosmological constant problem from a brane world perspective. J. High Energy Phys. 2000, 09, 034. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Erlich, J.; Grojean, C.; Hollowood, T.J. General properties of the selftuning domain wall approach to the cosmological constant problem. Nucl. Phys. B 2000, 584, 359–386. [Google Scholar] [CrossRef] [Green Version]
- Binetruy, P.; Cline, J.M.; Grojean, C. Dynamical instability of brane solutions with a self-tuning cosmological constant. Phys. Lett. B 2000, 489, 403–410. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef] [Green Version]
- Vilenkin, A. Gravitational Field of Vacuum Domain Walls and Strings. Phys. Rev. D 1981, 23, 852–857. [Google Scholar] [CrossRef]
- Gott, J.R., III. Gravitational lensing effects of vacuum strings: Exact solutions. Astrophys. J. 1985, 288, 422–427. [Google Scholar] [CrossRef]
- Hiscock, W.A. Exact Gravitational Field of a String. Phys. Rev. D 1985, 31, 3288–3290. [Google Scholar] [CrossRef] [PubMed]
- Kaloper, N.; Kiley, D. Charting the landscape of modified gravity. J. High Energy Phys. 2007, 05, 045. [Google Scholar] [CrossRef] [Green Version]
- Sundrum, R. Compactification for a three-brane universe. Phys. Rev. D 1999, 59, 085010. [Google Scholar] [CrossRef] [Green Version]
- Niedermann, F.; Schneider, R. Radially stabilized inflating cosmic strings. Phys. Rev. D 2015, 91, 064010. [Google Scholar] [CrossRef] [Green Version]
- Niedermann, F.; Schneider, R.; Hofmann, S.; Khoury, J. Universe as a cosmic string. Phys. Rev. D 2015, 91, 024002. [Google Scholar] [CrossRef] [Green Version]
- Dubovsky, S.L.; Rubakov, V.A. Brane induced gravity in more than one extra dimensions: Violation of equivalence principle and ghost. Phys. Rev. D 2003, 67, 104014. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.F.; Hofmann, S.; von Strauss, M. Brane Induced Gravity, its Ghost and the Cosmological Constant Problem. J. Cosmol. Astropart. Phys. 2011, 01, 020. [Google Scholar] [CrossRef]
- Eglseer, L.; Niedermann, F.; Schneider, R. Brane induced gravity: Ghosts and naturalness. Phys. Rev. D 2015, 92, 084029. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 1999, 59, 086004. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.W.; Luty, M.A.; Ponton, E. A Critical cosmological constant from millimeter extra dimensions. J. High Energy Phys. 2000, 9, 012. [Google Scholar] [CrossRef]
- Carroll, S.M.; Guica, M.M. Sidestepping the cosmological constant with football shaped extra dimensions. arXiv 2003, arXiv:hep-th/0302067. [Google Scholar]
- Navarro, I. Codimension two compactifications and the cosmological constant problem. J. Cosmol. Astropart. Phys. 2003, 9, 004. [Google Scholar] [CrossRef]
- Cline, J.M.; Descheneau, J.; Giovannini, M.; Vinet, J. Cosmology of codimension two brane worlds. J. High Energy Phys. 2003, 6, 048. [Google Scholar] [CrossRef] [Green Version]
- Aghababaie, Y.; Burgess, C.P.; Parameswaran, S.L.; Quevedo, F. Towards a naturally small cosmological constant from branes in 6-D supergravity. Nucl. Phys. B 2004, 680, 389–414. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; van Nierop, L. Large Dimensions and Small Curvatures from Supersymmetric Brane Back-reaction. J. High Energy Phys. 2011, 4, 078. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; van Nierop, L. Technically Natural Cosmological Constant From Supersymmetric 6D Brane Backreaction. Phys. Dark Univ. 2013, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Salam, A.; Sezgin, E. Chiral Compactification on Minkowski x S**2 of N = 2 Einstein-Maxwell Supergravity in Six-Dimensions. Phys. Lett. B 1984, 147, 47. [Google Scholar] [CrossRef]
- Randjbar-Daemi, S.; Salam, A.; Sezgin, E.; Strathdee, J.A. An Anomaly Free Model in Six-Dimensions. Phys. Lett. B 1985, 151, 351–356. [Google Scholar] [CrossRef]
- Nishino, H.; Sezgin, E. The Complete N=2, d=6 Supergravity With Matter and Yang-Mills Couplings. Nucl. Phys. B 1986, 278, 353–379. [Google Scholar] [CrossRef]
- Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.D.; Swanson, H.E. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 2007, 98, 021101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randjbar-Daemi, S.; Salam, A.; Strathdee, J.A. Spontaneous Compactification in Six-Dimensional Einstein-Maxwell Theory. Nucl. Phys. B 1983, 214, 491–512. [Google Scholar] [CrossRef]
- Niedermann, F.; Schneider, R. Fine-tuning with Brane-Localized Flux in 6D Supergravity. J. High Energy Phys. 2016, 2, 025. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; Diener, R.; Williams, M. EFT for Vortices with Dilaton-dependent Localized Flux. J. High Energy Phys. 2015, 11, 054. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; Diener, R.; Williams, M. Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture. J. High Energy Phys. 2015, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Niedermann, F.; Schneider, R. SLED Phenomenology: Curvature vs. Volume. J. High Energy Phys. 2016, 3, 130. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; Diener, R.; Williams, M. A problem with d-functions: Stress-energy constraints on bulk-brane matching (with comments on arXiv:1508.01124). J. High Energy Phys. 2016, 1, 017. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.W.; Gueven, R.; Pope, C.N. 3-branes and uniqueness of the Salam-Sezgin vacuum. Phys. Lett. B 2004, 595, 498–504. [Google Scholar] [CrossRef]
- Karch, A.; Randall, L. Locally localized gravity. J. High Energy Phys. 2001, 5, 008. [Google Scholar] [CrossRef] [Green Version]
- Kaloper, N.; Sorbo, L. Locally localized gravity: The Inside story. J. High Energy Phys. 2005, 8, 070. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, J.K.; Kiritsis, E.; Nitti, F.; Witkowski, L.T. De Sitter and Anti-de Sitter branes in self-tuning models. J. High Energy Phys. 2018, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Abbott, T.M.C.; et al.; [DES Collaboration] Dark Energy Survey Year 3 Results: Constraints on extensions to LCDM with weak lensing and galaxy clustering. arXiv 2022, arXiv:2207.05766. [Google Scholar]
- Ishak, M.; Baker, T.; Bull, P.; Pedersen, E.M.; Blazek, J.; Ferreira, P.G.; Leonard, C.D.; Lin, W.; Linder, E.; Pardo, K.; et al. Modified Gravity and Dark Energy models Beyond w(z)CDM Testable by LSST. arXiv 2019, arXiv:1905.09687. [Google Scholar]
- Weltman, A.; Bull, P.; Camera, S.; Kelley, K.; Padmanabhan, H.; Pritchard, J.; Raccanelli, A.; Riemer-Sørensen, S.; Shao, L.; Andrianomena, S.; et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Aust. 2020, 37, e002. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, E.; Calcagni, G.; Crisostomi, M.; Dalang, C.; Dirian, Y.; Ezquiaga, J.M.; Fasiello, M.; Foffa, S.; Ganz, A.; García-Bellido, J.; et al. Testing modified gravity at cosmological distances with LISA standard sirens. J. Cosmol. Astropart. Phys. 2019, 7, 024. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.G.; Belgacem, E.; Benkel, R.; Bernard, L.; Berti, E.; Bertone, G.; Besancon, M.; Blas, D.; Böhmer, C.G.; Brito, R.; et al. New horizons for fundamental physics with LISA. Living Rev. Rel. 2022, 25, 4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foundational Aspects of Dark Energy (FADE) Collaboration; Bernardo, H.; Bose, B.; Franzmann, G.; Hagstotz, S.; He, Y.; Litsa, A.; Niedermann, F. Modified Gravity Approaches to the Cosmological Constant Problem. Universe 2023, 9, 63. https://doi.org/10.3390/universe9020063
Foundational Aspects of Dark Energy (FADE) Collaboration, Bernardo H, Bose B, Franzmann G, Hagstotz S, He Y, Litsa A, Niedermann F. Modified Gravity Approaches to the Cosmological Constant Problem. Universe. 2023; 9(2):63. https://doi.org/10.3390/universe9020063
Chicago/Turabian StyleFoundational Aspects of Dark Energy (FADE) Collaboration, Heliudson Bernardo, Benjamin Bose, Guilherme Franzmann, Steffen Hagstotz, Yutong He, Aliki Litsa, and Florian Niedermann. 2023. "Modified Gravity Approaches to the Cosmological Constant Problem" Universe 9, no. 2: 63. https://doi.org/10.3390/universe9020063
APA StyleFoundational Aspects of Dark Energy (FADE) Collaboration, Bernardo, H., Bose, B., Franzmann, G., Hagstotz, S., He, Y., Litsa, A., & Niedermann, F. (2023). Modified Gravity Approaches to the Cosmological Constant Problem. Universe, 9(2), 63. https://doi.org/10.3390/universe9020063