Constraining Co-Varying Coupling Constants from Globular Cluster Age
Abstract
:1. Introduction
2. Analytical Background
- The solar mass-loss rate due to nuclear fusion is , and that due to solar winds is [77], giving a total mass-loss rate of . Similar mass loss is expected from main-sequence stars of interest in this work. It was shown to be negligible.
- In the CCC approach, we have . Additionally, is measured in units of in relativity and in the CCC model, i.e., . We may therefore write . Here, corresponds to in the standard model. Since as per the stellar scaling laws [78], we could expect , i.e., the change in for main-sequence stars in the standard model can also be considered negligible see also [75]. We may, therefore, write .
- We have to now focus on the last term . Taking as the mean mass fraction of hydrogen (assumed to be 0.75 initially when the star became a main-sequence star) and Z as the mean mass fraction of elements heavier than helium, may be written [79] (p. 54); [78] (p. 42):
3. Results
4. Discussion
5. Conclusions
- Energy conservation includes the cosmological energy along with the local energy.
- Variations of gravitational constant , the speed of light , the Planck constant , and the Boltzmann constant are considered interrelated as .
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dirac, P.A.M. The cosmological constants. Nature 1937, 139, 323. [Google Scholar] [CrossRef]
- Uzan, J.-P. The fundamental constants their variation: Observational theoretical status. Rev. Mod. Phys. 2003, 75, 403. [Google Scholar] [CrossRef] [Green Version]
- Uzan, J.-P. Varying constants, gravitation and cosmology. Living Rev. Relativ. 2011, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P. Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Zeitschrift Phys. 1959, 157, 112–121. [Google Scholar] [CrossRef]
- Brans, C.H.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Teller, E. On the change of physical constants. Phys. Rev. 1948, 73, 801–802. [Google Scholar] [CrossRef]
- Chin, C.-W.; Stothers, R. Limit on the secular change of the gravitational constant based on studies of solar evolution. Phys. Rev. Lett. 1976, 36, 833–835. [Google Scholar] [CrossRef]
- Sahini, V.; Shtanov, Y. Can a variable gravitational constant resolve the faint young Sun paradox? Int. J. Mod. Phys. D 2014, 23, 1442018. [Google Scholar] [CrossRef] [Green Version]
- Morrison, L.V. Rotation of the Earth from AD 1663–1972 and the constancy of G. Nature 1973, 241, 519–520. [Google Scholar] [CrossRef]
- Sisterna, P.; Vucetich, H. Cosmology, oscillating physics, and oscillating biology. Phys. Rev. Lett. 1990, 72, 454–457. [Google Scholar] [CrossRef] [Green Version]
- Benvenuto, O.G.; Althaus, L.G.; Torres, D.F. Evolution of white dwarfs as a probe of theories of gravitation: The case of Brans—Dicke. Mon. Not. R. Astron. Soc. 1999, 305, 905–919. [Google Scholar] [CrossRef] [Green Version]
- García-Berro, E.; Lorén-Aguilar, P.; Torres, S.; Althaus, L.G.; Isern, J. An upper limit to the secular variation of the gravitational constant from white dwarf stars. J. Cosm. Astropart. Phys. 2011, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Córsico, A.H.; Althaus, L.G.; García-Berro, E.; Romero, A.D. An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs. J. Cosm. Astropart. Phys. 2013, 6, 32. [Google Scholar] [CrossRef]
- Dearborn, D.S.; Schramm, D.N. Limits on variation of G from clusters of galaxies. Nature 1974, 247, 441–443. [Google Scholar] [CrossRef]
- Del’Innocenti, S.; Fiorentini, G.; Raffelt, G.; Ricci, B.; Weiss, A. Time-variation of Newton’s constant and the age of globular clusters. Astron. Astrophys. 1996, 312, 345. [Google Scholar]
- Thorsett, S.E. The Gravitational constant, the Chandrasekhar limit, and neutron star masses. Phys. Rev. Lett. 1996, 77, 1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Lu, R.; Salvado, J.; Stefanek, B.A. Cosmological constraints on the gravitational interactions of matter and dark matter. J. Cosm. Astropart. Phys. 2015, 15, 29. [Google Scholar] [CrossRef]
- Ooba, J.; Ichiki, K.; Chiba, T.; Sugiyama, N. Cosmological constraints on scalar-tensor gravity and the variation of the gravitational constant. Prog. Theor. Exp. Phys. 2017, 2017, 043E03. [Google Scholar] [CrossRef] [Green Version]
- Copi, C.J.; Davis, A.N.; Krauss, L.M. New nucleosynthesis constraint on the variation of G. Phys. Rev. Lett. 2004, 92, 171301. [Google Scholar] [CrossRef]
- Alvey, J.; Sabti, N.; Escudero, M.; Fairbairn, M. Improved BBN constraints on the variation of the gravitational constant. Eur. Phys. J. C 2020, 80, 148. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, E.P.; Christensen-Dalsgaard, J. Asteroseismic constraints on the cosmic-time variation of the gravitational constant from an ancient main-sequence star. Astrophys. J. Lett. 2019, 887, L1. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 2004, 93, 261101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, F.; Müller, J. Relativistic tests with lunar laser ranging. Class. Quantum Gravity 2018, 35, 35015. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 2013, 432, 3431. [Google Scholar] [CrossRef] [Green Version]
- Fienga, A.; Laskar, J.; Exertier, P.; Manche, H.; Gastineau, M. Tests of general relativity with planetary orbits and Monte Carlo simulations. arXiv 2014, arXiv:1409.4932. [Google Scholar]
- Genova, A.; Mazarico, E.; Goossens, S.; Lemoine, F.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission. Nat. Commun. 2018, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Gibbons, G.W.; Taylor, J.H. Limits on the variability of G using binary-pulsar data. Phys. Rev. Lett. 1988, 61, 1151. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Taylor, J.H.; Ryba, M.F. High-precision timing of millisecond pulsars. 3: Long-term monitoring of PSRs B1855+ 09 and B1937+ 21. Astrophys. J. 1994, 428, 713–728. [Google Scholar] [CrossRef]
- Zhu, W.W.; Desvignes, G.; Wex, N.; Caballero, R.N.; Champion, D.J.; Demorest, P.B.; A Ellis, J.; Janssen, G.H.; Kramer, M.; Krieger, A.; et al. Tests of gravitational symmetries with pulsar binary J1713 + 0747. Mon. Not. R. Astron. Soc. 2019, 482, 3249–3260. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Berro, E.; Gaztanaga, E.; Benvenuto, O. On the Evolution of Cosmological Type Ia Supernovae and the Gravitational Constant. arXiv 1999, arXiv:9907440. [Google Scholar]
- Gaztanaga, E.; Garcia-Berro, E.; Isern, J.; Bravo, E.; Dominguez, I. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae. Phys. Rev. D 2001, 65, 023506. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.S.; Li, B. Type Ia supernovae, standardizable candles, and gravity. Phys. Rev. D 2018, 97, 083505. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Wright, B.S.; Li, B. Constraining the time variation of Newton’s constant G with gravitational-wave standard sirens and supernovae. J. Cosmol. Astropart. Phys. 2018, 2018, 52. [Google Scholar] [CrossRef] [Green Version]
- Vijaykumar, A.; Kapadia, S.J.; Ajith, P. Constraints on the time variation of the gravitational constant using gravitational wave observations of binary neutron stars. Phys. Rev. Lett. 2021, 126, 141104. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Savastano, S.; Speri, L.; Antonelli, A.; Sberna, L.; Burke, O.; Gair, J.R.; Tamanini, N. Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors. arXiv 2022, arXiv:2207.10674. [Google Scholar]
- Einstein, A. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahnbuch Radioakt. Elektron. 1907, 4, 11. [Google Scholar]
- Dicke, R.H. Gravitation without a principle of equivalence. Rev. Mod. Phys. 1957, 29, 363–376. [Google Scholar] [CrossRef]
- Petit, J.-P. An interpretation of cosmological model with variable light velocity. Mod. Phys. Lett. A 1988, 3, 1527–1532, ibid 1733; ibid 2201. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Superluminary universe: A Possible solution to the initial value problem in cosmology. Int. J. Mod. Phys. D 1993, 2, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Quantum gravity, the origin of time and time’s arrow. Found. Phys. 1993, 23, 411–437. [Google Scholar] [CrossRef]
- Albrecht, A.; Magueijo, J. Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 1999, 59, 43516. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D. Cosmologies with varying light speed. Phys. Rev. D 1999, 59, 43515. [Google Scholar] [CrossRef] [Green Version]
- Avelino, P.P.; Martins CJ, A.P. Does a varying speed of light solve the cosmological problems? Phys. Lett. B 1999, 459, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Avelino, P.P.; Martins CJ, A.P.; Rocha, G. VSL theories and the Doppler peak. Phys. Lett. B 2000, 483, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Variable speed of light cosmology, primordial fluctuations and gravitational waves. Eur. Phys. J. C 2016, 76, 130. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.Z.; Zhang, M.J.; Liu, W.B. Observational constraint on the varying speed of light theory. Phys. Rev. D 2014, 90, 63526. [Google Scholar] [CrossRef] [Green Version]
- Salzano, V.; Dąbrowski, M.P.; Lazkoz, R. Measuring the speed of light with Baryon Acoustic Oscillations. Phys. Rev. Lett. 2015, 114, 101304. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Guo, Z.K.; Yang, T. Dodging the cosmic curvature to probe the constancy of the speed of light. J. Cosmol. Astropart. Phys. 2016, 2016, 16. [Google Scholar] [CrossRef]
- Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; et al. The Hubble Space Telescope cluster supernova survey. V. Improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys. J. 2012, 746, 85. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Biesiada, M.; Jackson, J.; Zheng, X.; Zhao, Y.; Zhu, Z.H. Measuring the speed of light with ultra-compact radio quasars. J. Cosmol. Astropart. Phys. 2017, 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Qi, J.; Biesiada, M.; Liu, T.; Zhu, Z.H. Precise measurements of the speed of light with high-redshift quasars: Ultra-compact radio structure and strong gravitational lensing. Astrophys. J. Lett. 2020, 888, L25. [Google Scholar] [CrossRef]
- Lee, S. Constraints on the time variation of the speed of light using Strong lensing. arXiv 2021, arXiv:2104.09690. [Google Scholar]
- Mendonça, I.E.C.R.; Bora, K.; Holanda, R.F.L.; Desai, S.; Pereira, S.H. A search for the variation of speed of light using galaxy cluster gas mass fraction measurements. J. Cosmol. Astropart. Phys. 2021, 11, 34. [Google Scholar] [CrossRef]
- Mangano, G.; Lizzi, F.; Porzio, A. Inconstant Planck’s constant. Int. J. Mod. Phys. A 2015, 30, 1550209. [Google Scholar] [CrossRef] [Green Version]
- de Gosson, M.A. Mixed quantum states with variable Planck constant. Phys. Lett. A 2017, 381, 3033–3037. [Google Scholar] [CrossRef] [Green Version]
- Dannenberg, R. Planck’s Constant as a Dynamical Field & Path Integral. arXiv 2018, arXiv:1812.02325. [Google Scholar]
- Castrillo, A.; Casa, G.; Merlone, A.; Galzerano, G.; Laporta, P.; Gianfrani, L. On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared. Comptes Rendus Phys. 2009, 10, 894–906. [Google Scholar] [CrossRef]
- Djerroud, K.; Lemarchand, C.; Gauguet, A.; Daussy, C.; Briaudeau, S.; Darquié, B.; Lopez, O.; Amy-Klein, A.; Chardonnet, C.; Bordé, C.J. Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8× 10− 5 accuracy level. Comptes Rendus Phys. 2009, 10, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.P. Varying Coupling Constants and Their Interdependence. Mod. Phys. Lett. A 2022, 37, 2250155. [Google Scholar] [CrossRef]
- Gupta, R.P. Varying physical constants and the lithium problem. Astropart. Phys. 2021, 129, 102578. [Google Scholar] [CrossRef]
- Gupta, R.P. Faint young Sun problem and variable physical constants. Mon. Not. R. Astron. Soc. 2022, 509, 4285–4290. [Google Scholar] [CrossRef]
- Gupta, R.P. Orbital timing constraint on G/G. Res. Notes AAS 2021, 5, 30. [Google Scholar] [CrossRef]
- Gupta, R.P. Testing the Speed of Light Variation with Strong Gravitational Lensing of SNe 1a. Res. Notes AAS 2021, 5, 176. [Google Scholar] [CrossRef]
- Gupta, R.P. Effect of evolving physical constants on type Ia supernova luminosity. Mon. Not. R. Astron. Soc. 2022, 511, 4238–4250. [Google Scholar] [CrossRef]
- Gupta, R.P. Constraining variability of coupling constants with bright and extreme quasars. Mon. Not. R. Astron. Soc. 2022, 513, 5559–5566. [Google Scholar] [CrossRef]
- Gupta, R.P. Constraining coupling constants’ variation with supernovae, quasars, and GRBs. Front. Astro. Symmetry 2023, 15, 259. [Google Scholar] [CrossRef]
- Cuzinatto, R.R.; Gupta, R.P.; Pompeia, P.J. Dynamical analysis of the covarying coupling constants in scalar-tensor gravity. arXiv 2022, arXiv:2204.00119. [Google Scholar]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993; p. 139. [Google Scholar]
- Harrison, E.R. Mining energy in an expanding universe. Astrophys. J. 1995, 446, 63. [Google Scholar] [CrossRef]
- Baryshev, Y. Expanding space: The root of conceptual problems of the cosmological physics. arXiv 2008, arXiv:0810.0153. Practical Cosmology, 2, 20. [Google Scholar]
- Carroll, S.M. Energy Is Not Conserved. Available online: https://www.preposterousuniverse.com/blog/2010/02/22/energy-is-not-conserved/ (accessed on 13 November 2022).
- Weiss, M.; Baez, J. Is Energy Conserved in General Relativity? 2017. Available online: https://math.ucr.edu/home/baez/physics/Relativity/GR/energy_gr.html (accessed on 13 November 2022).
- Filippini, J.; (University of Illinois Urbana-Champaign, Champaign, IL, USA). Personal email communication, 2020.
- Velten, H.; Caramês, T.R.P. To conserve, or not to conserve: A review of nonconservative theories of gravity. Universe 2021, 7, 38. [Google Scholar] [CrossRef]
- Newman, M.J.; Rood, R.T. Implications of solar evolution for the Earth’s early atmosphere. Science 1977, 198, 1035–1037. [Google Scholar] [CrossRef]
- Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Wood, B.E. Astrospheres and solar-like stellar winds. Living Rev. Sol. Phys. 2004, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maoz, D. Astrophysics in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Schwarzschild, M. Structure and Evolution of Stars; Princeton University Press: Princeton, NJ, USA, 1958. [Google Scholar]
- Carroll, S.M.; Lodman, J. Energy Non-Conservation in Quantum Mechanics. arXiv 2021, arXiv:2101.11052. [Google Scholar] [CrossRef]
- Harrison, E.R. Cosmology: The Science of the Universe; Cambridge University Press: Cambridge, UK, 1981; p. 276. [Google Scholar]
- Brading, K. A note on general relativity, energy conservation, and Noether’s theorems. In Einstein Studies; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kibble, B.P.; Robinson, I.A.; Belliss, J.H. A realization of the SI watt by the NPL moving-coil balance. Metrologia 1990, 27, 173–192. [Google Scholar] [CrossRef]
- Schlamminger, S.; Haddad, D. The Kibble balance and the kilogram. Comp. Rend. Phys. 2019, 20, 55–63. [Google Scholar] [CrossRef]
- Wood, B.M.; Sanchez, C.A.; Green, R.G.; Liard, J.O. A summary of the Planck constant determinations using the NRC Kibble balance. Metrologia 2017, 54, 399. [Google Scholar] [CrossRef]
- Sanchez, C. Realizing the Kilogram from the Planck Constant: The Kibble Balance and the Electrical Units. IEEE Instrum. Meas. Magz. 2021, 24, 5–10. [Google Scholar]
- Gupta, R.P. Measuring inertial mass with Kibble balance. arXiv 2022, arXiv:2207.02680. [Google Scholar]
- Haddad, D.; Seifert, F.; Chao, L.S.; Li, S.; Newell, D.B.; Pratt, J.R.; Williams, C.; Schlamminger, S. Bridging classical and quantum mechanics. Metrologia 2016, 53, A83–A85. [Google Scholar] [CrossRef]
- Fujii, K.; Bettin, H.; Becker, P.; Massa, E.; Rienitz, O.; Pramann, A.; Nicolaus, A.; Kuramoto, N.; Busch, I.; Borys, M. Realization of the kilogram by the XRCD method. Metrologia 2016, 53, A19–A45. [Google Scholar] [CrossRef]
- Steiner, R. History and progress on accurate measurements of the Planck constant. Rep. Prog. Phys. 2013, 76, 16101. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, D.; Cai, Y.; Xu, Y.; Li, C.; Gao, Q.; Zhao, L.; Liu, G.; Xu, Z.; Zhou, X.J. High precision determination of the Planck constant by modern photoemission spectroscopy. Rev. Sci. Instrum. 2020, 91, 45116. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J. Low uncertainty Boltzmann constant determinations and the kelvin redefinition. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150038. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M.D.; de Podesta, M.; Underwood, R.; Sutton, G. The Boltzmann project. Metrologia 2018, 55, R1–R20. [Google Scholar] [CrossRef] [PubMed]
Model | ||||
---|---|---|---|---|
Degl’Innocinti et al.—Linear | 0.5 | −35 | 1.5 | 7 |
Degl’Innocinti et al.—Power-law | −6 | 6 | ||
CCC—Linear | −429 | 429 | ||
CCC—Prediction | Not Applicable | 0.77 | 390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.P. Constraining Co-Varying Coupling Constants from Globular Cluster Age. Universe 2023, 9, 70. https://doi.org/10.3390/universe9020070
Gupta RP. Constraining Co-Varying Coupling Constants from Globular Cluster Age. Universe. 2023; 9(2):70. https://doi.org/10.3390/universe9020070
Chicago/Turabian StyleGupta, Rajendra P. 2023. "Constraining Co-Varying Coupling Constants from Globular Cluster Age" Universe 9, no. 2: 70. https://doi.org/10.3390/universe9020070
APA StyleGupta, R. P. (2023). Constraining Co-Varying Coupling Constants from Globular Cluster Age. Universe, 9(2), 70. https://doi.org/10.3390/universe9020070