Stark Broadening of Al IV Spectral Lines
Abstract
:1. Introduction
2. Theory
3. Results
4. On the Stark Broadening in Stellar Atmospheres
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchamp, A.; Wesemael, F.; Bergeron, P. Spectroscopic Studies of DB White Dwarfs: Improved Stark Profiles for Optical Transitions of Neutral Helium. Astrophys. J. Suppl. Ser. 1997, 108, 559–573. [Google Scholar] [CrossRef]
- Konjević, N. Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep. 1999, 316, 339–401. [Google Scholar] [CrossRef]
- Torres, J.; van de Sande, M.J.; van der Mullen, J.J.A.M.; Gamero, A.; Sola, A. Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges. Spectrochim. Acta B 2006, 61, 58–68. [Google Scholar] [CrossRef]
- Belostotskiy, S.G.; Ouk, T.; Donnelly, V.M.; Economou, D.J.; Sadeghi, N.J. Gas temperature and electron density profiles in an argon dc microdischarge measured by optical emission spectroscopy. Appl. Phys. 2010, 107, 053305. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Jung, J.-E.J.; Ki, N.S.; Donnelly, V.M. Effects of N2 and O2 plasma treatments of quartz surfaces exposed to H2 plasmas. J. Vac. Sci. Technol. A 2022, 40, 053002. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma spectroscopy in inertial confinement fusion and soft X-ray laser research. Phys. Fluids 1992, 4, 2346–2361. [Google Scholar] [CrossRef]
- Iglesias, E.; Griem, H.R.; Welch, B.; Weaver, J. UV Line Profiles of B V from a 10-Ps KrF-Laser-Produced Plasma. Astrophys. Space Sci. 1997, 256, 327–331. [Google Scholar] [CrossRef]
- Wang, J.S.; Griem, H.R.; Huang, Y.W.; Böttcher, F. Measurements of line broadening of B V Hα and Lδ in a laser-produced plasma. Phys. Rev. A 1992, 45, 4010–4014. [Google Scholar] [CrossRef] [PubMed]
- Gornushkin, I.B.; King, L.A.; Smith, B.W.; Omenetto, N.; Winefordner, J.D. Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim. Acta 1999, 54, 1207–1217. [Google Scholar] [CrossRef]
- Nicolosi, P.; Garifo, L.; Jannitti, E.; Malvezzi, A.M.; Tondello, G. Broadening and self-absorption of the resonance lines of H-like light ions in laser-produced plasmas. Nuovo Cim. B 1978, 48, 133–151. [Google Scholar] [CrossRef]
- Sorge, S.; Wierling, A.; Röpke, G.; Theobald, W.; Suerbrey, R.; Wilhein, T. Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra. J. Phys. B 2000, 33, 2983–3000. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Patel, F.; Karatas, C. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. Opt. Laser Technol. 2015, 74, 36–42. [Google Scholar] [CrossRef]
- Hoffman, J.; Szymański, Z.; Azharonok, V. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface. AIP Conf. Proc. 2006, 812, 469–472. [Google Scholar]
- Dimitrijević, M.S.; Christova, M.D. Stark widths of Lu II spectral lines. Eur. Phys. J. D 2021, 75, 172. [Google Scholar] [CrossRef]
- Majlinger, Z.; Dimitrijević, M.S.; Srećković, V. Stark broadening of Zr IV spectral lines in the atmospheres of chemically peculiar stars. Mon. Not. R. Astron. Soc. 2020, 470, 1911–1918. [Google Scholar] [CrossRef]
- Hamdi, R.; Ben Nessib, N.; Milovanović, N.; Popović, L.Č.; Dimitrijević, M.S.; Sahal-Bréchot, S. Stark Widths of Ar II Spectral Lines in the Atmospheres of Subdwarf B Stars. Atoms 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.A.U.R.A.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; et al. The Gaia -ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution. Astron. Astrophys. 2016, 589, A115. [Google Scholar] [CrossRef] [Green Version]
- Carretta, E.; Bragaglia, A.; Lucatello, S.; Gratton, R.G.; D’Orazi, V.; Sollima, A. Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. Astron. Astrophys. 2018, 615, A17. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.C. Elemental abundances in normal late-B and HgMn stars from co-added IUE spectra II. Magnesium, aluminium and silicon. Astron. Astrophys. 1993, 276, 393–408. [Google Scholar]
- Elabidi, H. Systematic trends of Stark broadening parameters with spectroscopic charge Z within the neon isoelectronic sequence from Mg III to Br XXVI. J. Quant. Spectrosc. Radiat. Transf. 2021, 259, 107407. [Google Scholar] [CrossRef]
- Elabidi, H.; Ben Nessib, N.; Sahal-Bréchot, S. Quantum mechanical calculations of the electron-impact broadening of spectral lines for intermediate coupling. J. Phys. B 2004, 37, 63–71. [Google Scholar] [CrossRef]
- Elabidi, H.; Ben Nessib, N.; Cornille, M.; Dubau, J.; Sahal-Bréechot, S. Electron impact broadening of spectral lines in Be-like ions: Quantum calculations. J. Phys. B 2008, 41, 025702. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Konjević, N. Stark widths of doubly- and triply-ionized atom lines. J. Quant. Spectrosc. Radiat. Transf. 1980, 24, 451–459. [Google Scholar] [CrossRef]
- Shore, B.W.; Menzel, D. Generalized Tables for the Calculation of Dipole Transition Probabilities. Astrophys. J. Suppl. Ser. 1965, 12, 187–214. [Google Scholar] [CrossRef]
- Griem, H.R. Semiempirical Formulas for the Electron-Impact Widths and Shifts of Isolated Ion Lines in Plasmas. Phys. Rev. 1968, 165, 258–266. [Google Scholar] [CrossRef]
- Griem, H.R. Spectral Line Broadening by Plasmas; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Bates, D.R.; Damgaard, A. The Calculation of the Absolute Strengths of Spectral Lines. Philos. Trans. R. Soc. Lond. Ser. A 1949, 242, 101–122. [Google Scholar]
- Oertel, G.K.; Shomo, L.P. Tables for the Calculation of Radial Multipole Matrix Elements by the Coulomb Approximation. Astrophys. J. Suppl. Ser. 1968, 16, 175–218. [Google Scholar] [CrossRef]
- Van Regemorter, H.; Dy Hoang, B.; Prud’homme, M. Radial transition integrals involving low or high effective quantum numbers in the Coulomb approximation. J. Phys. B 1979, 12, 1053–1061. [Google Scholar] [CrossRef]
- Martin, W.C.; Zalubas, R. Energy Levels of Aluminium, Al I through Al XIII. J. Phys. Chem. Ref. Data 1979, 8, 817–864. [Google Scholar] [CrossRef] [Green Version]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST ASD Team. NIST Atomic Spectra Database, Version 5.10; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://physics.nist.gov/asd (accessed on 20 January 2023).
- Dimitrijević, M.S. Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method. Data 2020, 5, 73. [Google Scholar] [CrossRef]
- Popović, L. Č; Dimitrijević, M.S. Stark broadening of Xe II lines. Astron. Astrophys. Suppl. Ser. 1996, 116, 359. [Google Scholar] [CrossRef]
- Popović, L. Č; Dimitrijević, M.S. Stark broadening parameters for Kr II lines from 5s-5p transitions. Astron. Astrophys. Suppl. Ser. 1998, 127, 295. [Google Scholar] [CrossRef] [Green Version]
- Wiese, W.L.; Konjević, N. Regularities and similarities in plasma broadened spectral line widths (Stark widths). J. Quant. Spectrosc. Radiat. Transf. 1982, 28, 185–198. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Christova, M.D. Stark Broadening of Zn III Spectral Lines. Universe 2022, 8, 430. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for G, F, A, B, and O stars. Astrophys. J. Suppl. Ser. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Wesemael, F. Atmospheres for hot, high-gravity stars. II. Pure helium models. Astrophys. J. Suppl. Ser. 1981, 45, 177–257. [Google Scholar] [CrossRef]
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The STARK-B database VAMDC node: A repository for spectral line broadening and shifts due to collisions with charged particles. Phys. Scr. 2015, 90, 054008. [Google Scholar] [CrossRef]
- Sahal- Bréchot, S.; Dimitrijević, M.S.; Moreau, N. STARK-B Database. Available online: http://stark-B.obspm.fr (accessed on 27 January 2023).
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B 2016, 49, 074003. [Google Scholar] [CrossRef]
- Albert, D.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
- Rolader, G.E.; Batteh, J.H. Thermodynamic and electrical properties of railgun plasma armatures. IEEE Trans. Plasma Sci. 1989, 17, 439–445. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Djurić, Z.; Mihajlov, A.A. Stark broadening of Al III and Cu IV lines for diagnostic of the rail gun arc plasma. J. Phys. D 1994, 27, 247–252. [Google Scholar] [CrossRef]
- Pakhal, H.R.; Lucht, R.P.; Laurendeau, N.M. Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air. Appl. Phys. B 2008, 90, 15–27. [Google Scholar] [CrossRef]
Transition | T (K) | W (Å) | 3kT/2E |
---|---|---|---|
Al IV 2s2p(P)4s [1/2]o–2s2p(P)4p [1/2] | 10,000 | 1.07 | 0.471 |
20,000 | 0.754 | 0.942 | |
= 4515.6 Å | 40,000 | 0.533 | 1.88 |
80,000 | 0.410 | 3.77 | |
160,000 | 0.352 | 7.53 | |
Al IV 2s2p(P)4s [1/2]o–2s2p(P)4p [1/2] | 10,000 | 0.643 | 0.471 |
20,000 | 0.455 | 0.942 | |
= 3261.3 Å | 40,000 | 0.322 | 1.88 |
80,000 | 0.250 | 3.77 | |
160,000 | 0.215 | 7.53 | |
Al IV 2s2p(P)4s [1/2]o–2s2p(P)4p [3/2] | 10,000 | 2.00 | 0.471 |
20,000 | 1.42 | 0.943 | |
= 4520.2 Å | 40,000 | 1.00 | 1.89 |
80,000 | 0.776 | 3.77 | |
160,000 | 0.671 | 7.54 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2] | 10,000 | 0.747 | 2.36 |
20,000 | 0.554 | 4.73 | |
= 3485.1 Å | 40,000 | 0.429 | 9.45 |
80,000 | 0.345 | 18.9 | |
160,000 | 0.296 | 37.8 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2] | 10,000 | 0.710 | 3.99 |
20,000 | 0.543 | 7.98 | |
= 3279.5 Å | 40,000 | 0.422 | 16.0 |
80,000 | 0.340 | 31.9 | |
160,000 | 0.294 | 63.8 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2] | 10,000 | 1.38 | 3.99 |
20,000 | 1.05 | 7.98 | |
= 4550.5 Å | 40,000 | 0.817 | 16.0 |
80,000 | 0.659 | 31.9 | |
160,000 | 0.571 | 63.8 | |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [5/2]o | 10,000 | 0.506 | 2.32 |
20,000 | 0.381 | 4.64 | |
= 3492.1 Å | 40,000 | 0.303 | 9.28 |
80,000 | 0.248 | 18.6 | |
160,000 | 0.213 | 37.1 | |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [3/2] | 10,000 | 0.780 | 2.36 |
20,000 | 0.578 | 4.73 | |
= 3482.3 Å | 40,000 | 0.446 | 9.45 |
80,000 | 0.358 | 18.9 | |
160,000 | 0.307 | 37.8 | |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [3/2] | 10,000 | 0.741 | 3.99 |
20,000 | 0.565 | 7.98 | |
= 3277.0 Å | 40,000 | 0.437 | 16.0 |
80,000 | 0.352 | 31.9 | |
160,000 | 0.305 | 63.8 | |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [1/2] | 10,000 | 1.33 | 0.545 |
20,000 | 0.940 | 1.09 | |
= 5224.1 Å | 40,000 | 0.668 | 2.18 |
80,000 | 0.520 | 4.36 | |
160,000 | 0.448 | 8.72 | |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [1/2] | 10,000 | 0.830 | 0.545 |
20,000 | 0.587 | 1.09 | |
= 3916.5 Å | 40,000 | 0.415 | 2.18 |
80,000 | 0.320 | 4.36 | |
160,000 | 0.276 | 8.72 | |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [3/2] | 10,000 | 0.684 | 0.545 |
20,000 | 0.484 | 1.09 | |
= 4291.9 Å | 40,000 | 0.342 | 2.18 |
80,000 | 0.263 | 4.36 | |
160,000 | 0.225 | 8.72 | |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [5/2] | 10,000 | 0.606 | 0.545 |
20,000 | 0.429 | 1.09 | |
= 4544.1 Å | 40,000 | 0.303 | 2.18 |
80,000 | 0.232 | 4.36 | |
160,000 | 0.198 | 8.72 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [1/2]o | 10,000 | 0.589 | 1.89 |
20,000 | 0.441 | 3.77 | |
= 3279.6 Å | 40,000 | 0.348 | 7.55 |
80,000 | 0.287 | 15.1 | |
160,000 | 0.249 | 30.2 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2]o | 10,000 | 0.387 | 2.71 |
20,000 | 0.294 | 5.43 | |
= 3108.0 Å | 40,000 | 0.236 | 10.9 |
80,000 | 0.195 | 21.7 | |
160,000 | 0.166 | 43.4 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [1/2]o | 10,000 | 0.977 | 1.89 |
20,000 | 0.731 | 3.77 | |
= 4210.3 Å | 40,000 | 0.575 | 7.55 |
80,000 | 0.474 | 15.1 | |
160,000 | 0.412 | 30.2 | |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2]o | 10,000 | 0.624 | 2.71 |
20,000 | 0.473 | 5.43 | |
= 3931.7 Å | 40,000 | 0.381 | 10.9 |
80,000 | 0.313 | 21.7 | |
160,000 | 0.267 | 43.4 | |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [1/2]o | 10,000 | 0.829 | 1.89 |
20,000 | 0.619 | 3.77 | |
= 3797.4 Å | 40,000 | 0.485 | 7.55 |
80,000 | 0.399 | 15.1 | |
160,000 | 0.347 | 30.2 | |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [3/2]o | 10,000 | 0.546 | 2.71 |
20,000 | 0.412 | 5.43 | |
= 3569.2 Å | 40,000 | 0.329 | 10.9 |
80,000 | 0.270 | 21.7 | |
160,000 | 0.231 | 43.4 | |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [5/2]o | 10,000 | 0.704 | 2.94 |
20,000 | 0.540 | 5.88 | |
= 3532.0 Å | 40,000 | 0.437 | 11.8 |
80,000 | 0.363 | 23.5 | |
160,000 | 0.310 | 47.0 | |
Al IV 2s2p(P)4p [5/2]–2s2p(P)4d [3/2]o | 10,000 | 0.372 | 2.71 |
20,000 | 0.278 | 5.43 | |
= 3411.8 Å | 40,000 | 0.217 | 10.9 |
80,000 | 0.176 | 21.7 | |
160,000 | 0.149 | 43.4 | |
Al IV 2s2p(P)4p [5/2]–2s2p(P)4d [5/2]o | 10,000 | 0.458 | 2.94 |
20,000 | 0.347 | 5.88 | |
= 3377.7 Å | 40,000 | 0.276 | 11.8 |
80,000 | 0.226 | 23.5 | |
160,000 | 0.192 | 47.0 | |
Al IV 2s2p(P)4p [5/2]–2s2p(P)4d [7/2]o | 10,000 | 0.511 | 2.10 |
20,000 | 0.381 | 4.20 | |
= 3499.1 Å | 40,000 | 0.295 | 8.39 |
80,000 | 0.238 | 16.8 | |
160,000 | 0.204 | 33.6 |
Transition | (Å) | W (Å) | W (10 s) |
---|---|---|---|
Al IV 2s2p(P)4s [1/2]o–2s2p(P)4p [1/2] | 4516 | 0.410 | 0.379 |
Al IV 2s2p(P)4s [1/2]o–2s2p(P)4p [1/2] | 3261 | 0.250 | 0.442 |
Al IV 2s2p(P)4s [1/2]o–2s2p(P)4p [3/2] | 4520 | 0.776 | 0.715 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2] | 3485 | 0.345 | 0.535 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2] | 3279 | 0.340 | 0.596 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2] | 4551 | 0.659 | 0.599 |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [5/2]o | 3492 | 0.248 | 0.383 |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [3/2] | 3482 | 0.358 | 0.556 |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [3/2] | 3277 | 0.352 | 0.618 |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [1/2] | 5224 | 0.520 | 0.359 |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [1/2] | 3917 | 0.320 | 0.393 |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [3/2] | 4292 | 0.263 | 0.269 |
Al IV 2s2p(P)4s [3/2]o–2s2p(P)4p [5/2] | 4544 | 0.232 | 0.212 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [1/2]o | 3280 | 0.287 | 0.502 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2]o | 3108 | 0.195 | 0.380 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [1/2]o | 4210 | 0.474 | 0.504 |
Al IV 2s2p(P)4p [1/2]–2s2p(P)4d [3/2]o | 3932 | 0.313 | 0.382 |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [1/2]o | 3797 | 0.399 | 0.521 |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [3/2]o | 3569 | 0.270 | 0.400 |
Al IV 2s2p(P)4p [3/2]–2s2p(P)4d [5/2]o | 3532 | 0.363 | 0.548 |
Al IV 2s2p(P)4p [5/2]–2s2p(P)4d [3/2]o | 3412 | 0.176 | 0.284 |
Al IV 2s2p(P)4p [5/2]–2s2p(P)4d [5/2]o | 3378 | 0.226 | 0.373 |
Al IV 2s2p(P)4p [5/2]–2s2p(P)4d [7/2]o | 3499 | 0.238 | 0.366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrijević, M.S.; Christova, M.D. Stark Broadening of Al IV Spectral Lines. Universe 2023, 9, 126. https://doi.org/10.3390/universe9030126
Dimitrijević MS, Christova MD. Stark Broadening of Al IV Spectral Lines. Universe. 2023; 9(3):126. https://doi.org/10.3390/universe9030126
Chicago/Turabian StyleDimitrijević, Milan S., and Magdalena D. Christova. 2023. "Stark Broadening of Al IV Spectral Lines" Universe 9, no. 3: 126. https://doi.org/10.3390/universe9030126
APA StyleDimitrijević, M. S., & Christova, M. D. (2023). Stark Broadening of Al IV Spectral Lines. Universe, 9(3), 126. https://doi.org/10.3390/universe9030126