Leptogenesis and Dark Matter–Nucleon Scattering Cross Section in the SE6SSM
Abstract
:1. Introduction
2. The Extension of the MSSM with Exact Custodial Symmetry
3. Generation of Lepton and Baryon Asymmetries
4. Dark Matter-Nucleon Scattering Cross Section
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakharov, A.D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Lett. 1967, 5, 24. [Google Scholar]
- Ignatiev, A.Y.; Krasnikov, N.V.; Kuzmin, V.A.; Tavkhelidze, A.N. Universal CP noninvariant superweak interaction and baryon asymmetry of the universe. Phys. Lett. B 1978, 76, 436–438. [Google Scholar] [CrossRef]
- Yoshimura, M. Unified gauge theories and the baryon number of the Universe. Phys. Rev. Lett. 1978, 41, 281. [Google Scholar] [CrossRef]
- Toussaint, D.; Treiman, S.B.; Wilczek, F.; Zee, A. Matter—Antimatter accounting, thermodynamics, and black hole radiation. Phys. Rev. D 1979, 19, 1036. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmological production of baryons. Phys. Rev. Lett. 1979, 42, 850. [Google Scholar] [CrossRef]
- Yoshimura, M. Origin of cosmological baryon asymmetry. Phys. Lett. B 1979, 88, 294–298. [Google Scholar] [CrossRef]
- Barr, S.M.; Segre, G.; Weldon, H.A. The magnitude of the cosmological baryon asymmetry. Phys. Rev. D 1979, 20, 2494. [Google Scholar] [CrossRef]
- Nanopoulos, D.V.; Weinberg, S. Mechanisms for cosmological baryon production. Phys. Rev. D 1979, 20, 2484. [Google Scholar] [CrossRef]
- Affleck, I.; Dine, M. A new mechanism for baryogenesis. Nucl. Phys. B 1985, 249, 361–380. [Google Scholar] [CrossRef]
- Dine, M.; Randall, L.; Thomas, S.D. Baryogenesis from flat directions of the supersymmetric standard model. Nucl. Phys. B 1996, 458, 291–323. [Google Scholar] [CrossRef] [Green Version]
- Fukugita, M.; Yanagida, T. Baryogenesis Without Grand Unification. Phys. Lett. B 1986, 174, 45–47. [Google Scholar] [CrossRef]
- Riotto, A.; Trodden, M. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 1999, 49, 35–75. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.J.; Schmidt, M.G. Electroweak baryogenesis: Concrete in a SUSY model with a gauge singlet. Nucl. Phys. B 2001, 606, 183–230. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, P. μ→eγ at a Rate of One Out of 109 Muon Decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On The Anomalous Electroweak Baryon Number Nonconservation in the Early universe. Phys. Lett. B 1985, 155, 36–42. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Shaposhnikov, M.E. Electroweak baryon number non-conservation in the Early Universe and in high-energy collisions. Usp. Fiz. Nauk 1996, 166, 493. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S; Ibarra, A. A lower bound on the right-handed neutrino mass from leptogenesis. Phys. Lett. B 2002, 535, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, K.; Murayama, H.; Yanagida, T. Leptogenesis from sneutrino-dominated early universe. Phys. Rev. D 2002, 65, 043512. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Linde, A.D. Is it easy to save the gravitino? Phys. Lett. B 1984, 138, 265–268. [Google Scholar] [CrossRef]
- Ellis, J.R.; Kim, J.E.; Nanopoulos, D.V. Cosmological gravitino regeneration and decay. Phys. Lett. B 1984, 145, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Levitan, Y.L.; Sedelnikov, E.V.; Sobol, I.M. Nonequilibrium cosmological nucleosynthesis of light elements: Calculations by the Monte Carlo method. Phys. Atom. Nucl. 1994, 57, 1393–1397. [Google Scholar]
- Kawasaki, M.; Kohri, K.; Moroi, T. Big-bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 2005, 71, 083502. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Moroi, T.; Yotsuyanagi, A. Big-bang nucleosynthesis with unstable gravitino and upper bound on the reheating temperature. Phys. Rev. D 2006, 73, 123511. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Thomas, A.W. E6 inspired composite Higgs model. Phys. Rev. D 2015, 92, 075007. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Thomas, A.W. LHC signatures of neutral pseudo-Goldstone boson in the E6CHM. J. Phys. G 2017, 44, 075003. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Thomas, A.W. Baryon asymmetry generation in the E6CHM. Phys. Lett. B 2017, 774, 123–129. [Google Scholar] [CrossRef]
- Nevzorov, R. E6 GUT and Baryon Asymmetry Generation in the E6CHM. Universe 2022, 8, 33. [Google Scholar] [CrossRef]
- Hewett, J.L.; Rizzo, T.G. Low-Energy Phenomenology of Superstring Inspired E(6) Models. Phys. Rept. 1989, 183, 193–381. [Google Scholar] [CrossRef]
- Langacker, P. The Physics of Heavy Z′ Gauge Bosons. Rev. Mod. Phys. 2009, 81, 1199. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Shibaev, K.I. New physics from superstring phenomenology. Grav. Cosmol. Suppl. 2002, 8, 45. [Google Scholar]
- Khlopov, M.Y. What comes after the Standard model? Prog. Part. Nucl. Phys. 2021, 116, 103824. [Google Scholar] [CrossRef]
- King, S.F.; Moretti, S.; Nevzorov, R. Theory and phenomenology of an exceptional supersymmetric standard model. Phys. Rev. D 2006, 73, 035009. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Exceptional supersymmetric standard model. Phys. Lett. B 2006, 634, 278–284. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. A Review of the Exceptional Supersymmetric Standard Model. Symmetry 2020, 12, 557. [Google Scholar] [CrossRef] [Green Version]
- Hambye, T.; Ma, E.; Raidal, M.; Sarkar, U. Allowable low-energy E(6) subgroups from leptogenesis. Phys. Lett. B 2001, 512, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models. Phys. Lett. B 2018, 779, 223–229. [Google Scholar] [CrossRef]
- Nevzorov, R. E6 inspired SUSY models with custodial symmetry. Int. J. Mod. Phys. A 2018, 33, 1844007. [Google Scholar] [CrossRef]
- Nevzorov, R. E6 inspired supersymmetric models with exact custodial symmetry. Phys. Rev. D 2013, 87, 015029. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Mühlleitner, M.; Nevzorov, R.; Williams, A.G. Non-Standard Higgs Decays in U(1) Extensions of the MSSM. JHEP 2015, 1501, 153. [Google Scholar] [CrossRef] [Green Version]
- Howl, R.; King, S.F. Planck Scale Unification in a Supersymmetric Standard Model. Phys. Lett. B 2007, 652, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Howl, R.; King, S.F. Minimal E6 Supersymmetric Standard Model. JHEP 2008, 0801, 030. [Google Scholar] [CrossRef] [Green Version]
- Howl, R.; King, S.F. Exceptional Supersymmetric Standard Models with non-Abelian Discrete Family Symmetry. JHEP 2008, 0805, 008. [Google Scholar] [CrossRef]
- Howl, R.; King, S.F. Solving the Flavour Problem in Supersymmetric Standard Models with Three Higgs Families. Phys. Lett. B 2010, 687, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Hall, J.P.; Howl, R.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Aspects of the Exceptional Supersymmetric Standard Model. Nucl. Phys. Proc. Suppl. 2010, 200–202, 120–129. [Google Scholar] [CrossRef]
- Hall, J.P.; King, S.F. Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos. JHEP 2011, 1106, 006. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, J.C.; King, S.F. E6 Models from F-theory. JHEP 2013, 1304, 034. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, J.C.; King, S.F.; Leontaris, G.K. Gauge coupling unification in E6 F-theory GUTs with matter and bulk exotics from flux breaking. JHEP 2013, 1312, 037. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.; Moretti, S.; Rojas-Ciofalo, D.; Waltari, H. Multicomponent dark matter in a simplified E6SSM. Phys. Rev. D 2020, 102, 075039. [Google Scholar] [CrossRef]
- Nevzorov, R. On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE6SSM. Symmetry 2022, 14, 2090. [Google Scholar] [CrossRef]
- Suematsu, D. Neutralino decay in the mu problem solvable extra U(1) models. Phys. Rev. D 1998, 57, 1738. [Google Scholar] [CrossRef] [Green Version]
- Keith, E.; Ma, E. Generic consequences of a supersymmetric U(1) gauge factor at the TeV scale. Phys. Rev. D 1997, 56, 7155. [Google Scholar] [CrossRef] [Green Version]
- Keith, E.; Ma, E. Efficacious Extra U(1) Factor for the Supersymmetric Standard Model. Phys. Rev. D 1996, 54, 3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suematsu, D.; Yamagishi, Y. Radiative symmetry breaking in a supersymmetric model with an extra U(1). Int. J. Mod. Phys. A 1995, 10, 4521–4536. [Google Scholar] [CrossRef]
- Daikoku, Y.; Suematsu, D. Mass bound of the lightest neutral Higgs scalar in the extra U(1) models. Phys. Rev. D 2000, 62, 095006. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Gauge coupling unification in the exceptional supersymmetric standard model. Phys. Lett. B 2007, 650, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Sperling, M.; Stöckinger, D.; Voigt, A. Renormalization of vacuum expectation values in spontaneously broken gauge theories. JHEP 2013, 1307, 132. [Google Scholar] [CrossRef] [Green Version]
- Sperling, M.; Stöckinger, D.; Voigt, A. Renormalization of vacuum expectation values in spontaneously broken gauge theories: Two-loop results. JHEP 2014, 1401, 068. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Neutrino masses in an extended gauge model with E(6) particle content. Phys. Lett. B 1996, 380, 286–290. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.P.; King, S.F. Neutralino Dark Matter with Inert Higgsinos and Singlinos. JHEP 2009, 0908, 088. [Google Scholar] [CrossRef]
- Hall, J.P.; King, S.F.; Nevzorov, R.; Pakvasa, S.; Sher, M. Novel Higgs Decays and Dark Matter in the E6SSM. Phys. Rev. D 2011, 83, 075013. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Thomas, A.W.; Underwood, S.J.; White, M.J. Dark matter candidates in the constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2017, 95, 035023. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Quasifixed point scenarios and the Higgs mass in the E6 inspired supersymmetric models. Phys. Rev. D 2014, 89, 055010. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Trusov, M.A. Infrared quasifixed solutions in the NMSSM. Phys. Atom. Nucl. 2001, 64, 1299–1314. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Trusov, M.A. Quasifixed point scenario in the modified NMSSM. Phys. Atom. Nucl. 2002, 65, 335. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. E6 Inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs. Phys. Lett. B 2016, 760, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G. Dark matter in a constrained E6 inspired SUSY model. JHEP 2016, 1612, 128. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. The Constrained E6SSM. arXiv 2008, arXiv:0810.0617. [Google Scholar]
- Athron, P.; King, S.F.; Miller, D.J.; Moretti, S.; Nevzorov, R. Constrained Exceptional Supersymmetric Standard Model with a Higgs Near 125 GeV. Phys. Rev. D 2012, 86, 095003. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Binjonaid, M.; King, S.F. Fine Tuning in the Constrained Exceptional Supersymmetric Standard Model. Phys. Rev. D 2013, 87, 115023. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Harries, D.; Williams, A.G. Z′ mass limits and the naturalness of supersymmetry. Phys. Rev. D 2015, 91, 115024. [Google Scholar] [CrossRef] [Green Version]
- Athron, P.; Stöckinger, D.; Voigt, A. Threshold Corrections in the Exceptional Supersymmetric Standard Model. Phys. Rev. D 2012, 86, 095012. [Google Scholar] [CrossRef] [Green Version]
- King, S.F.; Moretti, S.; Nevzorov, R. Spectrum of Higgs particles in the ESSM. arXiv 2006, arXiv:hep-ph/0601269. [Google Scholar]
- King, S.F.; Moretti, S.; Nevzorov, R. E6SSM. AIP Conf. Proc. 2007, 881, 138. [Google Scholar]
- Belyaev, A.; Hall, J.P.; King, S.F.; Svantesson, P. Novel gluino cascade decays in E6 inspired models. Phys. Rev. D 2012, 86, 031702. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, A.; Hall, J.P.; King, S.F.; Svantesson, P. Discovering E6 supersymmetric models in gluino cascade decays at the LHC. Phys. Rev. D 2013, 87, 035019. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Pakvasa, S. Exotic Higgs decays in the E6 inspired SUSY models. Phys. Lett. B 2014, 728, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.P.; King, S.F.; Nevzorov, R.; Pakvasa, S.; Sher, M. Nonstandard Higgs decays in the E6SSM. PoS 2010, QFTHEP2010, 069. [Google Scholar]
- Nevzorov, R.; Pakvasa, S. Nonstandard Higgs decays in the E6 inspired SUSY models. Nucl. Part. Phys. Proc. 2016, 273–275, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R. Higgs Boson with Mass around 125 GeV in SUSY Extensions of the SM. Phys. Atom. Nucl. 2020, 83, 338–350. [Google Scholar] [CrossRef]
- Hesselbach, S.; Miller, D.J.; Moortgat-Pick, G.; Nevzorov, R.; Trusov, M. Theoretical upper bound on the mass of the LSP in the MNSSM. Phys. Lett. B 2008, 662, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Hesselbach, S.; Miller, D.J.; Moortgat-Pick, G.; Nevzorov, R.; Trusov, M. The Lightest neutralino in the MNSSM. arXiv 2007, arXiv:0710.2550. [Google Scholar]
- Hesselbach, S.; Miller, D.J.; Moortgat-Pick, G.; Nevzorov, R.; Trusov, M. Lightest Neutralino Mass in the MNSSM. arXiv 2008, arXiv:0810.0511. [Google Scholar]
- Frere, J.M.; Nevzorov, R.B.; Vysotsky, M.I. Stimulated neutrino conversion and bounds on neutrino magnetic moments. Phys. Lett. B 1997, 394, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Khlopov, M.; Wu, L.; Yang, J.M.; Zhu, B. Light gravitino dark matter: LHC searches and the Hubble tension. Phys. Rev. D 2020, 102, 115005. [Google Scholar] [CrossRef]
- Feng, J.L.; Su, S.; Takayama, F. Supergravity with a gravitino LSP. Phys. Rev. D 2004, 70, 075019. [Google Scholar] [CrossRef] [Green Version]
- Bolz, M.; Brandenburg, A.; Buchmuller, W. Thermal production of gravitinos. Nucl. Phys. B 2001, 606, 518–544. [Google Scholar] [CrossRef] [Green Version]
- Eberl, H.; Gialamas, I.D.; Spanos, V.C. Gravitino thermal production revisited. Phys. Rev. D 2021, 103, 075025. [Google Scholar] [CrossRef]
- The Planck collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Hook, A.; McGehee, R.; Murayama, H. Cosmologically Viable Low-energy Supersymmetry Breaking. Phys. Rev. D 2018, 98, 115036. [Google Scholar] [CrossRef] [Green Version]
- Luty, M.A. Baryogenesis Via Leptogenesis. Phys. Rev. D 1992, 45, 455. [Google Scholar] [CrossRef]
- Flanz, M.; Paschos, E.A.; Sarkar, U. Baryogenesis from a lepton asymmetric universe. Phys. Lett. B 1995, 345, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Plumacher, M. Baryogenesis and lepton number violation. Z. Phys. C 1997, 74, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Plumacher, M. CP asymmetry in Majorana neutrino decays. Phys. Lett. B 1998, 431, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.A.; Davidson, S.; Olive, K.A. Inflation, neutrino baryogenesis, and (S)neutrino induced baryogenesis. Nucl. Phys. B 1993, 399, 111–136. [Google Scholar] [CrossRef] [Green Version]
- Covi, L.; Roulet, E.; Vissani, F. CP violating decays in leptogenesis scenarios. Phys. Lett. B 1996, 384, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Plumacher, M. Baryon asymmetry, neutrino mixing and supersymmetric SO(10) unification. Nucl. Phys. B 1998, 530, 207–246. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W.; Di Bari, P.; Plumacher, M. Leptogenesis for pedestrians. Ann. Phys. 2005, 315, 305–351. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, R.; Creminelli, P.; Strumia, A.; Tetradis, N. Baryogenesis through leptogenesis. Nucl. Phys. B 2000, 575, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Endoh, T.; Morozumi, T.; Xiong, Z.H. Primordial lepton family asymmetries in seesaw model. Prog. Theor. Phys. 2004, 111, 123–149. [Google Scholar] [CrossRef] [Green Version]
- Vives, O. Flavoured leptogenesis: A successful thermal leptogenesis with N1 mass below 108 GeV. Phys. Rev. D 2006, 73, 073006. [Google Scholar] [CrossRef] [Green Version]
- Abada, A.; Davidson, S.; Josse-Michaux, F.X.; Losada, M.; Riotto, A. Flavour issues in leptogenesis. JCAP 2006, 0604, 004. [Google Scholar] [CrossRef] [Green Version]
- Nardi, E.; Nir, Y.; Roulet, E.; Racker, J. The importance of flavor in leptogenesis. JHEP 2006, 0601, 164. [Google Scholar] [CrossRef] [Green Version]
- Abada, A.; Davidson, S.; Ibarra, A.; Josse-Michaux, F.X.; Losada, M.; Riotto, A. Flavour matters in leptogenesis. JHEP 2006, 0609, 010. [Google Scholar] [CrossRef]
- Antusch, S.; King, S.F.; Riotto, A. Flavour-dependent leptogenesis with sequential dominance. JCAP 2006, 0611, 011. [Google Scholar] [CrossRef]
- Davidson, S.; Nardi, E.; Nir, Y. Leptogenesis. Phys. Rept. 2008, 466, 105. [Google Scholar] [CrossRef]
- Khalil, S.; Moretti, S.; Rojas-Ciofalo, D.; Waltari, H. Monophoton signals at e+e− colliders in a simplified E6SSM. Phys. Rev. D 2021, 104, 035008. [Google Scholar] [CrossRef]
- Khalil, S.; Kowalska, K.; Moretti, S.; Rojas-Ciofalo, D.; Waltari, H. A combined approach to the analysis of space and ground experimental data within a simplified E6SSM. Eur. Phys. J. C 2022, 82, 1058. [Google Scholar] [CrossRef]
- Kovalenko, P.A.; Nevzorov, R.B.; Ter-Martirosian, K.A. Masses of Higgs bosons in supersymmetric theories. Phys. Atom. Nucl. 1998, 61, 812–824. [Google Scholar]
- Nevzorov, R.B.; Trusov, M.A. Particle spectrum in the modified NMSSM in the strong Yukawa coupling limit. J. Exp. Theor. Phys. 2000, 91, 1079. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.B.; Ter-Martirosyan, K.A.; Trusov, M.A. Higgs bosons in the simplest SUSY models. Phys. Atom. Nucl. 2002, 65, 285. [Google Scholar] [CrossRef] [Green Version]
- Nevzorov, R.; Miller, D.J. Approximate solutions for the Higgs masses and couplings in the NMSSM. arXiv 2004, arXiv:hep-ph/0411275. [Google Scholar]
- Arkani-Hamed, N.; Delgado, A.; Giudice, G.F. The Well-tempered neutralino. Nucl. Phys. B 2006, 741, 108–130. [Google Scholar] [CrossRef] [Green Version]
- Chalons, G.; Dolan, M.J.; McCabe, C. Neutralino dark matter and the Fermi gamma-ray lines. JCAP 2013, 02, 016. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.R.; Olive, K.A.; Savage, C. Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter. Phys. Rev. D 2008, 77, 065026. [Google Scholar] [CrossRef] [Green Version]
- Kalinowski, J.; King, S.F.; Roberts, J.P. Neutralino Dark Matter in the USSM. JHEP 2009, 0901, 066. [Google Scholar] [CrossRef]
- Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs3: A program for calculating dark matter observables. Comput. Phys. Commun. 2014, 185, 960–985. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, J.M.; Martin Camalich, J.; Oller, J.A. The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D 2012, 85, 051503. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.W.; Shanahan, P.E.; Young, R.D. Strangeness in the nucleon: What have we learned? Nuovo Cim. C 2012, 035N04, 3. [Google Scholar]
- Cheng, H.Y.; Chiang, C.W. Revisiting Scalar and Pseudoscalar Couplings with Nucleons. JHEP 2012, 1207, 009. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, J.M.; Geng, L.S.; Martin Camalich, J.; Oller, J.A. The strangeness content of the nucleon from effective field theory and phenomenology. Phys. Lett. B 2014, 730, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Maniatis, M. The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed. Int. J. Mod. Phys. A 2010, 25, 3505–3602. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M. et al. [CMS Collaboration]. Search for resonant and nonresonant new phenomena in high-mass dilepton final states at = 13 TeV. JHEP 2021, 07, 208. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration]. Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at = 13 TeV with the ATLAS detector. Phys. Lett. B 2019, 796, 68–87. [Google Scholar] [CrossRef]
- Hisano, J.; Ishiwata, K.; Nagata, N.; Takesako, T. Direct Detection of Electroweak-Interacting Dark Matter. JHEP 2011, 07, 005. [Google Scholar] [CrossRef] [Green Version]
- Hisano, J.; Ishiwata, K.; Nagata, N. Direct Search of Dark Matter in High-Scale Supersymmetry. Phys. Rev. D 2013, 87, 035020. [Google Scholar] [CrossRef] [Green Version]
- Nagata, N.; Shirai, S. Higgsino Dark Matter in High-Scale Supersymmetry. JHEP 2015, 01, 029. [Google Scholar] [CrossRef] [Green Version]
- Aalbers, J. et al. [LZ Collaboration]. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. arXiv 2022, arXiv:2207.03764. [Google Scholar]
- Amole, C. et al. [PICO Collaboration]. Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S. et al. [LUX-ZEPLIN Collaboration]. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D 2020, 101, 052002. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration]. Projected WIMP sensitivity of the XENONnT dark matter experiment. JCAP 2020, 11, 031. [Google Scholar] [CrossRef]
- Aalbers, J. et al. [DARWIN Collaboration]. DARWIN: Towards the ultimate dark matter detector. JCAP 2016, 11, 017. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E. et al. [DarkSide-20k Collaboration]. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 2018, 133, 131. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Huang, P.; Mustafayev, A.; Tata, X. Radiative natural SUSY with a 125 GeV Higgs boson. Phys. Rev. Lett. 2012, 109, 161802. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Huang, P.; Tata, X. Natural Supersymmetry: LHC, dark matter and ILC searches. JHEP 2012, 05, 109. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Barger, V.; Huang, P.; Mickelson, D.; Mustafayev, A.; Tata, X. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D 2013, 87, 115028. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, M.; Fornengo, N.; Strumia, A. Minimal dark matter. Nucl. Phys. B 2006, 753, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Aad, G. et al. [ATLAS Collaboration]. Searches for electroweak production of supersymmetric particles with compressed mass spectra in = 13 TeV pp collisions with the ATLAS detector. Phys. Rev. D 2020, 101, 052005. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M. et al. [CMS Collaboration]. Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at = 13 TeV. JHEP 2019, 08, 150. [Google Scholar]
- Baer, H. et al. [ILC Collaboration]. The International Linear Collider Technical Design Report—Volume 2: Physics. arXiv 2013, arXiv:1306.6352. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration]. Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in = 13 TeV pp collisions with the ATLAS detector. JHEP 2020, 10, 112. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration]. Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in pp collisions at = 13 TeV with the ATLAS detector. JHEP 2021, 06, 179. [Google Scholar]
- Sirunyan, A.M. et al. [CMS Collaboration]. Searches for physics beyond the standard model with the MT2 variable in hadronic final states with and without disappearing tracks in proton-proton collisions at = 13 TeV. Eur. Phys. J. C 2020, 80, 3. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Langacker, P.; Nelson, B.D. Theory and Phenomenology of Exotic Isosinglet Quarks and Squarks. Phys. Rev. D 2008, 77, 035003. [Google Scholar] [CrossRef] [Green Version]
1 | 0 | 0 | ||||||||||
1 | 1 | 2 | 2 | 1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevzorov, R. Leptogenesis and Dark Matter–Nucleon Scattering Cross Section in the SE6SSM. Universe 2023, 9, 137. https://doi.org/10.3390/universe9030137
Nevzorov R. Leptogenesis and Dark Matter–Nucleon Scattering Cross Section in the SE6SSM. Universe. 2023; 9(3):137. https://doi.org/10.3390/universe9030137
Chicago/Turabian StyleNevzorov, Roman. 2023. "Leptogenesis and Dark Matter–Nucleon Scattering Cross Section in the SE6SSM" Universe 9, no. 3: 137. https://doi.org/10.3390/universe9030137
APA StyleNevzorov, R. (2023). Leptogenesis and Dark Matter–Nucleon Scattering Cross Section in the SE6SSM. Universe, 9(3), 137. https://doi.org/10.3390/universe9030137