A Cylindrical Optical-Space Black Hole Induced from High-Pressure Acoustics in a Dense Fluid
Abstract
:1. Brief Review and Background
1.1. Metamaterials
1.2. Analog Astrophysical Models
1.3. Introduction to Gordon’s Metric
2. Materials and Methods
3. Results
4. Discussion
4.1. Snell’s Law and Bessel Beam Profile
4.2. Refractive Index from Pressure Measurement
4.3. Schwarzschild Comparison and Optical Mass
4.4. Comparison of Cylindrical Black Hole with Fiber Optics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Kadic, M.; Bückmann, T.; Schittny, R.; Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 2013, 76, 126501. [Google Scholar] [CrossRef] [PubMed]
- Deymier, P.A. Acoustic Metamaterials and Phononic Crystals; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rietman, E.A.; Glynn, J.M. Band-Gap Engineering of Phononic Crystals: A Computational Survey of Two-Dimensional Systems. arXiv 2007, arXiv:0708.3669. [Google Scholar] [CrossRef]
- Guenneau, S.; Movchan, A.; Pétursson, G.; Ramakrishna, S.A. Acoustic metamaterials for sound focusing and confinement. New J. Phys. 2007, 9, 399. [Google Scholar] [CrossRef]
- Higginson, K.A.; Costolo, M.A.; Rietman, E.A.; Ritter, J.M.; Lipkens, B. Tunable optics derived from nonlinear acoustic effects. J. Appl. Phys. 2004, 95, 5896–5904. [Google Scholar] [CrossRef]
- Deymier, P.; Runge, K. Sound Topology, Duality, Coherence and Wave-Mixing: An Introduction to the Emerging New Science of Sound; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Novello, M.; Visser, M.; Volovik, G. (Eds.) Artificial Black Holes; World Scientific: Singapore, 2002. [Google Scholar]
- Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G. Electromagnetic wormholes and virtual magnetic monopoles. Phys. Rev. Lett. 2007, 99, 183901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcelo, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Rel. 2005, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Cui, T.J. An Electromagnetic black hole made of metamaterials. arXiv 2009, arXiv:0910.2159. [Google Scholar]
- Genov, D.A.; Zhang, S.; Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 2009, 5, 687–692. [Google Scholar] [CrossRef]
- de Felice, F. On the Gravitational field acting as an optical medium. Gen. Rel. Grav. 1971, 2, 347. [Google Scholar] [CrossRef]
- Philbin, T.G.; Kuklewicz, C.; Robertson, S.; Hill, S.; König, F.; Leonhardt, U. Fiber-Optical Analog of the Event Horizon. Science 2008, 319, 1367–1370. [Google Scholar] [CrossRef] [Green Version]
- Belgiorno, F.; Cacciatori, S.L.; Ortenzi, G.; Rizzi, L.; Gorini, V.; Faccio, D. Dielectric black holes induced by a refractive index perturbation and the Hawking effect. Phys. Rev. D 2011, 83, 024015. [Google Scholar] [CrossRef] [Green Version]
- Belgiorno, F.; Cacciatori, S.L.; Clerici, M.; Gorini, V.; Ortenzi, G.; Rizzi, L.; Rubino, E.; Sala, V.G.; Faccio, D. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 2010, 105, 203901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belgiorno, F.; Cacciatori, S.L.; Ortenzi, G.; Sala, V.G.; Faccio, D. Quantum Radiation from Superluminal Refractive-Index Perturbations. Phys. Rev. Lett. 2010, 104, 140403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacciatori, S.L.; Belgiorno, F.; Gorini, V.; Ortenzi, G.; Rizzi, L.; Sala, V.G.; Faccio, D. Space-time geometries and light trapping in travelling refractive index perturbations. New J. Phys. 2010, 12, 095021. [Google Scholar] [CrossRef]
- Smolyaninov, I.I. Metamaterial-based model of the Alcubierre warp drive. Phys. Rev. B 2011, 84, 113103. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, A.I.; Smolyaninov, I.I. Lattice models of non-trivial “optical spaces” based on metamaterial waveguides. arXiv 2010, arXiv:1009.1180. [Google Scholar] [CrossRef]
- Smolyaninov, I.I.; Hung, Y.J. Modeling of time with metamaterials. J. Opt. Soc. Am. B 2011, 28, 1591. [Google Scholar] [CrossRef]
- Smolyaninov, I.I. Modeling of causality with metamaterials. J. Opt. 2013, 15, 025101. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, I.I.; Yost, B.; Bates, E.; Smolyaninova, V.N. Experimental demonstration of metamaterial “multiverse” in a ferrofluid. Opt. Express 2013, 21, 14918–14925. [Google Scholar] [CrossRef] [Green Version]
- Esposito, A.; Krichevsky, R.; Nicolis, A. Gravitational Mass Carried by Sound Waves. Phys. Rev. Lett. 2019, 122, 084501. [Google Scholar] [CrossRef] [Green Version]
- Weldon, T.P.; Smith, K.L. Gravitationally-Small Gravitational Antennas, the Chu Limit, and Exploration of Veselago-Inspired Notions of Gravitational Metamaterials. In Proceedings of the 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Rome, Italy, 16–21 September 2019; pp. X-393–X-395. [Google Scholar] [CrossRef]
- Vita, F.D.; Lillo, F.D.; Bosia, F.; Onorato, M. Attenuating surface gravity waves with mechanical metamaterials. Phys. Fluids 2021, 33, 047113. [Google Scholar] [CrossRef]
- Poddar, A.K.; Rohde, U.L.; Koul, S.K. MTM: Casimir effect and Gravity Wave detection. In Proceedings of the 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lahiri, B.; McMeekin, S.G.; Khokhar, A.Z.; Rue, R.M.D.L.; Johnson, N.P. Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt. Express 2010, 18, 3210–3218. [Google Scholar] [CrossRef] [PubMed]
- Premont-Schwarz, I. Experimenting with Quantum Fields in Curved Spacetime in the Lab. arXiv 2011, arXiv:1112.2311. [Google Scholar]
- Chen, H.; Tao, S.; Bělín, J.; Courtial, J.; Miao, R.X. Transformation cosmology. Phys. Rev. A 2020, 102, 023528. [Google Scholar] [CrossRef]
- Novello, M.; Bittencourt, E. Gordon Metric Revisited. Phys. Rev. D 2012, 86, 124024. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Kantowski, R. Cosmology With A Dark Refraction Index. Phys. Rev. D 2008, 78, 044040. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Kantowski, R. Distance-redshift from an optical metric that includes absorption. Phys. Rev. D 2009, 80, 044019. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Kantowski, R. Including Absorption in Gordon’s Optical Metric. Phys. Rev. D 2009, 79, 104007. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.W.; Chen, L.W. A cylindrical optical black hole using graded index photonic crystals. J. Appl. Phys. 2011, 109, 103104. [Google Scholar] [CrossRef]
- Narimanov, E.E.; Kildishev, A.V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 2009, 95, 041106. [Google Scholar] [CrossRef]
- McGloin, D.; Dholakia, K. Bessel beams: Diffraction in a new light. Contemp. Phys. 2005, 46, 15–28. [Google Scholar] [CrossRef]
- Axicon. Available online: https://en.wikipedia.org/wiki/Axicon (accessed on 8 August 2022).
- Barmatz, M.; Collas, P. Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. J. Acoust. Soc. Am. 1985, 77, 928–945. [Google Scholar] [CrossRef]
- Ferreira, A.G.; Egas, A.P.; Fonseca, I.M.; Costa, A.C.; Abreu, D.C.; Lobo, L.Q. The viscosity of glycerol. J. Chem. Thermo. 2017, 113, pp. 162–182. Available online: https://www.google.com/search?q=viscosity+of+glycerin&oq=viscosity+of+glycerin&aqs=chrome..69i57.14152j0j7&sourceid=chrome&ie=UTF-8 (accessed on 19 August 2022).
- Engineering ToolBox. Solids and Metals—Speed of Sound. 2004. Available online: https://www.engineeringtoolbox.com/sound-speed-solids-d_713.html (accessed on 25 September 2022).
- Jeong, M.S.; Ko, J.H.; Ko, Y.H.; Kim, K.J. High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy. Phys. B Condens. Matter 2015, 478, 27–30. [Google Scholar] [CrossRef]
- Tait Equation. Available online: https://en.wikipedia.org/wiki/Tait_equation (accessed on 29 August 2022).
- Oughstun, K.E.; Cartwright, N.A. On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. Opt. Express 2003, 11, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.; Visser, M. The eye of the storm: A regular Kerr black hole. J. Cosmol. Astropart. Phys. 2022, 03, 011. [Google Scholar] [CrossRef]
- Optical Fiber. Available online: https://en.wikipedia.org/wiki/Optical_fiber (accessed on 17 August 2022).
- Fauser, C.M.; Gaul, E.W.; Le Blanc, S.P.; Downer, M.C. Guiding characteristics of an acoustic standing wave in a piezoelectric tube. Appl. Phys. Lett. 1998, 73, 2902–2904. [Google Scholar] [CrossRef]
- Jaeger, L. The Second Quantum Revolution, 1st ed.; Copernicus: Cham, Switzerland, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rietman, E.A.; Melcher, B.; Bobrick, A.; Martire, G. A Cylindrical Optical-Space Black Hole Induced from High-Pressure Acoustics in a Dense Fluid. Universe 2023, 9, 162. https://doi.org/10.3390/universe9040162
Rietman EA, Melcher B, Bobrick A, Martire G. A Cylindrical Optical-Space Black Hole Induced from High-Pressure Acoustics in a Dense Fluid. Universe. 2023; 9(4):162. https://doi.org/10.3390/universe9040162
Chicago/Turabian StyleRietman, Edward A., Brandon Melcher, Alexey Bobrick, and Gianni Martire. 2023. "A Cylindrical Optical-Space Black Hole Induced from High-Pressure Acoustics in a Dense Fluid" Universe 9, no. 4: 162. https://doi.org/10.3390/universe9040162
APA StyleRietman, E. A., Melcher, B., Bobrick, A., & Martire, G. (2023). A Cylindrical Optical-Space Black Hole Induced from High-Pressure Acoustics in a Dense Fluid. Universe, 9(4), 162. https://doi.org/10.3390/universe9040162