Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism
Abstract
:1. Introduction
2. Methodology
2.1. Isothermal Compressibility
2.2. Speed of Sound
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahu, D.; Tripathy, S.; Sahoo, R.; Dash, A.R. Multiplicity dependence of shear viscosity, isothermal compressibility and speed of sound in pp collisions at = 7 TeV. Eur. Phys. J. A 2020, 56, 187. [Google Scholar] [CrossRef]
- Basu, S.; Chatterjee, S.; Chatterjee, R.; Nayak, T.K.; Nandi, B.K. Specific Heat of Matter Formed in Relativistic Nuclear Collisions. Phys. Rev. C 2016, 94, 044901. [Google Scholar] [CrossRef] [Green Version]
- Khuntia, A.; Sahoo, P.; Garg, P.; Sahoo, R.; Cleymans, J. Speed of sound in hadronic matter using non-extensive Tsallis statistics. Eur. Phys. J. A 2016, 52, 292. [Google Scholar] [CrossRef]
- Sahu, D.; Tripathy, S.; Sahoo, R.; Tiwari, S.K. Possible formation of a Perfect Fluid in pp, p-Pb, Xe-Xe and Pb-Pb Collisions at the Large Hadron Collider Energies: A color string percolation approach. Eur. Phys. J. 2022, 58, 78. [Google Scholar] [CrossRef]
- Mezzasalma, S.A. An Equation for Viscosity and Isothermal Compressibility of Simple Liquids from a Closed-Form Expression for the Effective Viscosity of a Dispersed System. Phys. Chem. Liq. 2002, 100, 135–142. [Google Scholar] [CrossRef]
- Kovtun, P.; Son, D.T.; Starinets, A.O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 2005, 94, 111601. [Google Scholar] [CrossRef] [Green Version]
- Aamodt, K.; Abelev, B.; Quintana, A.A.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; et al. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at =2.76 TeV. Phys. Rev. Lett. 2011, 107, 032301. [Google Scholar] [CrossRef] [Green Version]
- Luzum, M.; Romatschke, P. Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 2008, 78, 034915. [Google Scholar] [CrossRef]
- Bjorken, J.D. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region. Phys. Rev. D 1983, 27, 140–151. [Google Scholar] [CrossRef]
- Hallman, T.J.; Kharzeev, D.E.; Mitchell, T.J.; Ullrich, T.S. Quark matter 2001. In Proceedings of the 15th International Conference on Ultrarelativistic Nucleus Nucleus Collisions, QM 2001, Stony Brook, New York, NY, USA, 15–20 January 2001; Volume 698. [Google Scholar]
- Deb, S.; Sarwar, G.; Sahoo, R.; Alam, J.E. Study of QCD dynamics using small systems. Eur. Phys. J. A 2021, 57, 195. [Google Scholar] [CrossRef]
- Deb, S.; Tripathy, S.; Sarwar, G.; Sahoo, R.; Alam, J.E. Deciphering QCD dynamics in small collision systems using event shape and final state multiplicity at the Large Hadron Collider. Eur. Phys. J. A 2020, 56, 252. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Tripathy, S.; Sahoo, R.; Kakati, N. Dissipative Properties and Isothermal Compressibility of Hot and Dense Hadron Gas using Non-extensive Statistics. Eur. Phys. J. C 2018, 78, 938. [Google Scholar] [CrossRef]
- Castorina, P.; Cleymans, J.; Miller, D.E.; Satz, H. The Speed of Sound in Hadronic Matter. Eur. Phys. J. C 2010, 66, 207–213. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Magdy, H. Hadronic Equation of State and Speed of Sound in Thermal and Dense Medium. Int. J. Mod. Phys. A 2014, 29, 1450152. [Google Scholar] [CrossRef] [Green Version]
- Deppman, A. Properties of hadronic systems according to the nonextensive self-consistent thermodynamics. J. Phys. G 2014, 41, 055108. [Google Scholar] [CrossRef] [Green Version]
- Gardim, F.G.; Giacalone, G.; Luzum, M.; Ollitrault, J.Y. Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. Nat. Phys. 2020, 16, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Schnedermann, E.; Sollfrank, J.; Heinz, U.W. Thermal phenomenology of hadrons from 200-A/GeV S+S collisions. Phys. Rev. C 1993, 48, 2462–2475. [Google Scholar] [CrossRef] [Green Version]
- Stodolsky, L. Temperature fluctuations in multiparticle production. Phys. Rev. Lett. 1995, 75, 1044–1045. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Cleymans, J.; Hippolyte, B.; Paradza, M. A Comparison of p-p, p-Pb, Pb-Pb Collisions in the Thermal Model: Multiplicity Dependence of Thermal Parameters. Phys. Rev. C 2019, 99, 044914. [Google Scholar] [CrossRef] [Green Version]
- Jena, S.; Gupta, R. A unified formalism to study transverse momentum spectra in heavy-ion collision. Phys. Lett. B 2020, 807, 135551. [Google Scholar] [CrossRef]
- Gupta, R.; Menon, A.; Jain, S.; Jena, S. The Theoretical Description of the Transverse Momentum Spectra: A Unified Model. Universe 2023, 9, 111. [Google Scholar] [CrossRef]
- Tsallis, C. Some comments on Boltzmann-Gibbs statistical mechanics. Chaos Solitons Fractals 1995, 6, 539–559. [Google Scholar] [CrossRef]
- Lemanska, M. Non-additive entropy: Reason and conclusions. arXiv 2012, arXiv:1207.2172. [Google Scholar]
- Alberico, W.M.; Lavagno, A.; Quarati, P. Nonextensive statistics, fluctuations and correlations in high-energy nuclear collisions. Eur. Phys. J. C 2000, 12, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Statist. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Bíró, G.; Barnaföldi, G.G.; Biró, T.S. Tsallis-thermometer: A QGP indicator for large and small collisional systems. J. Phys. G 2020, 47, 105002. [Google Scholar] [CrossRef]
- Parvan, A.S. Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas. Eur. Phys. J. A 2015, 51, 108. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Worku, D. The Tsallis Distribution in Proton-Proton Collisions at = 0.9 TeV at the LHC. J. Phys. G 2012, 39, 025006. [Google Scholar] [CrossRef]
- Conroy, J.M.; Miller, H.G.; Plastino, A.R. Thermodynamic Consistency of the q-Deformed Fermi-Dirac Distribution in Nonextensive Thermostatics. Phys. Lett. A 2010, 374, 4581–4584. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The Role of constraints within generalized nonextensive statistics. Phys. A 1998, 261, 534. [Google Scholar] [CrossRef]
- Azmi, M.D.; Cleymans, J. The Tsallis Distribution at Large Transverse Momenta. Eur. Phys. J. C 2015, 75, 430. [Google Scholar] [CrossRef] [Green Version]
- Cirto, L.J.L.; Tsallis, C.; Wong, C.Y.; Wilk, G. The transverse-momenta distributions in high-energy pp collisions—A statistical-mechanical approach. arXiv 2014, arXiv:1409.3278. [Google Scholar]
- Wong, C.Y.; Wilk, G. Tsallis fits to pT spectra and multiple hard scattering in pp collisions at the LHC. Phys. Rev. D 2013, 87, 114007. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.Y.; Wilk, G.; Cirto, L.J.L.; Tsallis, C. Possible Implication of a Single Nonextensive pT Distribution for Hadron Production in High-Energy pp Collisions. EPJ Web Conf. 2015, 90, 04002. [Google Scholar] [CrossRef] [Green Version]
- ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; et al. Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb–Pb Collisions at =2.76 TeV. Phys. Lett. B 2013, 720, 52–62. [Google Scholar] [CrossRef]
- The ALICE Collaboration; Acharya, S.; Acosta, S.; Adamová, F.T.D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP 2018, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- The ALICE Collaboration; Acharya, S.; Acosta, F.T.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at = 5.44 TeV. Phys. Lett. B 2019, 788, 166–179. [Google Scholar] [CrossRef]
- Pearson, K. Philosophical Transactions of the Royal Society of London A: Mathematical. Phys. Eng. Sci. 1895, 186, 343. [Google Scholar]
- Pollard, J.H. A Handbook of Numerical and Statistical Techniques: With Examples Mainly from the Life Sciences; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Kardar, M. Statistical Physics of Particles; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Mrowczynski, S. Hadronic matter compressibility from event by event analysis of heavy ion collisions. Phys. Lett. B 1998, 430, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.; Lifshitz, E. Chapter VIII—Sound. In Fluid Mechanics, 2nd ed.; Springer: Berling, Germany, 1987; Volume 6, pp. 251–312. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; et al. Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at = 5.02 TeV. Phys. Rev. C 2020, 101, 044907. [Google Scholar] [CrossRef]
- Acharya, S.; Torales-Acosta, F.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; et al. Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at =5.44TeV. Phys. Lett. B 2019, 790, 35–48. [Google Scholar] [CrossRef]
- Gupta, R.; Jena, S. Model Comparison of the Transverse Momentum Spectra of Charged Hadrons Produced in PbPb Collision at =5.02 TeV. Adv. High Energy Phys. 2022, 2022, 5482034. [Google Scholar] [CrossRef]
- Gupta, R.; Katariya, A.S.; Jena, S. A unified formalism to study the pseudorapidity spectra in heavy-ion collision. Eur. Phys. J. A 2021, 57, 224. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Kalweit, A.; Redlich, K.; Stachel, J. Confronting fluctuations of conserved charges in central nuclear collisions at the LHC with predictions from Lattice QCD. Phys. Lett. B 2015, 747, 292–298. [Google Scholar] [CrossRef]
- Cleymans, J.; Worku, D. Relativistic Thermodynamics: Transverse Momentum Distributions in High-Energy Physics. Eur. Phys. J. A 2012, 48, 160. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M.M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; et al. Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC. Phys. Lett. B 2014, 739, 139–151. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Yassin, H.; Elyazeed, E.R.A. Extensive/nonextensive statistics for pT distributions of various charged particles produced in p+p and A+A collisions in a wide range of energies. arXiv 2019, arXiv:1905.12756. [Google Scholar]
- Gardim, F.G.; Giacalone, G.; Luzum, M.; Ollitrault, J.Y. Effects of initial state fluctuations on the mean transverse momentum. Nucl. Phys. A 2021, 1005, 121999. [Google Scholar] [CrossRef]
- Chatterjee, S.; Das, S.; Kumar, L.; Mishra, D.; Mohanty, B.; Sahoo, R.; Sharma, N. Freeze-Out Parameters in Heavy-Ion Collisions at AGS, SPS, RHIC, and LHC Energies. Adv. High Energy Phys. 2015, 2015, 349013. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Stachel, J.; Wetterich, C. Chemical freezeout and the QCD phase transition temperature. Phys. Lett. B 2004, 596, 61–69. [Google Scholar] [CrossRef]
- Khuntia, A.; Tiwari, S.K.; Sharma, P.; Sahoo, R.; Nayak, T.K. Effect of Hagedorn States on Isothermal Compressibility of Hadronic Matter formed in Heavy-Ion Collisions: From NICA to LHC Energies. Phys. Rev. C 2019, 100, 014910. [Google Scholar] [CrossRef] [Green Version]
Centrality | TeV | TeV | TeV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | q | n | T | q | n | T | q | n | ||||
0–5% | 0.393 | 1.048 | 0.105 | 0.749 | 0.407 | 1.048 | 0.0018 | 0.562 | - | - | - | - |
5–10% | 0.386 | 1.053 | 0.0877 | 0.700 | 0.415 | 1.049 | 0.0167 | 0.604 | - | - | - | - |
10–20% | 0.370 | 1.060 | 0.0600 | 0.619 | 0.422 | 1.052 | 0.0394 | 0.659 | 0.409 | 1.072 | 0.0977 | 0.720 |
20–30% | 0.351 | 1.070 | 0.0385 | 0.548 | 0.424 | 1.059 | 0.0812 | 0.744 | 0.460 | 1.067 | 0.225 | 1.101 |
30–40% | 0.331 | 1.081 | 0.0256 | 0.489 | 0.412 | 1.068 | 0.0824 | 0.749 | 0.447 | 1.079 | 0.2286 | 1.112 |
40–50% | 0.311 | 1.093 | 0.0341 | 0.474 | 0.369 | 1.085 | 0.05 | 0.614 | 0.455 | 1.091 | 0.2881 | 1.306 |
50–60% | 0.292 | 1.106 | 0.0457 | 0.468 | 0.34 | 1.101 | 0.0527 | 0.578 | 0.434 | 1.108 | 0.2904 | 1.317 |
60–70% | 0.273 | 1.121 | 0.0747 | 0.487 | 0.311 | 1.118 | 0.0658 | 0.557 | 0.357 | 1.123 | 0.1977 | 0.943 |
70–80% | - | - | - | - | 0.329 | 1.131 | 0.1565 | 0.855 | 0.338 | 1.139 | 0.2060 | 0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Gupta, R.; Jena, S. Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism. Universe 2023, 9, 170. https://doi.org/10.3390/universe9040170
Jain S, Gupta R, Jena S. Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism. Universe. 2023; 9(4):170. https://doi.org/10.3390/universe9040170
Chicago/Turabian StyleJain, Shubhangi, Rohit Gupta, and Satyajit Jena. 2023. "Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism" Universe 9, no. 4: 170. https://doi.org/10.3390/universe9040170
APA StyleJain, S., Gupta, R., & Jena, S. (2023). Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism. Universe, 9(4), 170. https://doi.org/10.3390/universe9040170