Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime
Abstract
:1. Introduction
- Hamilton–Jacobi timelike separability.
- Klein–Gordon separability.
- Asymptotic flatness.
- Dirac separability.
1.1. Hamilton–Jacobi Timelike Separability
1.2. Klein–Gordon Separability
1.3. Asymptotic Flatness
1.4. Dirac Separability—A Bridge Too Far
2. Three-Function Generalization of the Kerr Spacetime
3. Killing Horizons for the Three-Function Generalization of Kerr
4. Surface Gravities for These Killing Horizons
5. Two-Function Generalization of the Kerr Spacetime
6. Would Be Killing–Yano Tensors
- When and , as per our previous discussion, , and furthermore, one has , so , then this becomes a true Killing–Yano tensor.
- Similarly, when and , as per our previous discussion, we also have , and furthermore, , so then becomes a true Killing–Yano tensor.
7. Carter Canonical Off-Shell Metric
7.1. Two-Function Version
7.2. One-Function Version
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kerr, R. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Kerr, R. Gravitational collapse and rotation. In Quasi-Stellar Sources and Gravitational Collapse: Including the Proceedings of the First Texas Symposium on Relativistic Astrophysics, Austin, TX, USA, 16–18 December 1963; Robinson, I., Schild, A., Schücking, E.L., Eds.; University of Chicago Press: Chicago, IL, USA, 1965; pp. 99–102. [Google Scholar]
- Newman, E.T.; Janis, A.I. Note on the Kerr spinning particle metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Boyer, R.H.; Lindquist, R.W. Maximal analytic extension of the Kerr metric. J. Math. Phys. 1967, 8, 265. [Google Scholar] [CrossRef]
- Carter, B. Global structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef]
- Robinson, D.C. Uniqueness of the Kerr black hole. Phys. Rev. Lett. 1975, 34, 905–906. [Google Scholar] [CrossRef]
- Doran, C. A New form of the Kerr solution. Phys. Rev. D 2000, 61, 067503. [Google Scholar] [CrossRef]
- O’Neill, B. The Geometry of Kerr Black Holes; Dover: Mineloa, NY, USA, 2014. [Google Scholar]
- Wiltshire, D.L.; Visser, M.; Scott, S.M. The Kerr Spacetime: Rotating Black Holes in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Visser, M. The Kerr spacetime: A brief introduction. arxiv 2007, arXiv:0706.0622. Published in Wiltshire, D.L., 2009. [Google Scholar]
- Kerr, R.P. Discovering the Kerr and Kerr-Schild metrics. arXiv 2007, arXiv:0706.1109. Published in Wiltshire, D.L., 2009. [Google Scholar]
- Teukolsky, S.A. The Kerr Metric. Class. Quantum Gravity 2015, 32, 124006. [Google Scholar] [CrossRef]
- Adamo, T.; Newman, E.T. The Kerr–Newman metric: A Review. Scholarpedia 2014, 9, 31791. [Google Scholar] [CrossRef]
- Baines, J.; Visser, M. Physically motivated ansatz for the Kerr spacetime. Class. Quantum Gravity 2022, 39, 235004. [Google Scholar] [CrossRef]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Darboux diagonalization of the spatial 3-metric in Kerr spacetime. Gen. Rel. Grav. 2021, 53, 3. [Google Scholar] [CrossRef]
- Adler, R.J.; Bazin, M.; Schiffer, M. Introduction to General Relativity, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975; [It is important to acquire the 1975 second edition, the 1965 first edition does not contain any discussion of the Kerr spacetime.]. [Google Scholar]
- D’Inverno, R. Introducing Einstein’s Relativity; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Hartle, J. Gravity: An introduction to Einstein’s General Relativity; Addison Wesley: San Francisco, CA, USA, 2003. [Google Scholar]
- Carroll, S. An Introduction to General Relativity: Spacetime and Geometry; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Hobson, M.P.; Estathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Misner, C.; Thorne, K.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin Math. Phys. 1916, 1916, 189–196. [Google Scholar]
- Birkhoff, G.D. Relativity and Modern Physics; Harvard University Press: Cambridge, MA, USA, 1923. [Google Scholar]
- Jebsen, J.T. Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum. Ark. FÖr Mat. Astron. Och Fys. 1921, 15, 1–9, Translated and reprinted as: On the general symmetric solutions of Einstein’s gravitational equations in vacuo. Gen. Relativ. Cosmol. 2005, 37, 2253–2259.. [Google Scholar]
- Deser, S.; Franklin, J. Schwarzschild and Birkhoff a la Weyl. Am. J. Phys. 2005, 73, 261–264. [Google Scholar] [CrossRef]
- Johansen, N.V.; Ravndal, F. On the discovery of Birkhoff’s theorem. Gen. Rel. Grav. 2006, 38, 537–540. [Google Scholar] [CrossRef]
- Skakala, J.; Visser, M. Birkhoff-like theorem for rotating stars in (2+1) dimensions. arXiv 2009, arXiv:0903.2128. [Google Scholar]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Painlevé–Gullstrand form of the Lense–Thirring Spacetime. Universe 2021, 7, 105. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope]. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope]. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope]. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17. [Google Scholar] [CrossRef]
- Psaltis, D.; Ozel, F.; Chan, C.K.; Marrone, D.P. A General Relativistic Null Hypothesis Test with Event Horizon Telescope Observations of the black-hole shadow in Sgr A*. Astrophys. J. 2015, 814, 115. [Google Scholar] [CrossRef]
- Broderick, A.E.; Johannsen, T.; Loeb, A.; Psaltis, D. Testing the No-Hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J. 2014, 784, 7. [Google Scholar] [CrossRef]
- Cardoso, V.; Gualtieri, L. Testing the black hole ‘no-hair’ hypothesis. Class. Quantum Gravity 2016, 33, 174001. [Google Scholar] [CrossRef]
- Carballo-Rubio, R.; Filippo, F.D.; Liberati, S.; Visser, M. Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 2018, 98, 124009. [Google Scholar] [CrossRef]
- Carballo-Rubio, R.; Filippo, F.D.; Liberati, S.; Pacilio, C.; Visser, M. On the viability of regular black holes. JHEP 2018, 07, 023. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 2017, 95, 084037. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Note on the character of the generic rotating charged regular black holes in general relativity coupled to nonlinear electrodynamics. arXiv 2017, arXiv:1712.04763. [Google Scholar]
- Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Comment on “Construction of regular black holes in general relativity”. Phys. Rev. D 2018, 98, 028501. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Junior, E.L.B. Comment on “Generic rotating regular black holes in general relativity coupled to non-linear electrodynamics”. Phys. Rev. D 2017, 96, 128502. [Google Scholar] [CrossRef]
- Yu, S.; Gao, C. Exact black hole solutions with nonlinear electrodynamic field. Int. J. Mod. Phys. D 2020, 29, 2050032. [Google Scholar] [CrossRef]
- Bretón, N.; Lämmerzahl, C.; Macías, A. Rotating black holes in the Einstein–Euler—Heisenberg theory. Class. Quantum Gravity 2019, 36, 235022. [Google Scholar] [CrossRef]
- Cañate, P. Black bounces as magnetically charged phantom regular black holes in Einstein-nonlinear electrodynamics gravity coupled to a self-interacting scalar field. Phys. Rev. D 2022, 106, 024031. [Google Scholar] [CrossRef]
- Cañate, P.; Bergliaffa, S.E.P. Transforming singular black holes into regular black holes sourced by nonlinear electrodynamics. arXiv 2022, arXiv:2203.03088. [Google Scholar]
- Bronnikov, K.A. Regular black holes sourced by nonlinear electrodynamics. arXiv 2022, arXiv:2211.00743. [Google Scholar]
- Kubiznak, D.; Tahamtan, T.; Svitek, O. Slowly rotating black holes in nonlinear electrodynamics. Phys. Rev. D 2022, 105, 104064. [Google Scholar] [CrossRef]
- Franzin, E.; Liberati, S.; Mazza, J.; Vellucci, V. Stable rotating regular black holes. Phys. Rev. D 2022, 106, 104060. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Visser, M. Mimicking static anisotropic fluid spheres in general relativity. Int. J. Mod. Phys. D 2015, 25, 1650019. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Walia, R.K. Field sources for Simpson-Visser spacetimes. Phys. Rev. D 2022, 105, 044039. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Black bounces, wormholes, and partly phantom scalar fields. Phys. Rev. D 2022, 106, 064029. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Silva, M.V.d.S. Source of black bounces in general relativity. Phys. Rev. D 2023, 107, 044064. [Google Scholar] [CrossRef]
- Huang, H.; Yang, J. Charged Ellis Wormhole and Black Bounce. Phys. Rev. D 2019, 100, 124063. [Google Scholar] [CrossRef]
- Huang, H.; Lü, H.; Yang, J. Bronnikov-like wormholes in Einstein-scalar gravity. Class. Quantum Gravity 2022, 39, 185009. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Badalov, K.; Ibadov, R. Arbitrary Static, Spherically Symmetric Space-Times as Solutions of Scalar-Tensor Gravity. Grav. Cosmol. 2023, 29, 43–49. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Visser, M. Regge-Wheeler equation, linear stability, and greybody factors for dirty black holes. Phys. Rev. D 2013, 88, 041502. [Google Scholar] [CrossRef]
- Saleh, M.; Thomas, B.B.; Kofane, T.C. Quasinormal modes of gravitational perturbation around regular Bardeen black hole surrounded by quintessence. Eur. Phys. J. C 2018, 78, 325. [Google Scholar] [CrossRef]
- Villani, M. Stability of the Hayward black hole under electromagnetic perturbations. Class. Quantum Gravity 2021, 38, 075028. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Ahmedov, B.; Malafarina, D. Relaxations of perturbations of spacetimes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 2019, 99, 064043. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Schee, J.; Ahmedov, B. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 2018, 97, 084058. [Google Scholar] [CrossRef]
- Nomura, K.; Yoshida, D.; Soda, J. Stability of magnetic black holes in general nonlinear electrodynamics. Phys. Rev. D 2020, 101, 124026. [Google Scholar] [CrossRef]
- Papadopoulos, G.O.; Kokkotas, K.D. On Kerr black hole deformations admitting a Carter constant and an invariant criterion for the separability of the wave equation. arXiv 2020, arXiv:2007.12125. [Google Scholar] [CrossRef]
- Papadopoulos, G.O.; Kokkotas, K.D. Preserving Kerr symmetries in deformed spacetimes. Class. Quantum Gravity 2018, 35, 185014. [Google Scholar] [CrossRef]
- Benenti, S.; Francaviglia, M. Remarks on certain separability structures and their applications to General Relativity. Gen. Relativ. Gravit. 1979, 10, 79–92. [Google Scholar] [CrossRef]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Killing Tensor and Carter constant for Painlevé–Gullstrand form of Lense–Thirring Spacetime. Universe 2021, 7, 473. [Google Scholar] [CrossRef]
- Carson, Z.; Yagi, K. Asymptotically flat, parameterized black hole metric preserving Kerr symmetries. Phys. Rev. D 2020, 101, 084030. [Google Scholar] [CrossRef]
- Pappas, G.; Glampedakis, K. On the connection of spacetime separability and spherical photon orbits. arXiv 2018, arXiv:1806.04091. [Google Scholar]
- Glampedakis, K.; Pappas, G. Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes. Phys. Rev. D 2019, 99, 124041. [Google Scholar] [CrossRef]
- Johannsen, T. Regular Black Hole Metric with Three Constants of Motion. Phys. Rev. D 2013, 88, 044002. [Google Scholar] [CrossRef]
- Johannsen, T. Sgr A* and General Relativity. Class. Quantum Gravity 2016, 33, 113001. [Google Scholar] [CrossRef]
- Lima, H.C.D., Jr.; Crispino, L.C.B.; Cunha, P.V.P.; Herdeiro, C.A.R. Spinning black holes with a separable Hamilton–Jacobi equation from a modified Newman–Janis algorithm. Eur. Phys. J. C 2020, 80, 1036. [Google Scholar] [CrossRef]
- Shaikh, R.; Pal, K.; Pal, K.; Sarkar, T. Constraining alternatives to the Kerr black hole. Mon. Not. Roy. Astron. Soc. 2021, 506, 1229–1236. [Google Scholar] [CrossRef]
- Benenti, S.; Chanu, C.; Rastelli, G. Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. II. First integrals and symmetry operators. J. Math. Phys. 2002, 43, 5223. [Google Scholar] [CrossRef]
- Giorgi, E. The Carter tensor and the physical-space analysis in perturbations of Kerr–Newman spacetime. arXiv 2021, arXiv:2105.14379. [Google Scholar]
- Franzin, E.; Liberati, S.; Mazza, J.; Simpson, A.; Visser, M. Charged black-bounce spacetimes. JCAP 2021, 7, 036. [Google Scholar] [CrossRef]
- Carter, B. Hamilton–Jacobi and Schrodinger Separable Solutions of Einstein’s Equations. Commun. Math. Phys. 1968, 10, 280–310. [Google Scholar] [CrossRef]
- Teukolsky, S.A. Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations. Phys. Rev. Lett. 1972, 29, 1114. [Google Scholar] [CrossRef]
- Kalnins, E.G.; Miller, W., Jr. Killing tensors and variable separation for Hamilton–Jacobi and Helmholtz equations. SIAM J. Math. Anal. 1980, 11, 1011–1026. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Stuchlk, Z.; Zhidenko, A. Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton–Jacobi equations. Phys. Rev. D 2018, 97, 084044. [Google Scholar] [CrossRef]
- Konoplya, R.; Rezzolla, L.; Zhidenko, A. General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D 2016, 93, 064015. [Google Scholar] [CrossRef]
- Kokkotas, K.D.; Schmidt, B.G. Quasi-Normal Modes of Stars and Black Holes. Living Rev. Rel. 1999, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Konoplya, R.A.; Zhidenko, A. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 2011, 83, 793. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, P. Separability of the Klein-Gordon equation for rotating spacetimes obtained from Newman-Janis algorithm. Phys. Rev. D 2019, 100, 104054. [Google Scholar] [CrossRef]
- Iyer, B.R.; Vishveshwara, C.V. Separability of the Dirac equation in a class of perfect fluid space-times with local rotational symmetry. J. Math. Phys. 1985, 26, 1034. [Google Scholar] [CrossRef]
- Rüdiger, R. Separable systems for the Dirac equation in curved space-times. J. Math. Phys. 1984, 25, 649. [Google Scholar] [CrossRef]
- McLenaghan, R. Symmetry operators and separation of variables for the Dirac equation on curved space. In Proceedings of the S4 Conference, Minneapolis, MN, USA, 17–19 September 2010. [Google Scholar]
- Mazza, J.; Franzin, E.; Liberati, S. A novel family of rotating black hole mimickers. JCAP 2021, 04, 082. [Google Scholar] [CrossRef]
- Islam, S.U.; Kumar, J.; Ghosh, S.G. Strong gravitational lensing by rotating Simpson-Visser black holes. JCAP 2021, 10, 013. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Black-bounce to traversable wormhole. JCAP 2019, 02, 042. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; Springer: New York, NY, USA, 1995. [Google Scholar]
- Cvetic, M.; Gibbons, G.W.; Pope, C.N. STU Black Holes and SgrA*. JCAP 2017, 08, 016. [Google Scholar] [CrossRef]
- Keeler, C.; Larsen, F. Separability of Black Holes in String Theory. JHEP 2012, 10, 152. [Google Scholar] [CrossRef]
- Frolov, V.; Krtous, P.; Kubiznak, D. Black holes, hidden symmetries, and complete integrability. Living Rev. Rel. 2017, 20, 6. [Google Scholar] [CrossRef]
- Frolov, V.P.; Krtous, P.; Kubiznak, D. Separability of Hamilton–Jacobi and Klein-Gordon Equations in General Kerr-NUT-AdS Spacetimes. JHEP 2007, 02, 005. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. The eye of the storm: A regular Kerr black hole. JCAP 2022, 03, 011. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Astrophysically viable Kerr-like spacetime. Phys. Rev. D 2022, 105, 064065. [Google Scholar] [CrossRef]
- Ghosh, S.G. A nonsingular rotating black hole. Eur. Phys. J. C 2015, 75, 532. [Google Scholar] [CrossRef]
- Kiselev, V.V. Quintessence and black holes. Class. Quantum Gravity 2003, 20, 1187–1198. [Google Scholar] [CrossRef]
- Visser, M. The Kiselev black hole is neither perfect fluid, nor is it quintessence. Class. Quantum Gravity 2020, 37, 045001. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Silva, M.V.d.; Vieira, H.A. Bardeen-Kiselev black hole with a cosmological constant. Phys. Rev. D 2022, 105, 084043. [Google Scholar] [CrossRef]
- Ṡemiz, I. On the (non)genericity of the Kiselev spacetime. IOP SciNotes 2020, 1, 025206. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N.; Quinet de Oliveira, S. Morris-Thorne wormholes with a cosmological constant. Phys. Rev. D 2003, 68, 064004. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D 2005, 71, 084011. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Stability of phantom wormholes. Phys. Rev. D 2005, 71, 124022. [Google Scholar] [CrossRef]
- Teo, E. Rotating traversable wormholes. Phys. Rev. D 1998, 58, 024014. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A.; Goelen, F.; Hertog, T.; Vercnocke, B. Echoes of Kerr-like wormholes. Phys. Rev. D 2018, 97, 024040. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Regular black holes with asymptotically Minkowski cores. Universe 2019, 6, 8. [Google Scholar] [CrossRef]
- Berry, T.; Simpson, A.; Visser, M. Photon spheres, ISCOs, and OSCOs: Astrophysical observables for regular black holes with asymptotically Minkowski cores. Universe 2020, 7, 2. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Rodrigues, M.E.; Silva, M.V.d.; Simpson, A.; Visser, M. Novel black-bounce spacetimes: Wormholes, regularity, energy conditions, and causal structure. Phys. Rev. D 2021, 103, 084052. [Google Scholar] [CrossRef]
- Bambi, C.; Stojkovic, D. Astrophysical Wormholes. Universe 2021, 7, 136. [Google Scholar] [CrossRef]
- Maeda, H. Simple traversable wormholes violating energy conditions only near the Planck scale. Class. Quantum Gravity 2022, 39, 075027. [Google Scholar] [CrossRef]
- Clément, G.; Gal’tsov, D. Rotating traversable wormholes in Einstein–Maxwell theory. Phys. Lett. B 2023, 838, 137677. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef]
- Hawking, S.W. Information Preservation and Weather Forecasting for Black Holes. arXiv 2014, arXiv:1401.5761. [Google Scholar]
- Visser, M. Physical observability of horizons. Phys. Rev. D 2014, 90, 127502. [Google Scholar] [CrossRef]
- Medved, A.J.M.; Martin, D.; Visser, M. Dirty black holes: Symmetries at stationary nonstatic horizons. Phys. Rev. D 2004, 70, 024009. [Google Scholar] [CrossRef]
- Cropp, B.; Liberati, S.; Visser, M. Surface gravities for non-Killing horizons. Class. Quantum Gravity 2013, 30, 125001. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Rel. 2005, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Acoustic black holes: Horizons, ergospheres, and Hawking radiation. Class. Quantum Gravity 1998, 15, 1767–1791. [Google Scholar] [CrossRef]
- Fischetti, S.; Way, B. Towards Fluid Instabilities of Stationary Non-Killing Horizons. Class. Quantum Gravity 2016, 33, 245009. [Google Scholar] [CrossRef]
- Li, R.; Wang, J. Hawking radiation, local temperatures, and nonequilibrium thermodynamics of the black holes with non-Killing horizon. Phys. Rev. D 2021, 104, 026011. [Google Scholar] [CrossRef]
- Visser, M. Dirty black holes: Thermodynamics and horizon structure. Phys. Rev. D 1992, 46, 2445–2451. [Google Scholar] [CrossRef]
- Lindström, U.; Sarıoğlu, Ö. New currents with Killing–Yano tensors. Class. Quantum Gravity 2021, 38, 195011. [Google Scholar] [CrossRef]
- Lindström, U.; Sarıoğlu, Ö. Uses of Killing-Yano Tensors. PoS CORFU 2022, 2021, 149. [Google Scholar] [CrossRef]
- Lindström, U.; Sarıoğlu, Ö. Geometry, conformal Killing-Yano tensors and conserved currents. arXiv 2022, arXiv:2206.08037. [Google Scholar]
Spacetime | a | |||
---|---|---|---|---|
Minkowski | 0 | r | arbitrary | |
Kerr | 0 | r | nonzero | |
Kerr–Newman | 0 | r | nonzero | |
Eye of storm | 0 | r | nonzero | |
Carter one-function off-shell | arbitrary | 0 | r | nonzero |
Sugra STU “balanced” | 0 | nonzero | ||
Kerr black bounce | 0 | nonzero | ||
Schwarzschild | 0 | r | 0 | |
Reissner–Nordström | 0 | r | 0 | |
Kiselev | arbitrary | 0 | r | 0 |
Static spherical symmetry | arbitrary | arbitrary | arbitrary | 0 |
Morris–Thorne wormhole | 0 | 0 | ||
Simpson–Visser black bounce | 0 | 0 | ||
exponential wormhole | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baines, J.; Visser, M. Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime. Universe 2023, 9, 223. https://doi.org/10.3390/universe9050223
Baines J, Visser M. Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime. Universe. 2023; 9(5):223. https://doi.org/10.3390/universe9050223
Chicago/Turabian StyleBaines, Joshua, and Matt Visser. 2023. "Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime" Universe 9, no. 5: 223. https://doi.org/10.3390/universe9050223
APA StyleBaines, J., & Visser, M. (2023). Killing Horizons and Surface Gravities for a Well-Behaved Three-Function Generalization of the Kerr Spacetime. Universe, 9(5), 223. https://doi.org/10.3390/universe9050223