Aurora Classification in All-Sky Images via CNN–Transformer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. CNN–Transformer Model
2.3. Training and Fine-Tuning
3. Results
3.1. Implementation Details and Evaluation Metrics
3.2. Experimental Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LDA | Linear discriminant analysis |
SVM | Support vector machine |
SIFT | Scale-invariant feature transform |
THEMIS | Time History of Events and Macroscale Interactions during Substorms |
OATH | Oslo Auroral THEMIS |
CNN | Convolutional neural network |
MLP | Multi-layer perceptron |
MSA | Multi-head self-attention |
GPU | Graphical processing unit |
TP | True positive |
TN | True negative |
FP | False positive |
FN | False negative |
References
- Clausen, L.B.; Nickisch, H. Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning. J. Geophys. Res. Space Phys. 2018, 123, 5640–5647. [Google Scholar] [CrossRef]
- Seki, S.; Sakurai, T.; Omichi, M.; Saeki, A.; Sakamaki, D. High-Energy Charged Particles; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Borovsky, J.E.; Valdivia, J.A. The Earth’s magnetosphere: A systems science overview and assessment. Surv. Geophys. 2018, 39, 817–859. [Google Scholar] [CrossRef]
- Qian, W. Image Classification and Dynamic Process Analysis for Dayside Aurora on All-sky Image. Ph.D. Thesis, Xidian University, Xi’an, China, 2011. [Google Scholar]
- Akasofu, S.I. The development of the auroral substorm. Planet. Space Sci. 1964, 12, 273–282. [Google Scholar] [CrossRef]
- Syrjasuo, M.; Partamies, N. Numeric image features for detection of aurora. IEEE Geosci. Remote Sens. Lett. 2011, 9, 176–179. [Google Scholar] [CrossRef]
- Syrjasuo, M.; Pulkkinen, T.I. Determining the skeletons of the auroras. In Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999; pp. 1063–1066. [Google Scholar]
- Syrjäsuo, M.; Donovan, E. Analysis of auroral images: Detection and tracking. Geophysica 2002, 38, 3–14. [Google Scholar]
- Yang, Q.; Liang, J.; Hu, Z.; Zhao, H. Auroral sequence representation and classification using hidden Markov models. IEEE Trans. Geosci. Remote Sens. 2012, 50, 5049–5060. [Google Scholar] [CrossRef]
- Han, B.; Yang, C.; Gao, X. Aurora image classification based on LDA combining with saliency information. J. Softw. 2013, 24, 2758–2766. [Google Scholar] [CrossRef]
- Rao, J.; Partamies, N.; Amariutei, O.; Syrjäsuo, M.; Van De Sande, K.E. Automatic auroral detection in color all-sky camera images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4717–4725. [Google Scholar] [CrossRef]
- Donovan, E.; Mende, S.; Jackel, B.; Frey, H.; Syrjäsuo, M.; Voronkov, I.; Trondsen, T.; Peticolas, L.; Angelopoulos, V.; Harris, S.; et al. The THEMIS all-sky imaging array—System design and initial results from the prototype imager. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1472–1487. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, J.; Wang, Q.; Liang, J. Weakly supervised semantic segmentation for joint key local structure localization and classification of aurora image. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7133–7146. [Google Scholar] [CrossRef]
- Zhong, Y.; Ye, R.; Liu, T.; Hu, Z.; Zhang, L. Automatic aurora image classification framework based on deep learning for occurrence distribution analysis: A case study of all-sky image data sets from the Yellow River Station. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027590. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, P. Representation and classification of auroral images based on convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 523–534. [Google Scholar] [CrossRef]
- Sado, P.; Clausen, L.B.N.; Miloch, W.J.; Nickisch, H. Transfer learning aurora image classification and magnetic disturbance evaluation. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029683. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Ren, J. Auroral Image Classification With Very Limited Labeled Data Using Few-Shot Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Shang, Z.; Yao, Z.; Liu, J.; Xu, L.; Xu, Y.; Zhang, B.; Guo, R.; Wei, Y. Automated Classification of Auroral Images with Deep Neural Networks. Universe 2023, 9, 96. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Zhang, H.; Hu, Z.; Hu, Y.; Zhou, C. Calibration and verification of all-sky auroral image parameters by star maps. Chin. J. Geophys. 2020, 63, 401–411. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-up object detection by grouping extreme and center points. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 850–859. [Google Scholar]
- Chen, X.; Girshick, R.; He, K.; Dollár, P. Tensormask: A foundation for dense object segmentation. In Proceedings of the IEEE/CVF international Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2061–2069. [Google Scholar]
- Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Yan, Z.; Tomizuka, M.; Gonzalez, J.; Keutzer, K.; Vajda, P. Visual transformers: Token-based image representation and processing for computer vision. arXiv 2020, arXiv:2006.03677. [Google Scholar]
- Fan, H.; Xiong, B.; Mangalam, K.; Li, Y.; Yan, Z.; Malik, J.; Feichtenhofer, C. Multiscale vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6824–6835. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 568–578. [Google Scholar]
- Heo, B.; Yun, S.; Han, D.; Chun, S.; Choe, J.; Oh, S.J. Rethinking spatial dimensions of vision transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 11936–11945. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
Class | Quantity | Hexagonal Classification | Binary Classification |
---|---|---|---|
arc | 774 | 0 | 0 |
diffuse | 1102 | 1 | 0 |
discrete | 1400 | 2 | 0 |
cloudy | 852 | 3 | 1 |
moon | 614 | 4 | 1 |
no-aurora | 1082 | 5 | 1 |
Total | 5824 | - | - |
Method | Sensitivity (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|
U-Net [28] | 93.2 | 93.8 | 90.8 |
Mask R-CNN [29] | 92.6 | 92.9 | 89.6 |
ExtremeNet [30] | 91.7 | 94.7 | 92.1 |
TensorMask [31] | 92.9 | 93.8 | 94.7 |
Visual Transformer [32] | 92.6 | 94.2 | 95.0 |
ViT [23] | 93.7 | 92.7 | 95.2 |
MViT [33] | 92.4 | 93.5 | 96.3 |
PVT [34] | 94.7 | 95.3 | 96.1 |
PiT [35] | 95.4 | 95.5 | 97.8 |
Swin Transformer [36] | 96.7 | 97.1 | 98.2 |
The proposed approach | 97.6 | 98.1 | 99.4 |
Method | Sensitivity (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|
U-Net [28] | 90.5 | 91.5 | 89.8 |
Mask R-CNN [29] | 89.7 | 86.1 | 87.8 |
ExtremeNet [30] | 91.2 | 93.6 | 91.3 |
TensorMask [31] | 92.3 | 93.1 | 93.7 |
Visual Transformer [32] | 91.4 | 92.2 | 93.8 |
ViT [23] | 92.7 | 92.5 | 94.7 |
MViT [33] | 91.6 | 92.2 | 93.1 |
PVT [34] | 93.2 | 95.0 | 94.5 |
PiT [35] | 95.1 | 94.9 | 96.1 |
Swin Transformer [36] | 96.2 | 96.9 | 97.5 |
The proposed approach | 97.3 | 98.4 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, J.; Liu, T.; Zhou, Y. Aurora Classification in All-Sky Images via CNN–Transformer. Universe 2023, 9, 230. https://doi.org/10.3390/universe9050230
Lian J, Liu T, Zhou Y. Aurora Classification in All-Sky Images via CNN–Transformer. Universe. 2023; 9(5):230. https://doi.org/10.3390/universe9050230
Chicago/Turabian StyleLian, Jian, Tianyu Liu, and Yanan Zhou. 2023. "Aurora Classification in All-Sky Images via CNN–Transformer" Universe 9, no. 5: 230. https://doi.org/10.3390/universe9050230
APA StyleLian, J., Liu, T., & Zhou, Y. (2023). Aurora Classification in All-Sky Images via CNN–Transformer. Universe, 9(5), 230. https://doi.org/10.3390/universe9050230