Teleparallel Minkowski Spacetime with Perturbative Approach for Teleparallel Gravity on a Proper Frame
Abstract
:1. Introduction
2. Teleparallel Theories of Gravity
2.1. Notation
2.2. Torsion-Based Theories
2.3. Geometrical Framework for Teleparallel Gravity
- The Co-frame: . This quantity generally encodes both the gravitational and inertial effects in a gravitational system. The dual of the co-frame is defined as the vector field , such that .
- The Gauge Metric: . This object expresses the “metric” of the tangent space, such that . Having a metric allows one to define the lengths and angles.
- The Spin-connection: . Having a connection allows one to “parallel transport’,’ or equivalently, it allows one to define a covariant differentiation.
- Null Curvature:
- Null Non-Metricity:
2.4. Linear Transformations and Gauge Choices
2.4.1. Gauge Choices and Teleparallel Gravity
Proper Orthonormal Frame
Orthonormal Frame
2.5. Action for Teleparallel Gravity
2.6. Field Equations for Teleparallel Gravity
3. Constant Torsion Spacetimes
3.1. Null Torsion Scalar Spacetimes
3.1.1. Definition: Minkowski Geometry and Minkowski Spacetime
- Maximally symmetric: The Minkowski geometry is invariant under a group of transformations [18].
- Null Curvature:
- Null Torsion:
- Null Non-Metricity:
4. Perturbations in Teleparallel Geometries
4.1. Proper Orthonormal Perturbation of the Co-Frame
4.2. Perturbed Teleparallel Field Equations: General
4.3. Perturbed Teleparallel Field Equations: Constant Torsion Scalar
4.4. Perturbed Teleparallel Field Equations: Zero Torsion Scalar
4.5. Perturbed Teleparallel Field Equations: The Zero Torsion Scalar Perturbation Limit
4.6. Perturbed Teleparallel Field Equations: Minkowski
5. Effects of Perturbations and the Minkowski Spacetime Symmetries Conditions for Stability
5.1. Rotation/Boost Perturbation in a Minkowski Background
5.2. General Linear Perturbation in a Minkowski Background
5.3. Perturbations on Trivial Coframes by Each Part of the Perturbation
5.3.1. Trace
5.3.2. Full Symmetric Perturbation
5.3.3. Full Antisymmetric Perturbation
5.3.4. A Mixed Situation and Minkowski Spacetime
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FE | Field Equation |
GR | General Relativity |
TEGR | Teleparallel Equivalent of General Relativity |
DOF | Degrees of Freedom |
Appendix A. Perturbed Physical Quantities in Teleparallel Theories
- The inverse coframe perturbation :
- Determinant of the co-frame :
- Metric tensor :
- Torsion tensor and :If we also have that , then:
- Torsion scalar T:In terms of Equations (A5) and (A6), Equation (A7) becomes as:
- Lagrangian density :
- Sum of the Torsion and Ricci Curvature scalar : Here, is the Ricci scalar computed from the Levi-Civita connection.By using Equation (A6), Equation (A10) becomes as:
- Superpotential :In terms of , Equation (A12) becomes:
- Einstein tensor :If , then we obtain from Equation (A4):By substituting Equation (A15) into Equation (A14), we obtain that:Now, if we have that , then Equation (A16) becomesFor pure Minkowski spacetime, we have that by default and Equation (A17) reduces as:
Appendix B. General Perturbed Torsion-Based Field Equation via Linearization
Appendix C. The Derivation of Minkowski Spacetime Symmetries: Conditions for Stability
Appendix C.1. Rotation/Boost Perturbation
- Torsion scalar perturbation : by using Equation (A8) and by substituting Equation (39) inside, we obtain the expression:We need to impose to obtain the final result for Equation (A22).
- Superpotential perturbation : by using Equation (A13) and by substituting Equation (39) inside, we obtain the expression:We need to impose to obtain the final result for Equation (A23).
- Weitzenbock connection perturbation : from the null covariant derivative criteria, we make the following derivation as:
Appendix C.2. General Linear Perturbation
- The torsion scalar perturbation :We again need to impose as for Equation (A22) to obtain Equation (A25).
- The superpotential perturbation is expressed as:
References
- Peskin, M.; Schroeder, D. An Introduction to Quantum Field Theory; Perseus Books: New York, NY, USA, 1995. [Google Scholar]
- Srednicki, M. Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Schiff, J. Quantum Mechanics, 1st ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1949. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics; Prentice Hall: Pearson, NJ, USA, 1995. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principe and Applications of the General Theory of Relativity; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Misner, C.; Thorne, K.; Wheeler, J. Gravitation; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Griffiths, J.; Podolsky, J. Exact Spacetimes in Einstein’s General Relativity; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Will, C. Theory and Experiment in Gravitational Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Landry, A.; Hammad, F. Landau levels in a gravitational field: The Schwarzschild spacetime case. Universe 2021, 7, 144. [Google Scholar] [CrossRef]
- Hammad, F.; Landry, A. Landau levels in a gravitational field: The Levi-Civita and Kerr spacetimes case. Eur. Phys. J. Plus 2020, 135, 90. [Google Scholar] [CrossRef]
- Hammad, F.; Landry, A.; Mathieu, K. Prospects on the possibility of testing the inverse-square law and gravitomagnetism using quantum interference. Int. J. Mod. Phys. D 2021, 30, 2150004. [Google Scholar] [CrossRef]
- Hammad, F.; Landry, A.; Mathieu, K. A fresh look at the influence of gravity on the quantum Hall effect. Eur. Phys. J. Plus 2020, 135, 449. [Google Scholar] [CrossRef]
- Ellis, G.; van Elst, H. Cosmological Models. Cargèse Lect. 1998, arXiv:gr-qc/9812046. [Google Scholar]
- de Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Teleparallel Gravity: An Overview. arXiv 2000, arXiv:gr-qc/0011087. [Google Scholar]
- Aldrovandi, R.; Pereira, J. An Introduction to Teleparallel Gravity; Springer: Berlin, Germany, 2013. [Google Scholar]
- Bahamonde, S.; Dialektopoulos, K.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. arXiv 2021, arXiv:gr-qc/2106.13793. [Google Scholar] [CrossRef] [PubMed]
- McNutt, D.; Coley, A.; van den Hoogen, R. Teleparallel geometries not characterized by their scalar polynomial Torsion invariants. J. Math. Phys. 2021, 62, 052501. [Google Scholar] [CrossRef]
- Coley, A.; van den Hoogen, R.; McNutt, D. Symmetry and equivalence in Teleparallel gravity. J. Math. Phys. 2020, 61, 072503. [Google Scholar] [CrossRef]
- Krssak, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef]
- Coley, A.; van den Hoogen, R.; McNutt, D. Symmetric Teleparallel geometries. Class. Quant. Grav. 2022, 39, 22LT01. [Google Scholar] [CrossRef]
- Coley, A.; Gholami, F.; van den Hoogen, R.; Landry, A.; McNutt, D. TdS geometries. 2022; in preparation. [Google Scholar]
- Golovnev, A.; Guzman, M. Non-trivial Minkowski backgrounds in f(T) gravity. arXiv 2020, arXiv:gr-qc/2012.00696. [Google Scholar]
- Jimenez, J.; Golovnev, A.; Koivisto, T.; Veermae, H. Minkowski space in f(T) gravity. Phys. Rev. D 2021, 103, 024054. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T. Cosmological perturbations in modified teleparallel gravity models. J. Cosmol. Astropart. Phys. 2018, 11, 012. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.; Hohmann, M.; Said, J.; Pfeifer, C.; Saridakis, E. Perturbations in Non-Flat Cosmology for F(T) gravity. Eur. Phys. J. C 2023, 83, 193. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; De Laurentis, M.; Nojiri, S.; Sáez-Gómez, D. No further gravitational wave modes in F(T) gravity. arXiv 2013, arXiv:gr-qc/1309.2698. [Google Scholar] [CrossRef]
- Cai, Y.F.; Li, C.; Saridakis, E.; Xue, L.Q. f(T) gravity after GW170817 and GRB170817A. Phys. Rev. D 2018, 97, 103513. [Google Scholar] [CrossRef]
- de Andrade, V.; Guillen, L.; Pereira, J. Teleparallel Spin Connection. Phys. Rev. D 2001, 64, 027502. [Google Scholar] [CrossRef]
- Hohmann, M. Teleparallel gravity. arXiv 2022, arXiv:gr-qc/2207.06438. [Google Scholar]
- Hashim, M.; El Hanafy, W.; Golovnev, A.; El-Zant, A. Toward a Concordance Teleparallel Cosmology I: Background Dynamics. J. Cosmol. Astropart. Phys. (JCAP) 2021, 07, 052. [Google Scholar] [CrossRef]
- Mandal, S.; Sahoo, P. A Complete Cosmological Scenario in Teleparallel Gravity. Eur. Phys. J. Plus 2020, 135, 706. [Google Scholar] [CrossRef]
- Trautman, A. Einstein-Cartan Theory. Encycl. Math. Phys. 2006, 2, 189–195. [Google Scholar]
- Hayashi, K.; Shirafuji, T. New General Relativity. Phys. Rev. D 1979, 19, 3524–3553, Addendum in Phys. Rev. D 1982, 24, 3312–3314. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Garg, M.; Heisenberg, L. Non-linear extension of non-metricity scalar for MOND. Phys. Lett B 2020, 811, 135970. [Google Scholar] [CrossRef]
- Jarv, L.; Runkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of General Relativity and its Scalar-Tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T.; Sandstad, M. On the covariance of teleparallel gravity theories. Class. Quantum Gravity 2017, 34, 145013. [Google Scholar] [CrossRef]
- Krssak, M.; Saridakis, E. The covariant formulation of f(T) gravity. Class. Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Beltran, J.J.; Koivisto, T. Accidental gauge symmetries of Minkowski spacetime in Teleparallel theories. Universe 2021, 7, 143. [Google Scholar] [CrossRef]
- Christodoulou, D.; Klainerman, S. The global nonlinear stability of the Minkowski space. In Séminaire Équations aux dérivées partielles (Polytechnique); Ecole Polytechnique, Centre de Mathématiques: Palaiseau, France, 1989–1990; pp. 1–29. [Google Scholar]
- Shen, D. Stability of Minkowski spacetime in exterior regions. arXiv 2022, arXiv:gr-qc/2211.15230. [Google Scholar]
- LeFloch, P.; Ma, Y. The global nonlinear stability of Minkowski space, Einstein equations, f(R) modified gravity, and Klein-Gordon fields. arXiv 2017, arXiv:gr-qc/1712.10045. [Google Scholar]
- Lindblad, H.; Rodnianski, I. The global stability of Minkowski space-time in harmonic gauge. Ann. Math. 2010, 171, 1401–1477. [Google Scholar] [CrossRef]
- McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy groups. J. Math. Phys. 2023, 64, 032503. [Google Scholar] [CrossRef]
- Coley, A.A.; van den Hoogen, R.J.; Landry, A.; McNutt, D.D. Spherically symmetric teleparallel geometries. 2023; in preparation. [Google Scholar]
- Li, M.; Miao, R.X.; Miao, Y.G. Degrees of freedom of f(T) gravity. J. High Energy Phys. 2011, 1107, 108. [Google Scholar] [CrossRef]
- Ferraro, R.; Guzmán, M.J. Hamiltonian formalism for f(T) gravity. Phys. Rev. 2018, D97, 104028. [Google Scholar] [CrossRef]
- Blagojevic, M.; Nester, J.M. Local symmetries and physical degrees of freedom in f(T) gravity: A Dirac Hamiltonian constraint analysis. Phys. Rev. D 2020, 102, 064025. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzmán, M.J. Foundational issues in f(T) gravity theory. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2140007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landry, A.; van den Hoogen, R.J. Teleparallel Minkowski Spacetime with Perturbative Approach for Teleparallel Gravity on a Proper Frame. Universe 2023, 9, 232. https://doi.org/10.3390/universe9050232
Landry A, van den Hoogen RJ. Teleparallel Minkowski Spacetime with Perturbative Approach for Teleparallel Gravity on a Proper Frame. Universe. 2023; 9(5):232. https://doi.org/10.3390/universe9050232
Chicago/Turabian StyleLandry, Alexandre, and Robert J. van den Hoogen. 2023. "Teleparallel Minkowski Spacetime with Perturbative Approach for Teleparallel Gravity on a Proper Frame" Universe 9, no. 5: 232. https://doi.org/10.3390/universe9050232
APA StyleLandry, A., & van den Hoogen, R. J. (2023). Teleparallel Minkowski Spacetime with Perturbative Approach for Teleparallel Gravity on a Proper Frame. Universe, 9(5), 232. https://doi.org/10.3390/universe9050232