Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives
Abstract
:1. Introduction
2. Klein–Gordon Equation in Aether-like Lorentz Symmetry Violation Scenario with Higher-Order Derivatives
3. The Casimir Effect in the Context of Higher-Order Derivatives Lorentz Symmetry Violation
3.1. Dirichlet Condition
3.1.1. Vector Parallel to the Plates
- For the case :
- For the case :
- For :
- For :
- (i)
- The LV Casimir energy, , for large values of , can be obtained by using the asymptotic expression for the modified Bessel function for large arguments [35]:
- (ii)
- For , it is better to consider Equation (34):
- In the case , expression (34) becomes
We can approximate the integrand as shown below and obtain a series expansion, i.e.,The LV Casimir pressure can be obtained through the standard procedure:Taking the approximated expression (42), we obtain:- In the case , expression (34) becomes:
3.1.2. Vector Perpendicular to the Plates
- For :
- For :
- (i)
- For large values of , and using the asymptotic expression (39) for the modified Bessel function, the dominant term provides,
- For case :
- For case :
- (ii)
- For , we have to take the integral representation (63)
3.2. Neumann Condition
3.3. Mixed Boundary Condition
- First configuration,
- Second configuration,
3.3.1. Vector Parallel to the Plates
- For :
- For :
- (i)
- For large arguments, , the modified Bessel can be expressed in an exponential form as shown in (39); consequently the dominant term, , provides
- (ii)
- In order to analyze the case for , let us consider :
- In the case , expression (103) becomes
- In the case , expression (103) becomes:
3.3.2. Vector Perpendicular to the Plates
- For :
- For :
- (i)
- For large arguments, , we can use the asymptotic form for the modified Bessel function, Equation (39), and taking the dominant term, , we obtain that
- For case :
- For case :
- (ii)
- For :
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casimir, H.G.B. Intrinsic On the Attraction Between Two Perfectly Conducting Plates. Indag. Math. 1948, 10, 261–263. [Google Scholar]
- Sparnaay, M.J. Measurements of attractive forces between flat plates. Physica 1958, 24, 751–764. [Google Scholar] [CrossRef]
- Lamoureux, S.K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 1997, 78, 5. [Google Scholar] [CrossRef]
- Mohideen, U.; Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 1998, 81, 4549. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed]
- Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Alexandre, J.; Farakos, K.; Tsapalis, A. Liouville–Lifshitz theory in 3 + 1 dimensions. Phys. Rev. D 2010, 81, 105029. [Google Scholar] [CrossRef]
- Farias, C.F.; Gomes, M.; Nascimento, J.R.; Petrov, A.Y.; da Silva, A.J. Effective potential for Horava-Lifshitz-like theories. Phys. Rev. D 2012, 85, 127701. [Google Scholar] [CrossRef]
- Lima, A.M.; Nascimento, J.R.; Petrov, A.Y.; Ribeiro, R.F. Gauge dependence of the effective potential for Horava-Lifshitz-like theories. Phys. Rev. D 2015, 91, 025027. [Google Scholar] [CrossRef]
- Iengo, R.; Russo, J.; Serone, M. Renormalization group in Lifshitz-type theories. J. High Energy Phys. 2009, 2009, 020. [Google Scholar] [CrossRef]
- Iengo, R.; Serone, M. A simple UV completion of QED in 5 dimensions. Phys. Rev. D 2010, 81, 125005. [Google Scholar] [CrossRef]
- Gomes, P.R.S.; Gomes, M. Higher spatial derivative field theories. Phys. Rev. D 2012, 85, 085018. [Google Scholar] [CrossRef]
- Gomes, P.R.; Gomes, M. Ward identities in Lifshitz-like field theories. Phys. Rev. D 2012, 85, 065010. [Google Scholar] [CrossRef]
- Carroll, S.M.; Harvey, J.A.; Kostelecky, V.A.; Lane, C.D.; Okamoto, T. Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar] [CrossRef]
- Anisimov, A.; Banks, T.; Dine, M.; Graesser, M. Remarks on noncommutative phenomenology. Phys. Rev. D 2002, 65, 085032. [Google Scholar] [CrossRef]
- Carlson, C.E.; Carone, C.D.; Lebed, R.F. Bounding noncommutative QCD. Phys. Lett. B 2001, 518, 201–206. [Google Scholar] [CrossRef]
- Hewett, J.L.; Petriello, F.J.; Rizzo, T.G. Signals for noncommutative interactions at linear colliders. Phys. Rev. D 2001, 64, 075012. [Google Scholar] [CrossRef]
- Bertolami, O.; Guisado, L. Noncommutative field theory and violation of translation invariance. J. High Energy Phys. 2003, 0312, 013. [Google Scholar] [CrossRef]
- Frank, M.; Turan, I. Casimir force in a Lorentz violating theory. Phys. Rev. D 2006, 74, 033016. [Google Scholar] [CrossRef]
- Martin-Ruiz, A.; Escobar, C. Casimir effect between ponderable media as modeled by the standard model extension. Phys. Rev. D 2016, 94, 076010. [Google Scholar] [CrossRef]
- Martín-Ruiz, A.; Escobar, C.A. Local effects of the quantum vacuum in Lorentz-violating electrodynamics. Phys. Rev. D 2017, 95, 036011. [Google Scholar] [CrossRef]
- Ulion, I.J.M.; Bezerra de Mello, E.R.; Petrov, A.Y. Casimir effect in Horava–Lifshitz-like theories. Int. J. Mod. Phys. A 2015, 30, 1550220. [Google Scholar] [CrossRef]
- da Silva, D.R.; Cruz, M.B.; Bezerra de Mello, E.R. Fermionic Casimir effect in Horava–Lifshitz theories. Int. J. Mod. Phys. A 2019, 34, 1950107. [Google Scholar] [CrossRef]
- Maluf, R.V.; Dantas, D.M.; Almeida, C.A.S. The Casimir effect for the scalar and Elko fields in a Lifshitz-like field theory. Eur. Phys. J. C 2020, 80, 442. [Google Scholar] [CrossRef]
- Cruz, M.B.; Bezerra de Mello, E.R.; Petrov, A.Y. Casimir effects in Lorentz-violating scalar field theory. Phys. Rev. D 2017, 96, 045019. [Google Scholar] [CrossRef]
- Cruz, M.B.; Bezerra de Mello, E.R.; Petrov, A.Y. Fermionic Casimir effect in a field theory model with Lorentz symmetry violation. Phys. Rev. D 2019, 99, 085012. [Google Scholar] [CrossRef]
- Escobar, C.A.; Medel, L.; Martín-Ruiz, A. Casimir effect in Lorentz-violating scalar field theory: A local approach. Phys. Rev. D 2020, 101, 095011. [Google Scholar] [CrossRef]
- Escobar, C.A.; Martín-Ruiz, A.; Franca, O.J.; Garcia, M.A. A non-perturbative approach to the scalar Casimir effect with Lorentz symmetry violation. Phys. Lett. B 2020, 807, 135567. [Google Scholar] [CrossRef]
- Erdas, A. Casimir effect of a Lorentz-violating scalar in magnetic field. Int. J. Mod. Phys. A 2020, 35, 2050209. [Google Scholar] [CrossRef]
- Cruz, M.B.; Bezerra de Mello, E.R.; Petrov, A.Y. Thermal corrections to the Casimir energy in a Lorentz-breaking scalar field theory. Mod. Phys. Lett. A 2018, 33, 1850115. [Google Scholar] [CrossRef]
- Cruz, M.B.; Bezerra de Mello, E.R.; Santana Mota, H.F. Casimir energy and topological mass for a massive scalar field with Lorentz violation. Phys. Rev. D 2020, 102, 045006. [Google Scholar] [CrossRef]
- Farias, A.J.D., Jr.; Santana Mota, H.F. Loop correction to the scalar Casimir energy density and generation of topological mass due to a helix boundary condition in a scenario with Lorentz violation. Int. J. Mod. Phys. D 2022, 31, 2250126. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Abramowitz, M.; Stegun, A. Handbook of Mathematical Functions, 9th ed.; Dover Publications: Mineola, NY, USA, 1965. [Google Scholar]
- Harris, B.W.; Chen, F.; Mohideen, U. Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 2000, 62, 052109. [Google Scholar] [CrossRef]
- da Silva, D.R.; Bezerra de Mello, E.R. Electromagnetic Casimir effect in a Lorentz symmetry violation model. arXiv 2020, arXiv:2006.12924. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dantas, R.A.; Mota, H.F.S.; Bezerra de Mello, E.R. Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives. Universe 2023, 9, 241. https://doi.org/10.3390/universe9050241
Dantas RA, Mota HFS, Bezerra de Mello ER. Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives. Universe. 2023; 9(5):241. https://doi.org/10.3390/universe9050241
Chicago/Turabian StyleDantas, Robson A., Herondy F. Santana Mota, and Eugênio R. Bezerra de Mello. 2023. "Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives" Universe 9, no. 5: 241. https://doi.org/10.3390/universe9050241
APA StyleDantas, R. A., Mota, H. F. S., & Bezerra de Mello, E. R. (2023). Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives. Universe, 9(5), 241. https://doi.org/10.3390/universe9050241