The Purport of Space Telescopes in Supernova Research
Abstract
:1. Introduction
1.1. The Importance of Supernovae in Astrophysics
1.2. Supernova Types and Explosion Mechanisms
2. Supernova Progenitor Scenarios
2.1. Core-Collapse SNe
2.2. Thermonuclear SNe
2.3. Superluminous Supernovae (SLSNe)
3. Early-Phase Observations
4. Circumstellar Interaction and Dust Formation in SN Environments
4.1. A Detailed View of Interaction Processes: SN 1987A
4.2. A Multiwavelength Picture of SN–CSM Interaction
4.3. Dust in SNe and in SN Remnants
5. SNe as Distance Indicators, and Cosmological Implications
6. Future Plans
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baade, W.; Zwicky, F. On Super-novae. Contrib. Mt. Wilson Obs. 1934, 3, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; della Valle, M.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Groom, D.E.; Hook, I.M.; et al. Discovery of a supernova explosion at half the age of the Universe. Nature 1998, 391, 51–54. [Google Scholar] [CrossRef]
- Thielemann, F.K.; Isern, J.; Perego, A.; von Ballmoos, P. Nucleosynthesis in Supernovae. Space Sci. Rev. 2018, 214, 62. [Google Scholar] [CrossRef]
- O’Connor, E. The Core-Collapse Supernova-Black Hole Connection. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 1555. [Google Scholar] [CrossRef]
- Riess, A.G. The expansion of the Universe is faster than expected. Nat. Rev. Phys. 2020, 2, 10–12. [Google Scholar] [CrossRef]
- Quimby, R.M.; Kulkarni, S.R.; Kasliwal, M.M.; Gal-Yam, A.; Arcavi, I.; Sullivan, M.; Nugent, P.; Thomas, R.; Howell, D.A.; Nakar, E.; et al. Hydrogen-poor superluminous stellar explosions. Nature 2011, 474, 487–489. [Google Scholar] [CrossRef]
- Gal-Yam, A. The Most Luminous Supernovae. Annu. Rev. Astron. Astrophys. 2019, 57, 305–333. [Google Scholar] [CrossRef]
- Nicholl, M. Superluminous supernovae: An explosive decade. Astron. Geophys. 2021, 62, 5.34–5.42. [Google Scholar] [CrossRef]
- Minkowski, R. Spectra of Supernovae. Publ. Astron. Soc. Pac. 1941, 53, 224. [Google Scholar] [CrossRef]
- Zwicky, F. Stellar Structure, Stars and Stellar Systems; The Chicago University Press: Chicago, IL, USA, 1965; Volume 8, p. 367. [Google Scholar]
- Filippenko, A.V. Optical Spectra of Supernovae. Annu. Rev. Astron. Astrophys. 1997, 35, 309–355. [Google Scholar] [CrossRef]
- Branch, D.; Wheeler, J.C. Supernova Explosions; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Gal-Yam, A.; Bruch, R.; Schulze, S.; Yang, Y.; Perley, D.A.; Irani, I.; Sollerman, J.; Kool, E.C.; Soumagnac, M.T.; Yaron, O.; et al. A WC/WO star exploding within an expanding carbon-oxygen-neon nebula. arXiv 2021, arXiv:2111.12435. [Google Scholar] [CrossRef]
- Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; Kouveliotou, C.; Augusteijn, T.; Böhnhardt, H.; Brewer, J.P.; Doublier, V.; Gonzalez, J.F.; Leibundgut, B.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 1998, 395, 670–672. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Frail, D.A.; Wieringa, M.H.; Ekers, R.D.; Sadler, E.M.; Wark, R.M.; Higdon, J.L.; Phinney, E.S.; Bloom, J.S. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 1998, 395, 663–669. [Google Scholar] [CrossRef]
- Hjorth, J.; Sollerman, J.; Møller, P.; Fynbo, J.P.U.; Woosley, S.E.; Kouveliotou, C.; Tanvir, N.R.; Greiner, J.; Andersen, M.I.; Castro-Tirado, A.J.; et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 2003, 423, 847–850. [Google Scholar] [CrossRef]
- Stanek, K.Z.; Matheson, T.; Garnavich, P.M.; Martini, P.; Berlind, P.; Caldwell, N.; Challis, P.; Brown, W.R.; Schild, R.; Krisciunas, K.; et al. Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. Astrophys. J. 2003, 591, L17–L20. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Chakraborti, S.; Pignata, G.; Chevalier, R.A.; Chandra, P.; Ray, A.; Wieringa, M.H.; Copete, A.; Chaplin, V.; Connaughton, V.; et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 2010, 463, 513–515. [Google Scholar] [CrossRef]
- Pignata, G.; Stritzinger, M.; Soderberg, A.; Mazzali, P.; Phillips, M.M.; Morrell, N.; Anderson, J.P.; Boldt, L.; Campillay, A.; Contreras, C.; et al. SN 2009bb: A Peculiar Broad-lined Type Ic Supernova. Astrophys. J. 2011, 728, 14. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Corsi, A.; Cenko, S.B.; Taddia, F.; Kulkarni, S.R.; Adams, S.; De, K.; Dekany, R.; Frederiks, D.D.; Fremling, C.; et al. The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw): An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission. Astrophys. J. 2020, 893, 132. [Google Scholar] [CrossRef]
- Rueda, J.A.; Ruffini, R.; Wang, Y. Induced Gravitational Collapse, Binary-Driven Hypernovae, Long Gramma-ray Bursts and Their Connection with Short Gamma-ray Bursts. Universe 2019, 5, 110. [Google Scholar] [CrossRef]
- Foley, R.J.; Challis, P.J.; Chornock, R.; Ganeshalingam, M.; Li, W.; Marion, G.H.; Morrell, N.I.; Pignata, G.; Stritzinger, M.D.; Silverman, J.M.; et al. Type Iax Supernovae: A New Class of Stellar Explosion. Astrophys. J. 2013, 767, 57. [Google Scholar] [CrossRef]
- Inserra, C. Observational properties of extreme supernovae. Nat. Astron. 2019, 3, 697–705. [Google Scholar] [CrossRef]
- Könyves-Tóth, R.; Vinkó, J. Photospheric Velocity Gradients and Ejecta Masses of Hydrogen-poor Superluminous Supernovae: Proxies for Distinguishing between Fast and Slow Events. Astrophys. J. 2021, 909, 24. [Google Scholar] [CrossRef]
- Hoyle, F.; Fowler, W.A. Nucleosynthesis in Supernovae. Astrophys. J. 1960, 132, 565. [Google Scholar] [CrossRef]
- Janka, H.T. Explosion Mechanisms of Core-Collapse Supernovae. Annu. Rev. Nucl. Part. Sci. 2012, 62, 407–451. [Google Scholar] [CrossRef]
- Janka, H.T.; Melson, T.; Summa, A. Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview. Annu. Rev. Nucl. Part. Sci. 2016, 66, 341–375. [Google Scholar] [CrossRef]
- Janka, H.T. Neutrino-Driven Explosions. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 1095. [Google Scholar] [CrossRef]
- Woosley, S.; janka, T. The physics of core-collapse supernovae. Nat. Phys. 2005, 1, 147–154. [Google Scholar] [CrossRef]
- Burrows, A.; Radice, D.; Vartanyan, D.; Nagakura, H.; Skinner, M.A.; Dolence, J.C. The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. Mon. Not. R. Astron. Soc. 2020, 491, 2715–2735. [Google Scholar] [CrossRef]
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef]
- Podsiadlowski, P. The Progenitor of SN 1987A. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 635. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Foley, R.J. The dusty progenitor star of the Type II supernova 2017eaw. Mon. Not. R. Astron. Soc. 2018, 481, 2536–2547. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Zheng, W.; Maund, J.R.; Brink, T.G.; Srinivasan, S.; Andrews, J.E.; Smith, N.; Leonard, D.C.; Morozova, V.; Filippenko, A.V.; et al. The Type II-plateau Supernova 2017eaw in NGC 6946 and Its Red Supergiant Progenitor. Astrophys. J. 2019, 875, 136. [Google Scholar] [CrossRef]
- O’Neill, D.; Kotak, R.; Fraser, M.; Sim, S.A.; Benetti, S.; Smartt, S.J.; Mattila, S.; Ashall, C.; Callis, E.; Elias-Rosa, N.; et al. A progenitor candidate for the type II-P supernova SN 2018aoq in NGC 4151. Astron. Astrophys. 2019, 622, L1. [Google Scholar] [CrossRef]
- Davies, B.; Beasor, E.R. The ’red supergiant problem’: The upper luminosity boundary of Type II supernova progenitors. Mon. Not. R. Astron. Soc. 2020, 493, 468–476. [Google Scholar] [CrossRef]
- Kochanek, C.S. On the red supergiant problem. Mon. Not. R. Astron. Soc. 2020, 493, 4945–4949. [Google Scholar] [CrossRef]
- Davies, B.; Beasor, E.R. ’On the red supergiant problem’: A rebuttal, and a consensus on the upper mass cut-off for II-P progenitors. Mon. Not. R. Astron. Soc. 2020, 496, L142–L146. [Google Scholar] [CrossRef]
- Williams, B.F.; Hillis, T.J.; Murphy, J.W.; Gilbert, K.; Dalcanton, J.J.; Dolphin, A.E. Constraints for the Progenitor Masses of Historic Core-collapse Supernovae. Astrophys. J. 2018, 860, 39. [Google Scholar] [CrossRef]
- Tartaglia, L.; Fraser, M.; Sand, D.J.; Valenti, S.; Smartt, S.J.; McCully, C.; Anderson, J.P.; Arcavi, I.; Elias-Rosa, N.; Galbany, L.; et al. The Progenitor and Early Evolution of the Type IIb SN 2016gkg. Astrophys. J. 2017, 836, L12. [Google Scholar] [CrossRef]
- Cao, Y.; Kasliwal, M.M.; Arcavi, I.; Horesh, A.; Hancock, P.; Valenti, S.; Cenko, S.B.; Kulkarni, S.R.; Gal-Yam, A.; Gorbikov, E.; et al. Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn. Astrophys. J. 2013, 775, L7. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Zheng, W.; Brink, T.G.; Filippenko, A.V.; Milisavljevic, D.; Andrews, J.E.; Smith, N.; Cignoni, M.; Fox, O.D.; Kelly, P.L.; et al. SN 2017ein and the Possible First Identification of a Type Ic Supernova Progenitor. Astrophys. J. 2018, 860, 90. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Drout, M.R.; Auchettl, K.; Dimitriadis, G.; Foley, R.J.; Jones, D.O.; DeMarchi, L.; French, K.D.; Gall, C.; Hjorth, J.; et al. A cool and inflated progenitor candidate for the Type Ib supernova 2019yvr at 2.6 yr before explosion. Mon. Not. R. Astron. Soc. 2021, 504, 2073–2093. [Google Scholar] [CrossRef]
- Maund, J.R.; Ramirez-Ruiz, E. A high mass progenitor for the Type Ic Supernova 2007gr inferred from its environment. Mon. Not. R. Astron. Soc. 2016, 456, 3175–3185. [Google Scholar] [CrossRef]
- Whelan, J.; Iben, I., Jr. Binaries and Supernovae of Type I. Astrophys. J. 1973, 186, 1007–1014. [Google Scholar] [CrossRef]
- Iben, I., Jr.; Tutukov, A.V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 1984, 54, 335–372. [Google Scholar] [CrossRef]
- Nomoto, K.; Thielemann, F.K.; Yokoi, K. Accreting white dwarf models for type I supern. III. Carbon deflagration supernovae. Astrophys. J. 1984, 286, 644–658. [Google Scholar] [CrossRef]
- Khokhlov, A.M. Delayed detonation model for type IA supernovae. Astron. Astrophys. 1991, 245, 114–128. [Google Scholar]
- Dessart, L.; Blondin, S.; Hillier, D.J.; Khokhlov, A. Constraints on the explosion mechanism and progenitors of Type Ia supernovae. Mon. Not. R. Astron. Soc. 2014, 441, 532–550. [Google Scholar] [CrossRef]
- Woosley, S.E.; Weaver, T.A. Sub—Chandrasekhar Mass Models for Type IA Supernovae. Astrophys. J. 1994, 423, 371. [Google Scholar] [CrossRef]
- Fink, M.; Röpke, F.K.; Hillebrandt, W.; Seitenzahl, I.R.; Sim, S.A.; Kromer, M. Double-detonation sub-Chandrasekhar supernovae: Can minimum helium shell masses detonate the core? Astron. Astrophys. 2010, 514, A53. [Google Scholar] [CrossRef]
- Kromer, M.; Sim, S.A.; Fink, M.; Röpke, F.K.; Seitenzahl, I.R.; Hillebrandt, W. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models. Astrophys. J. 2010, 719, 1067–1082. [Google Scholar] [CrossRef]
- Sim, S.A.; Röpke, F.K.; Hillebrandt, W.; Kromer, M.; Pakmor, R.; Fink, M.; Ruiter, A.J.; Seitenzahl, I.R. Detonations in Sub-Chandrasekhar-mass C+O White Dwarfs. Astrophys. J. 2010, 714, L52–L57. [Google Scholar] [CrossRef]
- Sim, S.A.; Fink, M.; Kromer, M.; Röpke, F.K.; Ruiter, A.J.; Hillebrandt, W. 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Mon. Not. R. Astron. Soc. 2012, 420, 3003–3016. [Google Scholar] [CrossRef]
- Maoz, D.; Mannucci, F.; Nelemans, G. Observational Clues to the Progenitors of Type Ia Supernovae. Annu. Rev. Astron. Astrophys. 2014, 52, 107–170. [Google Scholar] [CrossRef]
- van Rossum, D.R.; Kashyap, R.; Fisher, R.; Wollaeger, R.T.; García-Berro, E.; Aznar-Siguán, G.; Ji, S.; Lorén-Aguilar, P. Light Curves and Spectra from a Thermonuclear Explosion of a White Dwarf Merger. Astrophys. J. 2016, 827, 128. [Google Scholar] [CrossRef]
- Shen, K.J.; Boubert, D.; Gänsicke, B.T.; Jha, S.W.; Andrews, J.E.; Chomiuk, L.; Foley, R.J.; Fraser, M.; Gromadzki, M.; Guillochon, J.; et al. Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae. Astrophys. J. 2018, 865, 15. [Google Scholar] [CrossRef]
- Kelly, P.L.; Fox, O.D.; Filippenko, A.V.; Cenko, S.B.; Prato, L.; Schaefer, G.; Shen, K.J.; Zheng, W.; Graham, M.L.; Tucker, B.E. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-explosion Hubble Space Telescope Imaging. Astrophys. J. 2014, 790, 3. [Google Scholar] [CrossRef]
- Graur, O.; Woods, T.E. Progenitor constraints on the Type Ia supernova SN 2014J from Hubble Space Telescope H β and [O III] observations. Mon. Not. R. Astron. Soc. 2019, 484, L79–L84. [Google Scholar] [CrossRef]
- Graur, O.; Maoz, D.; Shara, M.M. Progenitor constraints on the Type-Ia supernova SN2011fe from pre-explosion Hubble Space Telescope HeII narrow-band observations. Mon. Not. R. Astron. Soc. 2014, 442, L28–L32. [Google Scholar] [CrossRef]
- McCully, C.; Jha, S.W.; Foley, R.J.; Bildsten, L.; Fong, W.F.; Kirshner, R.P.; Marion, G.H.; Riess, A.G.; Stritzinger, M.D. A luminous, blue progenitor system for the type Iax supernova 2012Z. Nature 2014, 512, 54–56. [Google Scholar] [CrossRef]
- McCully, C.; Jha, S.W.; Scalzo, R.A.; Howell, D.A.; Foley, R.J.; Zeng, Y.; Liu, Z.W.; Hosseinzadeh, G.; Bildsten, L.; Riess, A.G.; et al. Still Brighter than Pre-explosion, SN 2012Z Did Not Disappear: Comparing Hubble Space Telescope Observations a Decade Apart. Astrophys. J. 2022, 925, 138. [Google Scholar] [CrossRef]
- Maeda, K.; Tanaka, M.; Nomoto, K.; Tominaga, N.; Kawabata, K.; Mazzali, P.A.; Umeda, H.; Suzuki, T.; Hattori, T. The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star. Astrophys. J. 2007, 666, 1069–1082. [Google Scholar] [CrossRef]
- Kasen, D. Seeing the Collision of a Supernova with Its Companion Star. Astrophys. J. 2010, 708, 1025–1031. [Google Scholar] [CrossRef]
- Inserra, C.; Smartt, S.J.; Jerkstrand, A.; Valenti, S.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.W.; Kotak, R.; Pastorello, A.; et al. Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail. Astrophys. J. 2013, 770, 128. [Google Scholar] [CrossRef]
- Nicholl, M.; Guillochon, J.; Berger, E. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT. Astrophys. J. 2017, 850, 55. [Google Scholar] [CrossRef]
- Dessart, L.; Hillier, D.J.; Waldman, R.; Livne, E.; Blondin, S. Superluminous supernovae: 56Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 2012, 426, L76–L80. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Sullivan, M.; Pian, E.; Greiner, J.; Kann, D.A. Spectrum formation in superluminous supernovae (Type I). Mon. Not. R. Astron. Soc. 2016, 458, 3455–3465. [Google Scholar] [CrossRef]
- Jerkstrand, A.; Smartt, S.J.; Inserra, C.; Nicholl, M.; Chen, T.W.; Krühler, T.; Sollerman, J.; Taubenberger, S.; Gal-Yam, A.; Kankare, E.; et al. Long-duration Superluminous Supernovae at Late Times. Astrophys. J. 2017, 835, 13. [Google Scholar] [CrossRef]
- Chen, T.W.; Smartt, S.J.; Jerkstrand, A.; Nicholl, M.; Bresolin, F.; Kotak, R.; Polshaw, J.; Rest, A.; Kudritzki, R.; Zheng, Z.; et al. The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 2015, 452, 1567–1586. [Google Scholar] [CrossRef]
- Vreeswijk, P.M.; Leloudas, G.; Gal-Yam, A.; De Cia, A.; Perley, D.A.; Quimby, R.M.; Waldman, R.; Sullivan, M.; Yan, L.; Ofek, E.O.; et al. On the Early-time Excess Emission in Hydrogen-poor Superluminous Supernovae. Astrophys. J. 2017, 835, 58. [Google Scholar] [CrossRef]
- Dexter, J.; Kasen, D. Supernova Light Curves Powered by Fallback Accretion. Astrophys. J. 2013, 772, 30. [Google Scholar] [CrossRef]
- Kasen, D.; Metzger, B.D.; Bildsten, L. Magnetar-driven Shock Breakout and Double-peaked Supernova Light Curves. Astrophys. J. 2016, 821, 36. [Google Scholar] [CrossRef]
- Moriya, T.J.; Sorokina, E.I.; Chevalier, R.A. Superluminous Supernovae. Space Sci. Rev. 2018, 214, 59. [Google Scholar] [CrossRef]
- Gal-Yam, A.; Mazzali, P.; Ofek, E.O.; Nugent, P.E.; Kulkarni, S.R.; Kasliwal, M.M.; Quimby, R.M.; Filippenko, A.V.; Cenko, S.B.; Chornock, R.; et al. Supernova 2007bi as a pair-instability explosion. Nature 2009, 462, 624–627. [Google Scholar] [CrossRef]
- Kasen, D.; Woosley, S.E.; Heger, A. Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout. Astrophys. J. 2011, 734, 102. [Google Scholar] [CrossRef]
- Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Jones, D.O.; Rest, A.; Fong, W.; Fransson, C.; Margutti, R.; Drout, M.R.; et al. PS1-14bj: A Hydrogen-poor Superluminous Supernova With a Long Rise and Slow Decay. Astrophys. J. 2016, 831, 144. [Google Scholar] [CrossRef]
- Woosley, S.E.; Blinnikov, S.; Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 2007, 450, 390–392. [Google Scholar] [CrossRef]
- Woosley, S.E. Pulsational Pair-instability Supernovae. Astrophys. J. 2017, 836, 244. [Google Scholar] [CrossRef]
- Yan, L.; Lunnan, R.; Perley, D.A.; Gal-Yam, A.; Yaron, O.; Roy, R.; Quimby, R.; Sollerman, J.; Fremling, C.; Leloudas, G.; et al. Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophys. J. 2017, 848, 6. [Google Scholar] [CrossRef]
- Inserra, C.; Nicholl, M.; Chen, T.W.; Jerkstrand, A.; Smartt, S.J.; Krühler, T.; Anderson, J.P.; Baltay, C.; Della Valle, M.; Fraser, M.; et al. Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Mon. Not. R. Astron. Soc. 2017, 468, 4642–4662. [Google Scholar] [CrossRef]
- Nicholl, M.; Smartt, S.J.; Jerkstrand, A.; Inserra, C.; Sim, S.A.; Chen, T.W.; Benetti, S.; Fraser, M.; Gal-Yam, A.; Kankare, E.; et al. On the diversity of superluminous supernovae: Ejected mass as the dominant factor. Mon. Not. R. Astron. Soc. 2015, 452, 3869–3893. [Google Scholar] [CrossRef]
- Bellm, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; Adams, S.M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2019, 131, 018002. [Google Scholar] [CrossRef]
- Shappee, B.J.; Prieto, J.L.; Grupe, D.; Kochanek, C.S.; Stanek, K.Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B.M.; Pogge, R.W.; et al. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617. Astrophys. J. 2014, 788, 48. [Google Scholar] [CrossRef]
- Tonry, J.L.; Denneau, L.; Heinze, A.N.; Stalder, B.; Smith, K.W.; Smartt, S.J.; Stubbs, C.W.; Weiland, H.J.; Rest, A. ATLAS: A High-cadence All-sky Survey System. Publ. Astron. Soc. Pac. 2018, 130, 064505. [Google Scholar] [CrossRef]
- Tartaglia, L.; Sand, D.J.; Valenti, S.; Wyatt, S.; Anderson, J.P.; Arcavi, I.; Ashall, C.; Botticella, M.T.; Cartier, R.; Chen, T.W.; et al. The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am. Astrophys. J. 2018, 853, 62. [Google Scholar] [CrossRef]
- Förster, F.; Maureira, J.C.; San Martín, J.; Hamuy, M.; Martínez, J.; Huijse, P.; Cabrera, G.; Galbany, L.; de Jaeger, T.; González–Gaitán, S.; et al. The High Cadence Transient Survey (HITS). I. Survey Design and Supernova Shock Breakout Constraints. Astrophys. J. 2016, 832, 155. [Google Scholar] [CrossRef]
- Förster, F.; Moriya, T.J.; Maureira, J.C.; Anderson, J.P.; Blinnikov, S.; Bufano, F.; Cabrera-Vives, G.; Clocchiatti, A.; de Jaeger, T.; Estévez, P.A.; et al. The delay of shock breakout due to circumstellar material evident in most type II supernovae. Nat. Astron. 2018, 2, 808. [Google Scholar] [CrossRef]
- Lipunov, V.; Kornilov, V.; Gorbovskoy, E.; Shatskij, N.; Kuvshinov, D.; Tyurina, N.; Belinski, A.; Krylov, A.; Balanutsa, P.; Chazov, V.; et al. Master Robotic Net. Adv. Astron. 2010, 2010, 349171. [Google Scholar] [CrossRef]
- Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al.; Gaia Collaboration The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef]
- Brown, T.M.; Baliber, N.; Bianco, F.B.; Bowman, M.; Burleson, B.; Conway, P.; Crellin, M.; Depagne, É.; De Vera, J.; Dilday, B.; et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 2013, 125, 1031. [Google Scholar] [CrossRef]
- Kaiser, N.; Aussel, H.; Burke, B.E.; Boesgaard, H.; Chambers, K.; Chun, M.R.; Heasley, J.N.; Hodapp, K.W.; Hunt, B.; Jedicke, R.; et al. Pan-STARRS: A Large Synoptic Survey Telescope Array. In Survey and Other Telescope Technologies and Discoveries; Tyson, J.A., Wolff, S., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2002; Volume 4836, pp. 154–164. [Google Scholar] [CrossRef]
- Smartt, S.J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D.R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; et al. PESSTO: Survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 2015, 579, A40. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Brown, P.J.; Holland, S.T.; Immler, S.; Milne, P.; Roming, P.W.A.; Gehrels, N.; Nousek, J.; Panagia, N.; Still, M.; Vanden Berk, D. Ultraviolet Light Curves of Supernovae with the Swift Ultraviolet/Optical Telescope. AJ 2009, 137, 4517–4525. [Google Scholar] [CrossRef]
- Waxman, E.; Katz, B. Shock Breakout Theory. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 967. [Google Scholar] [CrossRef]
- Caparello, E. Supernovae. ESA Sci. Publ. 1995, 1, 19–24. [Google Scholar]
- Brown, P.J.; Perry, J.M.; Beeny, B.A.; Milne, P.A.; Wang, X. The Ultraviolet Colors of Type Ia Supernovae and Their Photospheric Velocities. Astrophys. J. 2018, 867, 56. [Google Scholar] [CrossRef]
- Fausnaugh, M.M.; Vallely, P.J.; Kochanek, C.S.; Shappee, B.J.; Stanek, K.Z.; Tucker, M.A.; Ricker, G.R.; Vanderspek, R.; Latham, D.W.; Seager, S.; et al. Early-time Light Curves of Type Ia Supernovae Observed with TESS. Astrophys. J. 2021, 908, 51. [Google Scholar] [CrossRef]
- Gezari, S.; Dessart, L.; Basa, S.; Martin, D.C.; Neill, J.D.; Woosley, S.E.; Hillier, D.J.; Bazin, G.; Forster, K.; Friedman, P.G.; et al. Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae. Astrophys. J. 2008, 683, L131. [Google Scholar] [CrossRef]
- Gezari, S.; Jones, D.O.; Sanders, N.E.; Soderberg, A.M.; Hung, T.; Heinis, S.; Smartt, S.J.; Rest, A.; Scolnic, D.; Chornock, R.; et al. GALEX Detection of Shock Breakout in Type IIP Supernova PS1-13arp: Implications for the Progenitor Star Wind. Astrophys. J. 2015, 804, 28. [Google Scholar] [CrossRef]
- Modjaz, M.; Li, W.; Butler, N.; Chornock, R.; Perley, D.; Blondin, S.; Bloom, J.S.; Filippenko, A.V.; Kirshner, R.P.; Kocevski, D.; et al. From Shock Breakout to Peak and Beyond: Extensive Panchromatic Observations of the Type Ib Supernova 2008D Associated with Swift X-ray Transient 080109. Astrophys. J. 2009, 702, 226–248. [Google Scholar] [CrossRef]
- Leloudas, G.; Chatzopoulos, E.; Dilday, B.; Gorosabel, J.; Vinko, J.; Gallazzi, A.; Wheeler, J.C.; Bassett, B.; Fischer, J.A.; Frieman, J.A.; et al. SN 2006oz: Rise of a super-luminous supernova observed by the SDSS-II SN Survey. Astron. Astrophys. 2012, 541, A129. [Google Scholar] [CrossRef]
- Nicholl, M.; Smartt, S.J.; Jerkstrand, A.; Sim, S.A.; Inserra, C.; Anderson, J.P.; Baltay, C.; Benetti, S.; Chambers, K.; Chen, T.W.; et al. LSQ14bdq: A Type Ic Super-luminous Supernova with a Double-peaked Light Curve. Astrophys. J. 2015, 807, L18. [Google Scholar] [CrossRef]
- Smith, M.; Sullivan, M.; D’Andrea, C.B.; Castander, F.J.; Casas, R.; Prajs, S.; Papadopoulos, A.; Nichol, R.C.; Karpenka, N.V.; Bernard, S.R.; et al. DES14X3taz: A Type I Superluminous Supernova Showing a Luminous, Rapidly Cooling Initial Pre-peak Bump. Astrophys. J. 2016, 818, L8. [Google Scholar] [CrossRef]
- Gutiérrez, C.P.; Pastorello, A.; Bersten, M.; Benetti, S.; Orellana, M.; Fiore, A.; Karamehmetoglu, E.; Kravtsov, T.; Reguitti, A.; Reynolds, T.M.; et al. SN 2020wnt: A slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. Mon. Not. R. Astron. Soc. 2022, 517, 2056–2075. [Google Scholar] [CrossRef]
- Piro, A.L. Using Double-peaked Supernova Light Curves to Study Extended Material. Astrophys. J. 2015, 808, L51. [Google Scholar] [CrossRef]
- Moriya, T.J.; Maeda, K. A Dip after the Early Emission of Superluminous Supernovae: A Signature of Shock Breakout within Dense Circumstellar Media. Astrophys. J. 2012, 756, L22. [Google Scholar] [CrossRef]
- Garnavich, P.M.; Tucker, B.E.; Rest, A.; Shaya, E.J.; Olling, R.P.; Kasen, D.; Villar, A. Shock Breakout and Early Light Curves of Type II-P Supernovae Observed with Kepler. Astrophys. J. 2016, 820, 23. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Vinkó, J.; Mo, J.; Hosseinzadeh, G.; Sand, D.J.; Zhang, J.; Lin, H.; Zhang, T.; et al.; PTSS/TNTS Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations. Astrophys. J. 2019, 870, 12. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Foley, R.J.; Rest, A.; Kasen, D.; Piro, A.L.; Polin, A.; Jones, D.O.; Villar, A.; Narayan, G.; Coulter, D.A.; et al. K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova. Astrophys. J. 2019, 870, L1. [Google Scholar] [CrossRef]
- Shappee, B.J.; Holoien, T.W.S.; Drout, M.R.; Auchettl, K.; Stritzinger, M.D.; Kochanek, C.S.; Stanek, K.Z.; Shaya, E.; Narayan, G.; ASAS-SN; et al. Seeing Double: ASASSN-18bt Exhibits a Two-component Rise in the Early-time K2 Light Curve. Astrophys. J. 2019, 870, 13. [Google Scholar] [CrossRef]
- Olling, R.P.; Mushotzky, R.; Shaya, E.J.; Rest, A.; Garnavich, P.M.; Tucker, B.E.; Kasen, D.; Margheim, S.; Filippenko, A.V. No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 2015, 521, 332–335. [Google Scholar] [CrossRef]
- Magee, M.R.; Maguire, K. An investigation of 56Ni shells as the source of early light curve bumps in type Ia supernovae. Astron. Astrophys. 2020, 642, A189. [Google Scholar] [CrossRef]
- Levanon, N.; Soker, N. Explaining the Early Excess Emission of the Type Ia Supernova 2018oh by the Interaction of the Ejecta with Disk-originated Matter. Astrophys. J. 2019, 872, L7. [Google Scholar] [CrossRef]
- Vallely, P.J.; Kochanek, C.S.; Stanek, K.Z.; Fausnaugh, M.; Shappee, B.J. High-cadence, early-time observations of core-collapse supernovae from the TESS prime mission. Mon. Not. R. Astron. Soc. 2021, 500, 5639–5656. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Thermal and Non-thermal Emission from Circumstellar Interaction. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 875. [Google Scholar] [CrossRef]
- Smith, N. Interacting Supernovae: Types IIn and Ibn. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 403. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Gal-Yam, A.; Kulkarni, S.R. Type Ic SN2001em (off-axis GRB jet?), optical spectrum. Grb Coord. Netw. 2004, 2586, 1. [Google Scholar]
- Chugai, N.N.; Chevalier, R.A. Late Emission from the Type Ib/c SN 2001em: Overtaking the Hydrogen Envelope. Astrophys. J. 2006, 641, 1051–1059. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Filippenko, A.V.; Zheng, W.; Brink, T.G.; Graham, M.L.; Shivvers, I.; Clubb, K.I. Stripped-envelope supernova SN 2004dk is now interacting with hydrogen-rich circumstellar material. Mon. Not. R. Astron. Soc. 2018, 478, 5050–5055. [Google Scholar] [CrossRef]
- Pooley, D.; Wheeler, J.C.; Vinkó, J.; Dwarkadas, V.V.; Szalai, T.; Silverman, J.M.; Griesel, M.; McCullough, M.; Marion, G.H.; MacQueen, P. Interaction of SN Ib 2004dk with a Previously Expelled Envelope. Astrophys. J. 2019, 883, 120. [Google Scholar] [CrossRef]
- Milisavljevic, D.; Margutti, R.; Kamble, A.; Patnaude, D.J.; Raymond, J.C.; Eldridge, J.J.; Fong, W.; Bietenholz, M.; Challis, P.; Chornock, R.; et al. Metamorphosis of SN 2014C: Delayed Interaction between a Hydrogen Poor Core-collapse Supernova and a Nearby Circumstellar Shell. Astrophys. J. 2015, 815, 120. [Google Scholar] [CrossRef]
- Margutti, R.; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S.E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B.A.; Bietenholz, M.; et al. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C. Astrophys. J. 2017, 835, 140. [Google Scholar] [CrossRef]
- Marcaide, J.M.; Alberdi, A.; Ros, E.; Diamond, P.; Shapiro, I.I.; Guirado, J.C.; Jones, D.L.; Mantovani, F.; Pérez-Torres, M.A.; Preston, R.A.; et al. Deceleration in the Expansion of SN 1993J. ApJL 1997, 486, L31–L34. [Google Scholar] [CrossRef]
- Matheson, T.; Filippenko, A.V.; Ho, L.C.; Barth, A.J.; Leonard, D.C. Detailed Analysis of Early to Late-Time Spectra of Supernova 1993J. Astrophys. J. 2000, 120, 1499–1515. [Google Scholar] [CrossRef]
- Fransson, C.; Chevalier, R.A.; Filippenko, A.V.; Leibundgut, B.; Barth, A.J.; Fesen, R.A.; Kirshner, R.P.; Leonard, D.C.; Li, W.; Lundqvist, P.; et al. Optical and Ultraviolet Spectroscopy of SN 1995N: Evidence for Strong Circumstellar Interaction. Astrophys. J. 2002, 572, 350–370. [Google Scholar] [CrossRef]
- Weiler, K.W.; van der Hulst, J.M.; Sramek, R.A.; Panagia, N. SN 1979 (c) a radio SN. ApJL 1981, 243, L151–L156. [Google Scholar] [CrossRef]
- Weiler, K.W.; Sramek, R.A.; Panagia, N. Radio Studies of Extragalactic Supernovae. Science 1986, 231, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Kotak, R.; Meikle, W.P.S.; Farrah, D.; Gerardy, C.L.; Foley, R.J.; Van Dyk, S.D.; Fransson, C.; Lundqvist, P.; Sollerman, J.; Fesen, R.; et al. Dust and The Type II-Plateau Supernova 2004et. Astrophys. J. 2009, 704, 306–323. [Google Scholar] [CrossRef]
- Andrews, J.E.; Krafton, K.M.; Clayton, G.C.; Montiel, E.; Wesson, R.; Sugerman, B.E.K.; Barlow, M.J.; Matsuura, M.; Drass, H. Early dust formation and a massive progenitor for SN 2011ja? MNRAS 2016, 457, 3241–3253. [Google Scholar] [CrossRef]
- Mauerhan, J.C.; Filippenko, A.V.; Brink, T.G.; Zheng, W. Extremely Strong Polarization Detected in Type IIn Supernova SN 2017hcc (ATLAS17lsn). Astron. Telegr. 2017, 10911, 1. [Google Scholar]
- Weil, K.E.; Fesen, R.A.; Patnaude, D.J.; Milisavljevic, D. Late-time Circumstellar Interaction of SN 2017eaw in NGC 6946. Astrophys. J. 2020, 900, 11. [Google Scholar] [CrossRef]
- Silverman, J.M.; Nugent, P.E.; Gal-Yam, A.; Sullivan, M.; Howell, D.A.; Filippenko, A.V.; Arcavi, I.; Ben-Ami, S.; Bloom, J.S.; Cenko, S.B.; et al. Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium. Astrophys. J. Suppl. Ser. 2013, 207, 3. [Google Scholar] [CrossRef]
- Fox, O.D.; Silverman, J.M.; Filippenko, A.V.; Mauerhan, J.; Becker, J.; Borish, H.J.; Cenko, S.B.; Clubb, K.I.; Graham, M.; Hsiao, E.; et al. On the nature of Type IIn/Ia-CSM supernovae: Optical and near-infrared spectra of SN 2012ca and SN 2013dn. Mon. Not. R. Astron. Soc. 2015, 447, 772–785. [Google Scholar] [CrossRef]
- Inserra, C.; Fraser, M.; Smartt, S.J.; Benetti, S.; Chen, T.W.; Childress, M.; Gal-Yam, A.; Howell, D.A.; Kangas, T.; Pignata, G.; et al. On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca*. Mon. Not. R. Astron. Soc. 2016, 459, 2721–2740. [Google Scholar] [CrossRef]
- Jakobsen, P.; Albrecht, R.; Barbieri, C.; Blades, J.C.; Boksenberg, A.; Crane, P.; Deharveng, J.M.; Disney, M.J.; Kamperman, T.M.; King, I.R.; et al. First Results from the Faint Object Camera: SN 1987A. Astrophys. J. Lett. 1991, 369, L63. [Google Scholar] [CrossRef]
- Fransson, C.; Cassatella, A.; Gilmozzi, R.; Kirshner, R.P.; Panagia, N.; Sonneborn, G.; Wamsteker, W. Narrow Ultraviolet Emission Lines from SN 1987A: Evidence for CNO Processing in the Progenitor. Astrophys. J. 1989, 336, 429. [Google Scholar] [CrossRef]
- Panagia, N.; Gilmozzi, R.; Macchetto, F.; Adorf, H.M.; Kirshner, R.P. Properties of the SN 1987A Circumstellar Ring and the Distance to the Large Magellanic Cloud. Astrophys. J. Lett. 1991, 380, L23. [Google Scholar] [CrossRef]
- Burrows, D.N.; Michael, E.; Hwang, U.; McCray, R.; Chevalier, R.A.; Petre, R.; Garmire, G.P.; Holt, S.S.; Nousek, J.A. The X-ray Remnant of SN 1987A. Astrophys. J. 2000, 543, L149–L152. [Google Scholar] [CrossRef]
- Haberl, F.; Geppert, U.; Aschenbach, B.; Hasinger, G. XMM-Newton observations of <ASTROBJ>SN 1987 A</ASTROBJ>. Astron. Astrophys. 2006, 460, 811–819. [Google Scholar] [CrossRef]
- Bouchet, P.; Dwek, E.; Danziger, J.; Arendt, R.G.; De Buizer, I.J.M.; Park, S.; Suntzeff, N.B.; Kirshner, R.P.; Challis, P. SN 1987A after 18 Years: Mid-Infrared Gemini and Spitzer Observations of the Remnant. Astrophys. J. 2006, 650, 212–227. [Google Scholar] [CrossRef]
- Dwek, E.; Arendt, R.G. Infrared Echoes Reveal the Shock Breakout of the Cas A Supernova. Astrophys. J. 2008, 685, 976–987. [Google Scholar] [CrossRef]
- Arendt, R.G.; Dwek, E.; Bouchet, P.; John Danziger, I.; Gehrz, R.D.; Park, S.; Woodward, C.E. Final Spitzer IRAC Observations of the Rise and Fall of SN 1987A. Astrophys. J. 2020, 890, 2. [Google Scholar] [CrossRef]
- Dwarkadas, V.V. On the lack of X-ray bright Type IIP supernovae. Mon. Not. R. Astron. Soc. 2014, 440, 1917–1924. [Google Scholar] [CrossRef]
- Chandra, P. Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective. Space Sci. Rev. 2018, 214, 27. [Google Scholar] [CrossRef]
- Szalai, T.; Fox, O.D.; Arendt, R.G.; Dwek, E.; Andrews, J.E.; Clayton, G.C.; Filippenko, A.V.; Johansson, J.; Kelly, P.L.; Krafton, K.; et al. Spitzer’s Last Look at Extragalactic Explosions: Long-term Evolution of Interacting Supernovae. Astrophys. J. 2021, 919, 17. [Google Scholar] [CrossRef]
- Gall, C.; Hjorth, J.; Andersen, A.C. Production of dust by massive stars at high redshift. Astron. Astrophys. Rev. 2011, 19, 43. [Google Scholar] [CrossRef]
- Matsuura, M. Dust and Molecular Formation in Supernovae. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 2125. [Google Scholar] [CrossRef]
- Williams, B.J.; Temim, T. Infrared Emission from Supernova Remnants: Formation and Destruction of Dust. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; p. 2105. [Google Scholar] [CrossRef]
- Sarangi, A.; Dwek, E.; Arendt, R.G. Delayed Shock-induced Dust Formation in the Dense Circumstellar Shell Surrounding the Type IIn Supernova SN 2010jl. Astrophys. J. 2018, 859, 66. [Google Scholar] [CrossRef]
- Micelotta, E.R.; Matsuura, M.; Sarangi, A. Dust in Supernovae and Supernova Remnants II: Processing and Survival. Space Sci. Rev. 2018, 214, 53. [Google Scholar] [CrossRef]
- Rank, D.M.; Bregman, J.; Witteborn, F.C.; Cohen, M.; Lynch, D.K.; Russell, R.W. Infrared Observations of SN 1987A from 5.3 to 12.6 Microns: Evidence for an Early Dust Echo. Astrophys. J. Lett. 1988, 325, L1. [Google Scholar] [CrossRef]
- Moseley, S.H.; Dwek, E.; Glaccum, W.; Graham, J.R.; Loewenstein, R.F. Far-infrared observations of thermal dust emission from supernova 1987A. Nature 1989, 340, 697–699. [Google Scholar] [CrossRef]
- Roche, P.F.; Aitken, D.K.; Smith, C.H.; James, S.D. Old cold dust heated by supernova 1987A. Nature 1989, 337, 533–535. [Google Scholar] [CrossRef]
- Wooden, D.H.; Rank, D.M.; Bregman, J.D.; Witteborn, F.C.; Tielens, A.G.G.M.; Cohen, M.; Pinto, P.A.; Axelrod, T.S. Airborne Spectrophotometry of SN 1987A from 1.7 to 12.6 Microns: Time History of the Dust Continuum and Line Emission. Astrophys. J. Suppl. Ser. 1993, 88, 477. [Google Scholar] [CrossRef]
- Matsuura, M.; Dwek, E.; Meixner, M.; Otsuka, M.; Babler, B.; Barlow, M.J.; Roman-Duval, J.; Engelbracht, C.; Sandstrom, K.; Lakićević, M.; et al. Herschel Detects a Massive Dust Reservoir in Supernova 1987A. Science 2011, 333, 1258. [Google Scholar] [CrossRef]
- Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M.J.; Baes, M.; Bouchet, P.; Burrows, D.N.; Chevalier, R.; Clayton, G.C.; et al. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA. Astrophys. J. Lett. 2014, 782, L2. [Google Scholar] [CrossRef]
- Sugerman, B.E.K.; Andrews, J.E.; Barlow, M.J.; Clayton, G.C.; Ercolano, B.; Ghavamian, P.; Kennicutt, R.C.J.; Krause, O.; Meixner, M.; Otsuka, M. Thirty Years of SN 1980K: Evidence for Light Echoes. Astrophys. J. 2012, 749, 170. [Google Scholar] [CrossRef]
- Sugerman, B.E.K.; Crotts, A.P.S. Multiple Light Echoes from SN 1993J. Astrophys. J. Lett. 2002, 581, L97–L100. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Li, W.; Filippenko, A.V. The Light Echo around Supernova 2003gd in Messier 74. Publ. Astron. Soc. Pac. 2006, 118, 351–357. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Filippenko, A.V.; Foley, R.J.; Smith, N.; Wang, L. The Detection of a Light Echo from the Type Ia Supernova 2006X in M100. Astrophys. J. 2008, 677, 1060–1068. [Google Scholar] [CrossRef]
- Crotts, A.P.S. Light Echoes from Supernova 2014J in M82. Astrophys. J. Lett. 2015, 804, L37. [Google Scholar] [CrossRef]
- Kirshner, R.P.; Kwan, J. Distances to extragalactic supernovae. Astrophys. J. 1974, 193, 27–36. [Google Scholar] [CrossRef]
- Kowal, C.T. Absolute magnitudes of supernovae. Astrophys. J. 1968, 73, 1021–1024. [Google Scholar] [CrossRef]
- Pskovskii, I.P. Light curves, color curves, and expansion velocity of type I supernovae as functions of the rate of brightness decline. Soviet Astronomy 1977, 21, 675. [Google Scholar]
- Colgate, S.A. Supernovae as a standard candle for cosmology. Astrophys. J. 1979, 232, 404–408. [Google Scholar] [CrossRef]
- Tammann, G.A. Cosmology with the Space Telescope. In Proceedings of the ESA/ESO Workshop on Astronomical Uses of the Space Telescope, Geneva, Switzerland, 12–14 February 1979; ESA/ESO: Geneva, Switzerland; Volume 937, pp. 329–344. [Google Scholar]
- Phillips, M.M. The Absolute Magnitudes of Type IA Supernovae. Astrophys. J. 1993, 413, L105. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. 2022, 934, L7. [Google Scholar] [CrossRef]
- Hamuy, M.; Pinto, P.A. Type II Supernovae as Standardized Candles. Astrophys. J. 2002, 566, L63–L65. [Google Scholar] [CrossRef]
- de Jaeger, T.; Galbany, L.; Riess, A.G.; Stahl, B.E.; Shappee, B.J.; Filippenko, A.V.; Zheng, W. A 5 per cent measurement of the Hubble-Lemaître constant from Type II supernovae. Mon. Not. R. Astron. Soc. 2022, 514, 4620–4628. [Google Scholar] [CrossRef]
- Wei, J.J. Constraining Cosmological Models with Different Observations. Acta Astron. Sin. 2016, 57, 504–506. [Google Scholar]
- Inserra, C.; Sullivan, M.; Angus, C.R.; Macaulay, E.; Nichol, R.C.; Smith, M.; Frohmaier, C.; Gutiérrez, C.P.; Vicenzi, M.; Möller, A.; et al. The first Hubble diagram and cosmological constraints using superluminous supernovae. Mon. Not. R. Astron. Soc. 2021, 504, 2535–2549. [Google Scholar] [CrossRef]
- Leibundgut, B. History of Supernovae as Distance Indicators. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 2525. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, Y.L.; Zhang, T.; Vinkó, J.; Regos, E.; Wang, X.; Xi, G.; Zhan, H. Forecast of cosmological constraints with type Ia supernovae from the Chinese Space Station Telescope. Sci. China Phys. Mech. Astron. 2023, 66, 229511. [Google Scholar] [CrossRef]
- Ben-Ami, S.; Shvartzvald, Y.; Waxman, E.; Netzer, U.; Yaniv, Y.; Algranatti, V.M.; Gal-Yam, A.; Lapid, O.; Ofek, E.; Topaz, J.; et al. The scientific payload of the Ultraviolet Transient Astronomy Satellite (ULTRASAT). In Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray; den Herder, J.W.A., Nikzad, S., Nakazawa, K., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2022; Volume 12181, p. 1218105. [Google Scholar] [CrossRef]
- Pál, A.; Ohno, M.; Mészáros, L.; Werner, N.; Ripa, J.; Frajt, M.; Hirade, N.; Hudec, J.; Kapuš, J.; Koleda, M.; et al. GRBAlpha: A 1U CubeSat mission for validating timing-based gamma-ray burst localization. In Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray; den Herder, J.W.A., Nikzad, S., Nakazawa, K., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2022; Volume 11444, p. 114444V. [Google Scholar] [CrossRef]
- Pál, A.; Ohno, M.; Mészáros, L.; Werner, N.; Řípa, J.; Csák, B.; Dafčíková, M.; Frajt, M.; Fukazawa, Y.; Hanák, P.; et al. GRBAlpha: The smallest astrophysical space observatory—Part 1: Detector design, system description and satellite operations. arXiv 2023, arXiv:2302.10048. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinkó, J.; Szalai, T.; Könyves-Tóth, R. The Purport of Space Telescopes in Supernova Research. Universe 2023, 9, 244. https://doi.org/10.3390/universe9060244
Vinkó J, Szalai T, Könyves-Tóth R. The Purport of Space Telescopes in Supernova Research. Universe. 2023; 9(6):244. https://doi.org/10.3390/universe9060244
Chicago/Turabian StyleVinkó, József, Tamás Szalai, and Réka Könyves-Tóth. 2023. "The Purport of Space Telescopes in Supernova Research" Universe 9, no. 6: 244. https://doi.org/10.3390/universe9060244
APA StyleVinkó, J., Szalai, T., & Könyves-Tóth, R. (2023). The Purport of Space Telescopes in Supernova Research. Universe, 9(6), 244. https://doi.org/10.3390/universe9060244