A Software for RFI Analysis of Radio Environment around Radio Telescope
Abstract
:1. Introduction
2. The RFI Analysis Software of Radio Environment around the Radio Telescope
2.1. Databases
2.2. RFI Analysis Module
3. Experimental Implementation of the RFI Analysis Software
3.1. Terrestrial RFI Analysis
3.2. Satellite RFI Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RFI | Radio frequency interference |
RQZ | Radio Quiet Zone |
API | Application Programming Interface |
DEM | Digital Elevation Model |
FAST | Five-hundred-meter Aperture Spherical radio Telescope |
TLE | Two-Line Elements |
1 | https://celestrak.org/, accessed on 22 March 2022. |
2 | https://www.space-track.org/, accessed on 22 March 2022. |
References
- Baan, W.A. Implementing RFI mitigation in radio science. J. Astron. Instrum. 2019, 8, 1940010. [Google Scholar] [CrossRef]
- Zanichelli, A.; Serra, G.; Mack, K.; Nicotra, G.; Bartolini, M.; Cantini, F.; Biaggi, M.D.; Gaudiomonte, F.; Bortolotti, C.; Roma, M.; et al. Towards coordinated site monitoring and common strategies for mitigation of Radio Frequency Interference at the Italian radio telescope. arXiv 2022, arXiv:2207.07571. [Google Scholar]
- Katore, S.N.; Raybole, P.A.; Rai, S.; Nayak, S.; Kumar, S. Tools for avoiding satellite interference at the upgraded GMRT. In Proceedings of the 32nd URSI GASS, Montreal, QC, Canada, 19–26 August 2017. [Google Scholar]
- Wang, Y.; Zhang, H.Y.; Hu, H.; Huang, S.J.; Zhu, W.W.; Zhi, G.P.; Zhang, T.; Fan, Z.C.; Yang, L. Satellite RFI mitigation on FAST. Res. Astron. Astrophys. 2021, 21, 18. [Google Scholar] [CrossRef]
- Offringa, A.R.; De Bruyn, A.G.; Biehl, M.; Zaroubi, S.; Bernardi, G.; Pandey, V.N. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. 2010, 405, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Sardarabadi, A.M.; van der Veen, A.J.; Boonstra, A.J. Spatial filtering of RF interference in radio astronomy using a reference antenna array. IEEE Trans. Signal Process. 2016, 64, 432–447. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, X.; Li, X.; Han, J.L.; Wang, C.; Zhou, D.J.; Wang, T. Radio frequency interference mitigation based on the asymmetrically reweighted penalized least squares and SumThreshold method. Mon. Not. R. Astron. Soc. 2020, 500, 2969–2978. [Google Scholar] [CrossRef]
- Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A. Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 2017, 18, 35–39. [Google Scholar]
- Yang, Z.C.; Yu, C.; Xiao, J.; Zhang, B. Deep residual detection of radio frequency interference for FAST. Mon. Not. R. Astron. Soc. 2020, 492, 1421–1431. [Google Scholar] [CrossRef] [Green Version]
- Mesarcik, M.; Boonstra, A.J.; Ranguelova, E.; van Nieuwpoort, R.V. Learning to detect radio frequency interference in radio astronomy without seeing it. Mon. Not. R. Astron. Soc. 2022, 516, 5367–5378. [Google Scholar] [CrossRef]
- Li, J.B.; Peng, B.; Liu, D.L. Site spectrum monitoring of electromagnetic environment for large radio telescopes. Chin. J. Radio Sci. 2015, 30, 378–382. [Google Scholar]
- Yang, C.; Wang, J.; You, X.; Haibin, S.U.; Shengyu, J.I.; Zhao, Z. Applicability of ITU-R P.1546 recommendation in typical terrestrial areas of CHINA. Chin. J. Radio Sci. 2019, 34, 295–301. [Google Scholar]
- Wang, Y.; Zhang, H.; Hu, H.; Huang, S.; Gan, H.; Wu, M.; Zhang, X.; Zhu, W. A Proposed RFI Intelligent Monitoring and Positioning System of FAST. In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–5 September 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Zhang, H. et al. [FAST Collaboration] RFI measurements and mitigation for FAST. Res. Astron. Astrophys. 2020, 20, 111–114. [Google Scholar]
- Wang, J.; Zhao, Y.B.; Shi, Y.F.; Yang, C.; Hao, Y.L.; Sun, J.M. The electromagnetic compatibility between FAST and public mobile communication stations and its cognitive using frequency strategy. Res. Astron. Astrophys. 2022, 22, 125005. [Google Scholar] [CrossRef]
- Nan, R.D. Five hundred meter aperture spherical radio telescope (FAST). Sci. China Ser. G 2006, 49, 129–148. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Jin, C.; Gao, Z.; Zhu, Y.; Zhu, K.; Jiang, P.; Yue, Y.; Lu, J.; Zhang, B.; et al. FAST VLBI: Current status and future plans. Res. Astron. Astrophys. 2020, 20, 74. [Google Scholar] [CrossRef]
- Wang, N. Xinjiang Qitai 110 m radio telescope. Sci. Sin. Phys. Mech. Astron. 2014, 44, 783. [Google Scholar] [CrossRef]
- Liu, X.; Liu, T.; Shen, Z.; Qin, S.; Luo, Q.; Cheng, Y.; Gu, Q.; Zhang, T.; Zhu, F.; Liu, S.-Y.; et al. A Q-band Line Survey toward Orion KL Using the Tianma Radio Telescope. Astrophys. J. Suppl. Ser. 2022, 263, 13. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Yang, C.; Ji, S.; Su, H. Research on Fading Characteristics of Ultrahigh Frequency Signals in Karst Landform Around Radio Quiet Zone of FAST. Radio Sci. 2020, 55, 10. [Google Scholar] [CrossRef]
- Recommendation ITU-R P.453-14, The Radio Refractive Index: Its Formula and Refractivity Data. 2019. Available online: https://www.itu.int/rec/R-REC-P.453/en (accessed on 21 April 2021).
- Recommendation ITU-R P.836-6, Water Vapour: Surface Density and Total Columnar Content. 2017. Available online: https://www.itu.int/rec/R-REC-P.836/en (accessed on 21 April 2021).
- Recommendation ITU-R P.837-7, Characteristics of Precipitation for Propagation Modeling. 2017. Available online: https://www.itu.int/rec/R-REC-P.837/en (accessed on 21 April 2021).
- Recommendation ITU-R P.839-4, Rain Height Model for Prediction Methods. 2013. Available online: https://www.itu.int/rec/R-REC-P.839/en (accessed on 21 April 2021).
- Recommendation ITU-R P.2001-4, a General Purpose Wide-Range Terrestrial Propagation Model in the Frequency Range 30 MHz to 50 GHz. 2021. Available online: https://www.itu.int/rec/R-REC-P.2001-4-202109-I/en (accessed on 10 April 2022).
- Recommendation ITU-R P.618, Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems. 2017. Available online: https://www.itu.int/rec/R-REC-P.618-13-201712-I/en (accessed on 21 April 2021).
- Recommendation ITU-R P.679-4, Propagation Data Required for the Design of Broadcasting-Satellite Systems. 2015. Available online: https://www.itu.int/\rec/R-REC-P.679-4-201507-I/en (accessed on 21 April 2021).
- Recommendation ITU-R P.680, Propagation Data required for the Design of Earth-Space Maritime Mobile Telecommunication Systems. 2022. Available online: https://www.itu.int/rec/R-REC-P.680-4-202208-I/en (accessed on 9 November 2022).
- Recommendation ITU-R P.681, Propagation Data Required for the Design Systems in the Land Mobile-Satellite Service. 2019. Available online: https://www.itu.int/rec/R-REC-P.681-11-201908-I/en (accessed on 21 April 2021).
- Recommendation ITU-R P.682, Propagation Data Required for The Design of Earth-Space Aeronautical Mobile Telecommunication Systems. 2022. Available online: https://www.itu.int/rec/R-REC-P.682-4-202208-I/en (accessed on 9 November 2022).
- Han, H.; Yang, C.; Li, J.; Wang, J.; Wang, J. Research on the Applicability of ITU-R P. 2001 in the Typical Area of China. J. CAEIT 2022, 17, 977–1006. [Google Scholar]
- Recommendation ITU-R M.1583-1, Interference Calculations Between Non-Geostationary Mobile-Satellite Service or Radionavigation-Satellite Service Systems and Radio Astronomy Telescope Sites. 2007. Available online: https://www.itu.int/rec/R-REC-M.1583/en (accessed on 21 April 2021).
No. | Parameter Name | Unit |
---|---|---|
1 | Vertical reflectivity gradient [21] | N-units/km |
2 | Average sea level value of surface reflectivity [21] | N-units |
3 | Average annual difference in the values of the reflectivity at the surface and 1000 m above the surface [21] | N-units/km |
4 | Wet term of the surface reflectivity [21] | ppm |
5 | Surface water vapor density [22] | g/m |
6 | Mean annual rainfall amount [23] | mm |
7 | Ratio of convective to total rainfall amount [23] | - |
8 | Probability of rainy 6-hours periods [23] | % |
9 | 0 degree isotherm height [24] | km |
10 | Mean rain height [24] | km |
No. | Model Name | Supported Frequency Range | Services |
---|---|---|---|
1 | Terrestrial radio wave propagation prediction model [25] | 30 MHz∼50 GHz | radio, mobile communication, television, radar |
2 | Earth–Space radio wave propagation prediction model [26,27,28,29,30] | 1 GHz∼55 GHz | communication, navigation, radio, television |
Distance (km) | Altitude (m) | Field Strength (dB V/m) | Free-Space Propagation (dB V/m) |
---|---|---|---|
0 | 1206 | 87.78 | 107.77 |
3.79 | 1104.3 | 33.03 | 76.21 |
7.57 | 1154.2 | 31.19 | 70.18 |
11.36 | 1091.7 | 18.79 | 66.66 |
15.15 | 1198.3 | 25.4 | 64.16 |
18.93 | 1103.4 | 20.8 | 62.23 |
22.72 | 1017 | 21.43 | 60.64 |
26.51 | 823.9 | 13.64 | 59.3 |
30.29 | 837.9 | −13.46 | 58.14 |
34.08 | 903 | 0.05 | 57.12 |
Longitude (E) | Latitude (N) | Distance (km) | Altitude (m) | Field Strength (dB V/m) | Propagation Loss (dB) |
---|---|---|---|---|---|
106.14119 | 26.20192 | 69.885 | 1744 | 4.477 | 169.987 |
106.14119 | 26.24359 | 67.256 | 1751 | 5.465 | 168.97 |
106.14119 | 26.28526 | 64.878 | 1760 | 6.457 | 167.978 |
106.14119 | 26.32692 | 62.739 | 1771 | 7.42 | 167.015 |
106.14119 | 26.36859 | 60.878 | 1784 | 8.304 | 166.13 |
106.14119 | 26.41026 | 59.321 | 1796 | 9.129 | 165.306 |
106.14119 | 26.45192 | 58.092 | 1804 | 9.712 | 164.722 |
106.14119 | 26.49359 | 57.213 | 1803 | 9.949 | 164.486 |
106.14119 | 26.53526 | 56.701 | 1783 | 9.718 | 164.717 |
... | ... | ... | ... | ... | ... |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, H.; Wang, J.; Huang, S.; Hu, H.; Yang, C. A Software for RFI Analysis of Radio Environment around Radio Telescope. Universe 2023, 9, 277. https://doi.org/10.3390/universe9060277
Wang Y, Zhang H, Wang J, Huang S, Hu H, Yang C. A Software for RFI Analysis of Radio Environment around Radio Telescope. Universe. 2023; 9(6):277. https://doi.org/10.3390/universe9060277
Chicago/Turabian StyleWang, Yu, Haiyan Zhang, Jian Wang, Shijie Huang, Hao Hu, and Cheng Yang. 2023. "A Software for RFI Analysis of Radio Environment around Radio Telescope" Universe 9, no. 6: 277. https://doi.org/10.3390/universe9060277
APA StyleWang, Y., Zhang, H., Wang, J., Huang, S., Hu, H., & Yang, C. (2023). A Software for RFI Analysis of Radio Environment around Radio Telescope. Universe, 9(6), 277. https://doi.org/10.3390/universe9060277